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Preface
The use of Python for data analysis and visualization has only increased in 
popularity in the last few years.

The aim of this book is to develop skills to effectively approach almost any data 
analysis problem, and extract all of the available information. This is done by 
introducing a range of varying techniques and methods such as uni- and multi-
variate linear regression, cluster finding, Bayesian analysis, machine learning, and 
time series analysis. Exploratory data analysis is a key aspect to get a sense of what 
can be done and to maximize the insights that are gained from the data. Additionally, 
emphasis is put on presentation-ready figures that are clear and easy to interpret.

What this learning path covers
Module 1, Getting Started with Python Data Analysis, shows how to work with time-
oriented data in Pandas. How do you clean, inspect, reshape, merge, or group data 
– these are the concerns in this chapter. The library of choice in the course will be
Pandas again.

Module 2, Python Data Analysis Cookbook, demonstrates how to visualize 
data and mentions frequently encountered pitfalls. Also, discusses 
statistical probability distributions and correlation between two variables.

Module 3, Mastering Python Data Analysis, introduces linear, multiple, and logistic 
regression with in-depth examples of using SciPy and stats models packages to test 
various hypotheses of relationships between variables.
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What you need for this learning path
Module 1: 

There are not too many requirements to get started. You will need a Python 
programming environment installed on your system. Under Linux and Mac OS X, 
Python is usually installed by default. Installation on Windows is supported by an 
excellent installer provided and maintained by the community.This book uses a 
recent Python 2, but many examples will work with Python 3as well.

The versions of the libraries used in this book are the following: NumPy 1.9.2,Pandas 
0.16.2, matplotlib 1.4.3, tables 3.2.2, pymongo 3.0.3, redis 2.10.3, and scikit-learn 
0.16.1. As these packages are all hosted on PyPI, the Python package index, they can 
be easily installed with pip. To install NumPy, you would write:

$ pip install numpy

If you are not using them already, we suggest you take a look at virtual environments 
for managing isolating Python environment on your computer. For Python 2, there 
are two packages of interest there: virtualenv and virtualenvwrapper. Since Python 
3.3, there is a tool in the standard library called pyvenv (https://docs. python.org/3/
library/venv.html), which serves the same purpose.

Most libraries will have an attribute for the version, so if you already have 
a library installed, you can quickly check its version:

>>>importredis

>>>redis.__version__'2.10.3'

This works well for most libraries. A few, such as pymongo, use a different attribute 
(pymongo uses just version, without the underscores). While all the examples can 
be run interactively in a Python shell, we recommend using IPython. IPython 
started as a more versatile Python shell, but has since evolved into a powerful tool 
for exploration and sharing. We used IPython 4.0.0 with Python 2.7.10. IPython is a 
great way to work interactively with Python, be it in the terminal or in the browser.

Module 2: 

First, you need a Python 3 distribution. I recommend the full Anaconda distribution 
as it comes with the majority of the software we need. I tested the code with Python 
3.4 and the following packages: 

• joblib 0.8.4

• IPython 3.2.1
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• NetworkX 1.9.1

• NLTK 3.0.2

• Numexpr 2.3.1

• pandas 0.16.2

• SciPy 0.16.0

• seaborn 0.6.0

• sqlalchemy 0.9.9

• statsmodels 0.6.1

• matplotlib 1.5.0

• NumPy 1.10.1

• scikit-learn 0.17

• dautil0.0.1a29

For some recipes, you need to install extra software, but this is explained whenever 
the software is required.

Module 3: 

All you need to follow through the examples in this book is a computer running 
any recent version of Python. While the examples use Python 3, they can easily be 
adapted to work with Python 2, with only minor changes. The packages used in the 
examples are NumPy, SciPy, matplotlib, Pandas, stats models, PyMC, Scikit-learn. 
Optionally, the packages basemap and cartopy are used to plot coordinate points 
on maps. The easiest way to obtain and maintain a Python environment that meets 
all the requirements of this book is to download a prepackaged Python distribution. 
In this book, we have checked all the code against Continuum Analytics' Anaconda 
Python distribution and Ubuntu Xenial Xerus (16.04) running Python 3.

To download the example data and code, an Internet connection is needed.

Who this learning path is for
This learning path is for developers, analysts, and data scientists who want to learn 
data analysis from scratch. This course will provide you with a solid foundation 
from which to analyze data with varying complexity. A working knowledge of 
Python (and a strong interest in playing with your data) is recommended.
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Reader feedback
Feedback from our readers is always welcome. Let us know what you think about 
this course—what you liked or disliked. Reader feedback is important for us as it 
helps us develop titles that you will really get the most out of.

To send us general feedback, simply e-mail feedback@packtpub.com, and mention 
the course's title in the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing 
or contributing to a book, see our author guide at www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt course, we have a number of things 
to help you to get the most from your purchase.

Downloading the example code
You can download the example code files for this course from your account at 
http://www.packtpub.com. If you purchased this course elsewhere, you can visit 
http://www.packtpub.com/support and register to have the files e-mailed directly 
to you.

You can download the code files by following these steps:

1. Log in or register to our website using your e-mail address and password.

2. Hover the mouse pointer on the SUPPORT tab at the top.

3. Click on Code Downloads & Errata.

4. Enter the name of the course in the Search box.

5. Select the course for which you're looking to download the code files.

6. Choose from the drop-down menu where you purchased this course from.

7. Click on Code Download.

You can also download the code files by clicking on the Code Files button on the 
course's webpage at the Packt Publishing website. This page can be accessed by 
entering the course's name in the Search box. Please note that you need to be logged 
into your Packt account.
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Once the file is downloaded, please make sure that you unzip or extract the folder 
using the latest version of:

• WinRAR / 7-Zip for Windows

• Zipeg / iZip / UnRarX for Mac

7-Zip / PeaZip for Linux

The code bundle for the course is also hosted on GitHub at https://github.com/
PacktPublishing/Python-End-to-end-Data-Analysis. We also have other code 
bundles from our rich catalog of books, videos, and courses available at https://
github.com/PacktPublishing/. Check them out!

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes 
do happen. If you find a mistake in one of our courses—maybe a mistake in the 
text or the code—we would be grateful if you could report this to us. By doing 
so, you can save other readers from frustration and help us improve subsequent 
versions of this course. If you find any errata, please report them by visiting http://
www.packtpub.com/submit-errata, selecting your course, clicking on the Errata 
Submission Form link, and entering the details of your errata. Once your errata are 
verified, your submission will be accepted and the errata will be uploaded to our 
website or added to any list of existing errata under the Errata section of that title.

To view the previously submitted errata, go to https://www.packtpub.com/books/
content/support and enter the name of the course in the search field. The required 
information will appear under the Errata section.

Piracy
Piracy of copyrighted material on the Internet is an ongoing problem across all 
media. At Packt, we take the protection of our copyright and licenses very seriously. 
If you come across any illegal copies of our works in any form on the Internet, please 
provide us with the location address or website name immediately so that we can 
pursue a remedy.
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Please contact us at copyright@packtpub.com with a link to the suspected pirated 
material.

We appreciate your help in protecting our authors and our ability to bring you 
valuable content.

Questions
If you have a problem with any aspect of this course, you can contact us at 
questions@packtpub.com, and we will do our best to address the problem.
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Introducing Data Analysis 
and Libraries

Data is raw information that can exist in any form, usable or not. We can easily get 
data everywhere in our lives; for example, the price of gold on the day of writing 
was $ 1.158 per ounce. This does not have any meaning, except describing the price 
of gold. This also shows that data is useful based on context.

With the relational data connection, information appears and allows us to expand 
our knowledge beyond the range of our senses. When we possess gold price data 
gathered over time, one piece of information we might have is that the price has 
continuously risen from $1.152 to $1.158 over three days. This could be used by 
someone who tracks gold prices.

Knowledge helps people to create value in their lives and work. This value is 
based on information that is organized, synthesized, or summarized to enhance 
comprehension, awareness, or understanding. It represents a state or potential for 
action and decisions. When the price of gold continuously increases for three days, it 
will likely decrease on the next day; this is useful knowledge. 
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The following figure illustrates the steps from data to knowledge; we call this 
process, the data analysis process and we will introduce it in the next section:

Data

Collecting

Summarizing

organizing

Gold price today is 1158$

Gold price has risen
for three days

Gold price will slightly
decrease on next day

Knowledge

Information

Decision making

Synthesising

Analysing

In this chapter, we will cover the following topics:

•	 Data analysis and process
•	 An overview of libraries in data analysis using different programming 

languages
•	 Common Python data analysis libraries

Data analysis and processing
Data is getting bigger and more diverse every day. Therefore, analyzing and 
processing data to advance human knowledge or to create value is a big challenge. 
To tackle these challenges, you will need domain knowledge and a variety of skills, 
drawing from areas such as computer science, artificial intelligence (AI) and 
machine learning (ML), statistics and mathematics, and knowledge domain, as 
shown in the following figure:
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Let's go through data analysis and its domain knowledge:

•	 Computer science: We need this knowledge to provide abstractions for 
efficient data processing. Basic Python programming experience is required 
to follow the next chapters. We will introduce Python libraries used in data 
analysis.

•	 Artificial intelligence and machine learning: If computer science knowledge 
helps us to program data analysis tools, artificial intelligence and machine 
learning help us to model the data and learn from it in order to build smart 
products.

•	 Statistics and mathematics: We cannot extract useful information from raw 
data if we do not use statistical techniques or mathematical functions.

•	 Knowledge domain: Besides technology and general techniques, it is 
important to have an insight into the specific domain. What do the data fields 
mean? What data do we need to collect? Based on the expertise, we explore 
and analyze raw data by applying the above techniques, step by step.
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Data analysis is a process composed of the following steps:

•	 Data requirements: We have to define what kind of data will be collected 
based on the requirements or problem analysis. For example, if we want to 
detect a user's behavior while reading news on the internet, we should be 
aware of visited article links, dates and times, article categories, and the time 
the user spends on different pages.

•	 Data collection: Data can be collected from a variety of sources: mobile, 
personal computer, camera, or recording devices. It may also be obtained in 
different ways: communication, events, and interactions between person and 
person, person and device, or device and device. Data appears whenever and 
wherever in the world. The problem is how we can find and gather it to solve 
our problem? This is the mission of this step.

•	 Data processing: Data that is initially obtained must be processed or 
organized for analysis. This process is performance-sensitive. How fast can 
we create, insert, update, or query data? When building a real product that 
has to process big data, we should consider this step carefully. What kind of 
database should we use to store data? What kind of data structure, such as 
analysis, statistics, or visualization, is suitable for our purposes?

•	 Data cleaning: After being processed and organized, the data may still 
contain duplicates or errors. Therefore, we need a cleaning step to reduce 
those situations and increase the quality of the results in the following 
steps. Common tasks include record matching, deduplication, and column 
segmentation. Depending on the type of data, we can apply several types of 
data cleaning. For example, a user's history of visits to a news website might 
contain a lot of duplicate rows, because the user might have refreshed certain 
pages many times. For our specific issue, these rows might not carry any 
meaning when we explore the user's behavior so we should remove them 
before saving it to our database. Another situation we may encounter is click 
fraud on news—someone just wants to improve their website ranking or 
sabotage awebsite. In this case, the data will not help us to explore a user's 
behavior. We can use thresholds to check whether a visit page event comes 
from a real person or from malicious software.

•	 Exploratory data analysis: Now, we can start to analyze data through a 
variety of techniques referred to as exploratory data analysis. We may detect 
additional problems in data cleaning or discover requests for further data. 
Therefore, these steps may be iterative and repeated throughout the whole 
data analysis process. Data visualization techniques are also used to examine 
the data in graphs or charts. Visualization often facilitates understanding of 
data sets, especially if they are large or high-dimensional.
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•	 Modelling and algorithms: A lot of mathematical formulas and algorithms 
may be applied to detect or predict useful knowledge from the raw data. For 
example, we can use similarity measures to cluster users who have exhibited 
similar news-reading behavior and recommend articles of interest to them 
next time. Alternatively, we can detect users' genders based on their news 
reading behavior by applying classification models such as the Support 
Vector Machine (SVM) or linear regression. Depending on the problem, we 
may use different algorithms to get an acceptable result. It can take a lot of 
time to evaluate the accuracy of the algorithms and choose the best one to 
implement for a certain product.

•	 Data product: The goal of this step is to build data products that receive data 
input and generate output according to the problem requirements. We will 
apply computer science knowledge to implement our selected algorithms as 
well as manage the data storage.

An overview of the libraries in data 
analysis
There are numerous data analysis libraries that help us to process and analyze data. 
They use different programming languages, and have different advantages and 
disadvantages of solving various data analysis problems. Now, we will introduce 
some common libraries that may be useful for you. They should give you an 
overview of the libraries in the field. However, the rest of this book focuses on 
Python-based libraries.

Some of the libraries that use the Java language for data analysis are as follows:

•	 Weka: This is the library that I became familiar with the first time I learned 
about data analysis. It has a graphical user interface that allows you to run 
experiments on a small dataset. This is great if you want to get a feel for what 
is possible in the data processing space. However, if you build a complex 
product, I think it is not the best choice, because of its performance, sketchy 
API design, non-optimal algorithms, and little documentation (http://www.
cs.waikato.ac.nz/ml/weka/).

http://www.cs.waikato.ac.nz/ml/weka/
http://www.cs.waikato.ac.nz/ml/weka/
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•	 Mallet: This is another Java library that is used for statistical natural 
language processing, document classification, clustering, topic modeling, 
information extraction, and other machine-learning applications on text. 
There is an add-on package for Mallet, called GRMM, that contains support 
for inference in general, graphical models, and training of Conditional 
random fields (CRF) with arbitrary graphical structures. In my experience, 
the library performance and the algorithms are better than Weka. However, 
its only focus is on text-processing problems. The reference page is at 
http://mallet.cs.umass.edu/.

•	 Mahout: This is Apache's machine-learning framework built on top of 
Hadoop; its goal is to build a scalable machine-learning library. It looks 
promising, but comes with all the baggage and overheads of Hadoop.  
The homepage is at http://mahout.apache.org/.

•	 Spark: This is a relatively new Apache project, supposedly up to a hundred 
times faster than Hadoop. It is also a scalable library that consists of common 
machine-learning algorithms and utilities. Development can be done in 
Python as well as in any JVM language. The reference page is at  
https://spark.apache.org/docs/1.5.0/mllib-guide.html.

Here are a few libraries that are implemented in C++:

•	 Vowpal Wabbit: This library is a fast, out-of-core learning system sponsored 
by Microsoft Research and, previously, Yahoo! Research. It has been 
used to learn a tera-feature (1012) dataset on 1,000 nodes in one hour. 
More information can be found in the publication at http://arxiv.org/
abs/1110.4198.

•	 MultiBoost: This package is a multiclass, multi label, and multitask 
classification boosting software implemented in C++. If you use 
this software, you should refer to the paper published in 2012 in the 
JournalMachine Learning Research, MultiBoost: A Multi-purpose Boosting 
Package, D.Benbouzid, R. Busa-Fekete, N. Casagrande, F.-D. Collin, and B. Kégl.

•	 MLpack: This is also a C++ machine-learning library, developed by the 
Fundamental Algorithmic and Statistical Tools Laboratory (FASTLab) 
at Georgia Tech. It focusses on scalability, speed, and ease-of-use, and was 
presented at the BigLearning workshop of NIPS 2011. Its homepage is at 
http://www.mlpack.org/about.html.

•	 Caffe: The last C++ library we want to mention is Caffe. This is a deep 
learning framework made with expression, speed, and modularity in mind. 
It is developed by the Berkeley Vision and Learning Center (BVLC) and 
community contributors. You can find more information about it at  
http://caffe.berkeleyvision.org/.

http://mallet.cs.umass.edu/
http://mahout.apache.org/
https://spark.apache.org/docs/1.5.0/mllib-guide.html
http://arxiv.org/abs/1110.4198
http://arxiv.org/abs/1110.4198
http://www.mlpack.org/about.html
http://caffe.berkeleyvision.org/
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Other libraries for data processing and analysis are as follows:

•	 Statsmodels: This is a great Python library for statistical modeling and is 
mainly used for predictive and exploratory analysis.

•	 Modular toolkit for data processing (MDP): This is a collection of 
supervised and unsupervised learning algorithms and other data processing 
units that can be combined into data processing sequences and more complex 
feed-forward network architectures (http://mdp-toolkit.sourceforge.
net/index.html).

•	 Orange: This is an open source data visualization and analysis for novices 
and experts. It is packed with features for data analysis and has add-ons  
for bioinformatics and text mining. It contains an implementation of  
self-organizing maps, which sets it apart from the other projects as well 
(http://orange.biolab.si/).

•	 Mirador: This is a tool for the visual exploration of complex datasets, 
supporting Mac and Windows. It enables users to discover correlation patterns 
and derive new hypotheses from data (http://orange.biolab.si/).

•	 RapidMiner: This is another GUI-based tool for data mining, machine 
learning, and predictive analysis (https://rapidminer.com/).

•	 Theano: This bridges the gap between Python and lower-level languages. 
Theano gives very significant performance gains, particularly for large 
matrix operations, and is, therefore, a good choice for deep learning models. 
However, it is not easy to debug because of the additional compilation layer.

•	 Natural language processing toolkit (NLTK): This is written in Python with 
very unique and salient features.

Here, I could not list all libraries for data analysis. However, I think the above 
libraries are enough to take a lot of your time to learn and build data analysis 
applications. I hope you will enjoy them after reading this book.

Python libraries in data analysis
Python is a multi-platform, general-purpose programming language that can run 
on Windows, Linux/Unix, and Mac OS X, and has been ported to Java and .NET 
virtual machines as well. It has a powerful standard library. In addition, it has 
many libraries for data analysis: Pylearn2, Hebel, Pybrain, Pattern, MontePython, 
and MILK. In this book, we will cover some common Python data analysis libraries 
such as Numpy, Pandas, Matplotlib, PyMongo, and scikit-learn. Now, to help you 
get started, I will briefly present an overview of each library for those who are less 
familiar with the scientific Python stack.

http://mdp-toolkit.sourceforge.net/index.html
http://mdp-toolkit.sourceforge.net/index.html
http://orange.biolab.si/
http://orange.biolab.si/
https://rapidminer.com/
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NumPy
One of the fundamental packages used for scientific computing in Python is Numpy. 
Among other things, it contains the following:

•	 A powerful N-dimensional array object
•	 Sophisticated (broadcasting) functions for performing array computations
•	 Tools for integrating C/C++ and Fortran code
•	 Useful linear algebra operations, Fourier transformations, and random 

number capabilities

Besides this, it can also be used as an efficient multidimensional container of  
generic data. Arbitrary data types can be defined and integrated with a wide  
variety of databases.

Pandas
Pandas is a Python package that supports rich data structures and functions for 
analyzing data, and is developed by the PyData Development Team. It is focused on 
the improvement of Python's data libraries. Pandas consists of the following things:

•	 A set of labeled array data structures; the primary of which are Series, 
DataFrame, and Panel

•	 Index objects enabling both simple axis indexing and multilevel/hierarchical 
axis indexing

•	 An intergraded group by engine for aggregating and transforming datasets
•	 Date range generation and custom date offsets
•	 Input/output tools that load and save data from flat files or PyTables/HDF5 

format
•	 Optimal memory versions of the standard data structures
•	 Moving window statistics and static and moving window linear/panel 

regression

Due to these features, Pandas is an ideal tool for systems that need complex  
data structures or high-performance time series functions such as financial data 
analysis applications.
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Matplotlib
Matplotlib is the single most used Python package for 2D-graphics. It provides  
both a very quick way to visualize data from Python and publication-quality  
figures in many formats: line plots, contour plots, scatter plots, and Basemap plots. 
It comes with a set of default settings, but allows customization of all kinds of 
properties. However, we can easily create our chart with the defaults of almost  
every property in Matplotlib.

PyMongo
MongoDB is a type of NoSQL database. It is highly scalable, robust, and perfect to 
work with JavaScript-based web applications, because we can store data as JSON 
documents and use flexible schemas.

PyMongo is a Python distribution containing tools for working with MongoDB. 
Many tools have also been written for working with PyMongo to add more features 
such as MongoKit, Humongolus, MongoAlchemy, and Ming.

The scikit-learn library
The scikit-learn is an open source machine-learning library using the Python 
programming language. It supports various machine learning models, such as 
classification, regression, and clustering algorithms, interoperated with the Python 
numerical and scientific libraries NumPy and SciPy. The latest scikit-learn version is 
0.16.1, published in April 2015.

Summary
In this chapter, we presented three main points. Firstly, we figured out the 
relationship between raw data, information and knowledge. Due to its contribution 
to our lives, we continued to discuss an overview of data analysis and processing 
steps in the second section. Finally, we introduced a few common supported libraries 
that are useful for practical data analysis applications. Among those, in the next 
chapters, we will focus on Python libraries in data analysis.
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Practice exercise

The following table describes users' rankings on Snow White movies:

UserID Sex Location Ranking
A Male Philips 4
B Male VN 2
C Male Canada 1
D Male Canada 2
E Female VN 5
F Female NY 4

Exercise 1: What information can we find in this table? What kind of knowledge can 
we derive from it?

Exercise 2: Based on the data analysis process in this chapter, try to define the data 
requirements and analysis steps needed to predict whether user B likes Maleficent 
movies or not.
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NumPy Arrays and 
Vectorized Computation

NumPy is the fundamental package supported for presenting and computing data 
with high performance in Python. It provides some interesting features as follows:

•	 Extension package to Python for multidimensional arrays (ndarrays), 
various derived objects (such as masked arrays), matrices providing 
vectorization operations, and broadcasting capabilities. Vectorization can 
significantly increase the performance of array computations by taking 
advantage of Single Instruction Multiple Data (SIMD) instruction sets in 
modern CPUs.

•	 Fast and convenient operations on arrays of data, including mathematical 
manipulation, basic statistical operations, sorting, selecting, linear algebra, 
random number generation, discrete Fourier transforms, and so on.

•	 Efficiency tools that are closer to hardware because of integrating  
C/C++/Fortran code.

NumPy is a good starting package for you to get familiar with arrays and  
array-oriented computing in data analysis. Also, it is the basic step to learn  
other, more effective tools such as Pandas, which we will see in the next chapter.  
We will be using NumPy version 1.9.1.
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NumPy arrays
An array can be used to contain values of a data object in an experiment or 
simulation step, pixels of an image, or a signal recorded by a measurement device.  
For example, the latitude of the Eiffel Tower, Paris is 48.858598 and the longitude  
is 2.294495. It can be presented in a NumPy array object as p:

>>> import numpy as np

>>> p = np.array([48.858598, 2.294495])

>>> p

Output: array([48.858598, 2.294495])

This is a manual construction of an array using the np.array function. The standard 
convention to import NumPy is as follows:

>>> import numpy as np

You can, of course, put from numpy import * in your code to avoid having to write 
np. However, you should be careful with this habit because of the potential code 
conflicts (further information on code conventions can be found in the Python Style 
Guide, also known as PEP8, at https://www.python.org/dev/peps/pep-0008/).

There are two requirements of a NumPy array: a fixed size at creation and a uniform, 
fixed data type, with a fixed size in memory. The following functions help you to get 
information on the p matrix:

>>> p.ndim    # getting dimension of array p

1

>>> p.shape   # getting size of each array dimension

(2,)

>>> len(p)    # getting dimension length of array p

2

>>> p.dtype    # getting data type of array p

dtype('float64')

Data types
There are five basic numerical types including Booleans (bool), integers (int), 
unsigned integers (uint), floating point (float), and complex. They indicate how 
many bits are needed to represent elements of an array in memory. Besides that, 
NumPy also has some types, such as intc and intp, that have different bit sizes 
depending on the platform.

https://www.python.org/dev/peps/pep-0008/
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See the following table for a listing of NumPy's supported data types:

Type Type 
code

Description Range of value

bool Boolean stored as a byte True/False
intc Similar to C int (int32 or int 

64)
intp Integer used for indexing 

(same as C size_t)
int8, uint8 i1, u1 Signed and unsigned 8-bit 

integer types
int8: (-128 to 127)
uint8: (0 to 255)

int16, 
uint16

i2, u2 Signed and unsigned 16-bit 
integer types 

int16: (-32768 to 32767)
uint16: (0 to 65535)

int32, 
uint32

I4, u4 Signed and unsigned 32-bit 
integer types

int32: (-2147483648 to 
2147483647
uint32: (0 to 4294967295)

int64, 
uinit64

i8, u8 Signed and unsigned 64-bit 
integer types

Int64: (-9223372036854775808 
to 9223372036854775807)
uint64: (0 to 
18446744073709551615)

float16 f2 Half precision float: sign bit, 
5 bits exponent, and 10b bits 
mantissa

float32 f4 / f Single precision float: sign 
bit, 8 bits exponent, and 23 
bits mantissa

float64 f8 / d Double precision float: sign 
bit, 11 bits exponent, and 52 
bits mantissa

complex64, 
complex128, 
complex256

c8, 
c16, 
c32

Complex numbers 
represented by two 32-bit, 
64-bit, and 128-bit floats

object 0 Python object type
string_ S Fixed-length string type Declare a string dtype with 

length 10, using S10
unicode_ U Fixed-length Unicode type Similar to string_ example, we 

have 'U10'
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We can easily convert or cast an array from one dtype to another using the astype 
method:

>>> a = np.array([1, 2, 3, 4])

>>> a.dtype

dtype('int64')

>>> float_b = a.astype(np.float64)

>>> float_b.dtype

dtype('float64')

The astype function will create a new array with a copy of 
data from an old array, even though the new dtype is similar 
to the old one.

Array creation
There are various functions provided to create an array object. They are very useful 
for us to create and store data in a multidimensional array in different situations.

Now, in the following table we will summarize some of NumPy's common functions 
and their use by examples for array creation:

Function Description Example
empty, 
empty_like

Create a new array 
of the given shape 
and type, without 
initializing elements

>>> np.empty([3,2], dtype=np.float64)

array([[0., 0.], [0., 0.], [0., 0.]])

>>> a = np.array([[1, 2], [4, 3]])

>>> np.empty_like(a)

array([[0, 0], [0, 0]])

eye, 
identity

Create a NxN 
identity matrix with 
ones on the diagonal 
and zero elsewhere

>>> np.eye(2, dtype=np.int)

array([[1, 0], [0, 1]])

ones, ones_
like

Create a new array 
with the given shape 
and type, filled with 
1s for all elements

>>> np.ones(5)

array([1., 1., 1., 1., 1.])

>>> np.ones(4, dtype=np.int)

array([1, 1, 1, 1])

>>> x = np.array([[0,1,2], [3,4,5]])

>>> np.ones_like(x)

array([[1, 1, 1],[1, 1, 1]])
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Function Description Example
zeros, 
zeros_like

This is similar to 
ones, ones_like, 
but initializing 
elements with 0s 
instead

>>> np.zeros(5)

array([0., 0., 0., 0-, 0.])

>>> np.zeros(4, dtype=np.int)

array([0, 0, 0, 0])

>>> x = np.array([[0, 1, 2], [3, 4, 
5]])

>>> np.zeros_like(x)

array([[0, 0, 0],[0, 0, 0]])

arange Create an array with 
even spaced values 
in a given interval

>>> np.arange(2, 5)

array([2, 3, 4])

>>> np.arange(4, 12, 5)

array([4, 9])

full, full_
like

Create a new array 
with the given shape 
and type, filled with 
a selected value

>>> np.full((2,2), 3, dtype=np.int)

array([[3, 3], [3, 3]])

>>> x = np.ones(3)

>>> np.full_like(x, 2)

array([2., 2., 2.])

array Create an array from 
the existing data

>>> np.array([[1.1, 2.2, 3.3], [4.4, 
5.5, 6.6]])

array([1.1, 2.2, 3.3], [4.4, 5.5, 
6.6]])

asarray Convert the input to 
an array

>>> a = [3.14, 2.46]

>>> np.asarray(a)

array([3.14, 2.46])

copy Return an array copy 
of the given object

>>> a = np.array([[1, 2], [3, 4]])

>>> np.copy(a)

array([[1, 2], [3, 4]])

fromstring Create 1-D array 
from a string or text 

>>> np.fromstring('3.14 2.17', 
dtype=np.float, sep=' ')

array([3.14, 2.17])
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Indexing and slicing
As with other Python sequence types, such as lists, it is very easy to access and 
assign a value of each array's element:

>>> a = np.arange(7)

>>> a

array([0, 1, 2, 3, 4, 5, 6])

>>> a[1], a [4], a[-1]

(1, 4, 6)

In Python, array indices start at 0. This is in contrast to Fortran or 
Matlab, where indices begin at 1.

As another example, if our array is multidimensional, we need tuples of integers to 
index an item:

>>> a = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]])

>>> a[0, 2]      # first row, third column

3

>>> a[0, 2] = 10

>>> a

array([[1, 2, 10], [4, 5, 6], [7, 8, 9]])

>>> b = a[2]

>>> b

array([7, 8, 9])

>>> c = a[:2]

>>> c

array([[1, 2, 10], [4, 5, 6]])

We call b and c as array slices, which are views on the original one. It means that the 
data is not copied to b or c, and whenever we modify their values, it will be reflected 
in the array a as well:

>>> b[-1] = 11

>>> a

array([[1, 2, 10], [4, 5, 6], [7, 8, 11]])

We use a colon (:) character to take the entire axis when we 
omit the index number.
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Fancy indexing
Besides indexing with slices, NumPy also supports indexing with Boolean or integer 
arrays (masks). This method is called fancy indexing. It creates copies, not views.

First, we take a look at an example of indexing with a Boolean mask array:

>>> a = np.array([3, 5, 1, 10])

>>> b = (a % 5 == 0)

>>> b

array([False, True, False, True], dtype=bool)

>>> c = np.array([[0, 1], [2, 3], [4, 5], [6, 7]])

>>> c[b]

array([[2, 3], [6, 7]])

The second example is an illustration of using integer masks on arrays:

>>> a = np.array([[1, 2, 3, 4], 

 [5, 6, 7, 8], 

 [9, 10, 11, 12],

 [13, 14, 15, 16]])

>>> a[[2, 1]]

array([[9, 10, 11, 12], [5, 6, 7, 8]])

>>> a[[-2, -1]]          # select rows from the end

array([[ 9, 10, 11, 12], [13, 14, 15, 16]])

>>> a[[2, 3], [0, 1]]    # take elements at (2, 0) and (3, 1)

array([9, 14])

The mask array must have the same length as the axis that 
it's indexing.

Downloading the example code
You can download the example code files for all Packt books 
you have purchased from your account at http://www.
packtpub.com. If you purchased this book elsewhere, you can 
visit http://www.packtpub.com/support and register to 
have the files e-mailed directly to you.

http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com/support
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Numerical operations on arrays
We are getting familiar with creating and accessing ndarrays. Now, we continue to 
the next step, applying some mathematical operations to array data without writing 
any for loops, of course, with higher performance.

Scalar operations will propagate the value to each element of the array:

>>> a = np.ones(4)

>>> a * 2

array([2., 2., 2., 2.])

>>> a + 3

array([4., 4., 4., 4.])

All arithmetic operations between arrays apply the operation element wise:

>>> a = np.ones([2, 4])

>>> a * a

array([[1., 1., 1., 1.], [1., 1., 1., 1.]])

>>> a + a

array([[2., 2., 2., 2.], [2., 2., 2., 2.]])

Also, here are some examples of comparisons and logical operations:

>>> a = np.array([1, 2, 3, 4])

>>> b = np.array([1, 1, 5, 3])

>>> a == b

array([True, False, False, False], dtype=bool)

>>> np.array_equal(a, b)      # array-wise comparison

False

>>> c = np.array([1, 0])

>>> d = np.array([1, 1])

>>> np.logical_and(c, d)      # logical operations

array([True, False])
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Array functions
Many helpful array functions are supported in NumPy for analyzing data. We will 
list some part of them that are common in use. Firstly, the transposing function 
is another kind of reshaping form that returns a view on the original data array 
without copying anything:

>>> a = np.array([[0, 5, 10], [20, 25, 30]])

>>> a.reshape(3, 2)

array([[0, 5], [10, 20], [25, 30]])

>>> a.T

array([[0, 20], [5, 25], [10, 30]])

In general, we have the swapaxes method that takes a pair of axis numbers and 
returns a view on the data, without making a copy:

>>> a = np.array([[[0, 1, 2], [3, 4, 5]], 

 [[6, 7, 8], [9, 10, 11]]])

>>> a.swapaxes(1, 2)

array([[[0, 3],

    [1, 4],

    [2, 5]],

   [[6, 9],

    [7, 10],

    [8, 11]]])

The transposing function is used to do matrix computations; for example, computing 
the inner matrix product XT.X using np.dot:

>>> a = np.array([[1, 2, 3],[4,5,6]])

>>> np.dot(a.T, a)

array([[17, 22, 27],

   [22, 29, 36],

   [27, 36, 45]])
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Sorting data in an array is also an important demand in processing data. Let's take a 
look at some sorting functions and their use:

>>> a = np.array ([[6, 34, 1, 6], [0, 5, 2, -1]])

>>> np.sort(a)     # sort along the last axis

array([[1, 6, 6, 34], [-1, 0, 2, 5]])

>>> np.sort(a, axis=0)    # sort along the first axis

array([[0, 5, 1, -1], [6, 34, 2, 6]])

>>> b = np.argsort(a)    # fancy indexing of sorted array

>>> b

array([[2, 0, 3, 1], [3, 0, 2, 1]])

>>> a[0][b[0]]

array([1, 6, 6, 34])

>>> np.argmax(a)    # get index of maximum element

1

See the following table for a listing of array functions:

Function Description Example
sin, cos, tan, 
cosh, sinh, tanh, 
arcos, arctan, 
deg2rad

Trigonometric 
and hyperbolic 
functions

>>> a = np.array([0.,30., 45.])

>>> np.sin(a * np.pi / 180)

array([0., 0.5, 0.7071678])

around, round, 
rint, fix, floor, 
ceil, trunc

Rounding elements 
of an array to the 
given or nearest 
number

>>> a = np.array([0.34, 1.65])

>>> np.round(a)

array([0., 2.])

sqrt, square, exp, 
expm1, exp2, log, 
log10, log1p, 
logaddexp

Computing the 
exponents and 
logarithms of an 
array

>>> np.exp(np.array([2.25, 
3.16]))

array([9.4877, 23.5705])
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Function Description Example
add, negative, 
multiply, devide, 
power, substract, 
mod, modf, 
remainder

Set of arithmetic 
functions on arrays

>>> a = np.arange(6)

>>> x1 = a.reshape(2,3)

>>> x2 = np.arange(3)

>>> np.multiply(x1, x2)

array([[0,1,4],[0,4,10]])

greater, 
greater_equal, 
less, less_equal, 
equal, not_equal

Perform 
elementwise 
comparison: >, >=, 
<, <=, ==, !=

>>> np.greater(x1, x2)

array([[False, False, False], 
[True, True, True]], dtype = 
bool)

Data processing using arrays
With the NumPy package, we can easily solve many kinds of data processing 
tasks without writing complex loops. It is very helpful for us to control our code 
as well as the performance of the program. In this part, we want to introduce some 
mathematical and statistical functions.

See the following table for a listing of mathematical and statistical functions:

Function Description Example
sum Calculate the sum 

of all the elements 
in an array or 
along the axis

>>> a = np.array([[2,4], [3,5]])

>>> np.sum(a, axis=0)

array([5, 9])

prod Compute the 
product of array 
elements over the 
given axis

>>> np.prod(a, axis=1)

array([8, 15])

diff Calculate the 
discrete difference 
along the given 
axis

>>> np.diff(a, axis=0)

array([[1,1]])

gradient Return the 
gradient of an 
array

>>> np.gradient(a)

[array([[1., 1.], [1., 1.]]), 
array([[2., 2.], [2., 2.]])]

cross Return the cross 
product of two 
arrays

>>> b = np.array([[1,2], [3,4]])

>>> np.cross(a,b)

array([0, -3])
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Function Description Example
std, var Return standard 

deviation and 
variance of arrays 

>>> np.std(a)

1.1180339

>>> np.var(a)

1.25

mean Calculate 
arithmetic mean 
of an array

>>> np.mean(a)

3.5

where Return elements, 
either from x or 
y, that satisfy a 
condition

>>> np.where([[True, True], [False, 
True]], [[1,2],[3,4]], [[5,6],[7,8]])

array([[1,2], [7, 4]])

unique Return the sorted 
unique values in 
an array

>>> id = np.array(['a', 'b', 'c', 
'c', 'd'])

>>> np.unique(id)

array(['a', 'b', 'c', 'd'], 
dtype='|S1')

intersect1d Compute the 
sorted and 
common elements 
in two arrays

>>> a = np.array(['a', 'b', 'a', 'c', 
'd', 'c'])

>>> b = np.array(['a', 'xyz', 'klm', 
'd'])

>>> np.intersect1d(a,b)

array(['a', 'd'], dtype='|S3')

Loading and saving data
We can also save and load data to and from a disk, either in text or binary format,  
by using different supported functions in NumPy package.

Saving an array
Arrays are saved by default in an uncompressed raw binary format, with the file 
extension .npy by the np.save function:

>>> a = np.array([[0, 1, 2], [3, 4, 5]])

>>> np.save('test1.npy', a)
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The library automatically assigns the .npy extension, if we omit it.

If we want to store several arrays into a single file in an uncompressed .npz format, 
we can use the np.savez function, as shown in the following example:

>>> a = np.arange(4)

>>> b = np.arange(7)

>>> np.savez('test2.npz', arr0=a, arr1=b)

The .npz file is a zipped archive of files named after the variables they contain. 
When we load an .npz file, we get back a dictionary-like object that can be queried 
for its lists of arrays:

>>> dic = np.load('test2.npz')

>>> dic['arr0']

array([0, 1, 2, 3])

Another way to save array data into a file is using the np.savetxt function that 
allows us to set format properties in the output file:

>>> x = np.arange(4)

>>> # e.g., set comma as separator between elements

>>> np.savetxt('test3.out', x, delimiter=',')

Loading an array
We have two common functions such as np.load and np.loadtxt, which 
correspond to the saving functions, for loading an array:

>>> np.load('test1.npy')

array([[0, 1, 2], [3, 4, 5]])

>>> np.loadtxt('test3.out', delimiter=',')

array([0., 1., 2., 3.])

Similar to the np.savetxt function, the np.loadtxt function also has a lot of options 
for loading an array from a text file.
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Linear algebra with NumPy
Linear algebra is a branch of mathematics concerned with vector spaces and the 
mappings between those spaces. NumPy has a package called linalg that supports 
powerful linear algebra functions. We can use these functions to find eigenvalues 
and eigenvectors or to perform singular value decomposition:

>>> A = np.array([[1, 4, 6],

    [5, 2, 2],

    [-1, 6, 8]])

>>> w, v = np.linalg.eig(A)

>>> w                           # eigenvalues

array([-0.111 + 1.5756j, -0.111 – 1.5756j, 11.222+0.j])

>>> v                           # eigenvector

array([[-0.0981 + 0.2726j, -0.0981 – 0.2726j, 0.5764+0.j],

    [0.7683+0.j, 0.7683-0.j, 0.4591+0.j],

    [-0.5656 – 0.0762j, -0.5656 + 0.00763j, 0.6759+0.j]])

The function is implemented using the geev Lapack routines that compute the 
eigenvalues and eigenvectors of general square matrices.

Another common problem is solving linear systems such as Ax = b with A as a 
matrix and x and b as vectors. The problem can be solved easily using the  
numpy.linalg.solve function:

>>> A = np.array([[1, 4, 6], [5, 2, 2], [-1, 6, 8]])

>>> b = np.array([[1], [2], [3]])

>>> x = np.linalg.solve(A, b)

>>> x

array([[-1.77635e-16], [2.5], [-1.5]])

The following table will summarise some commonly used functions in the numpy.
linalg package:

Function Description Example
dot Calculate the dot 

product of two arrays
>>> a = np.array([[1, 0],[0, 1]])

>>> b = np.array( [[4, 1],[2, 2]])

>>> np.dot(a,b)

array([[4, 1],[2, 2]])
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Function Description Example
inner, outer Calculate the inner and 

outer product of two 
arrays

>>> a = np.array([1, 1, 1])

>>> b = np.array([3, 5, 1])

>>> np.inner(a,b)

9

linalg.norm Find a matrix or vector 
norm

>>> a = np.arange(3)

>>> np.linalg.norm(a)

2.23606

linalg.det Compute the 
determinant of an array

>>> a = np.array([[1,2],[3,4]])

>>> np.linalg.det(a)

-2.0

linalg.inv Compute the inverse of 
a matrix

>>> a = np.array([[1,2],[3,4]])

>>> np.linalg.inv(a)

array([[-2., 1.],[1.5, -0.5]])

linalg.qr Calculate the QR 
decomposition

>>> a = np.array([[1,2],[3,4]])

>>> np.linalg.qr(a)

(array([[0.316, 0.948], [0.948, 
0.316]]), array([[ 3.162, 4.427], 
[ 0., 0.632]]))

linalg.cond Compute the condition 
number of a matrix

>>> a = np.array([[1,3],[2,4]])

>>> np.linalg.cond(a)

14.933034

trace Compute the sum of the 
diagonal element

>>> np.trace(np.arange(6)).

reshape(2,3))

4

NumPy random numbers
An important part of any simulation is the ability to generate random numbers.  
For this purpose, NumPy provides various routines in the submodule random.  
It uses a particular algorithm, called the Mersenne Twister, to generate 
pseudorandom numbers.
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First, we need to define a seed that makes the random numbers predictable.  
When the value is reset, the same numbers will appear every time. If we do not 
assign the seed, NumPy automatically selects a random seed value based on the 
system's random number generator device or on the clock:

>>> np.random.seed(20)

An array of random numbers in the [0.0, 1.0] interval can be generated as 
follows:

>>> np.random.rand(5)

array([0.5881308, 0.89771373, 0.89153073, 0.81583748, 

         0.03588959])

>>> np.random.rand(5)

array([0.69175758, 0.37868094, 0.51851095, 0.65795147,  

       0.19385022])

>>> np.random.seed(20)    # reset seed number

>>> np.random.rand(5)

array([0.5881308, 0.89771373, 0.89153073, 0.81583748,  

       0.03588959])

If we want to generate random integers in the half-open interval [min, max],  
we can user the randint(min, max, length) function:

>>> np.random.randint(10, 20, 5)

array([17, 12, 10, 16, 18])

NumPy also provides for many other distributions, including the Beta,  
bionomial, chi-square, Dirichlet, exponential, F, Gamma, geometric, or Gumbel. 
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The following table will list some distribution functions and give examples for 
generating random numbers:

Function Description Example
binomial Draw samples from a 

binomial distribution 
(n: number of trials, p: 
probability)

>>> n, p = 100, 0.2

>>> np.random.binomial(n, p, 3)

array([17, 14, 23])

dirichlet Draw samples using a 
Dirichlet distribution

>>> np.random.
dirichlet(alpha=(2,3), size=3)

array([[0.519, 0.480], [0.639, 
0.36],

 [0.838, 0.161]])

poisson Draw samples from a 
Poisson distribution

>>> np.random.poisson(lam=2, size= 
2)

array([4,1])

normal Draw samples using 
a normal Gaussian 
distribution

>>> np.random.normal

(loc=2.5, scale=0.3, size=3)

array([2.4436, 2.849, 2.741)

uniform Draw samples using a 
uniform distribution

>>> np.random.uniform(

low=0.5, high=2.5, size=3)

array([1.38, 1.04, 2.19[)

We can also use the random number generation to shuffle items in a list. Sometimes 
this is useful when we want to sort a list in a random order:

>>> a = np.arange(10)

>>> np.random.shuffle(a)

>>> a

array([7, 6, 3, 1, 4, 2, 5, 0, 9, 8])
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The following figure shows two distributions, binomial and poisson , side by side 
with various parameters (the visualization was created with matplotlib, which will 
be covered in Chapter 4, Data Visualization):

Summary
In this chapter, we covered a lot of information related to the NumPy package, 
especially commonly used functions that are very helpful to process and analyze 
data in ndarray. Firstly, we learned the properties and data type of ndarray in the 
NumPy package. Secondly, we focused on how to create and manipulate an ndarray 
in different ways, such as conversion from other structures, reading an array from 
disk, or just generating a new array with given values. Thirdly, we studied how  
to access and control the value of each element in ndarray by using indexing  
and slicing.
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Then, we are getting familiar with some common functions and operations  
on ndarray.

And finally, we continue with some advance functions that are related to  
statistic, linear algebra and sampling data. Those functions play important  
role in data analysis.

However, while NumPy by itself does not provide very much high-level data 
analytical functionality, having an understanding of it will help you use tools such  
as Pandas much more effectively. This tool will be discussed in the next chapter.

Practice exercises

Exercise 1: Using an array creation function, let's try to create arrays variable in the 
following situations:

•	 Create ndarray from the existing data
•	 Initialize ndarray which elements are filled with ones, zeros, or a  

given interval
•	 Loading and saving data from a file to an ndarray

Exercise 2: What is the difference between np.dot(a, b) and (a*b)?

Exercise 3: Consider the vector [1, 2, 3, 4, 5] building a new vector with four 
consecutive zeros interleaved between each value.

Exercise 4: Taking the data example file chapter2-data.txt, which includes 
information on a system log, solves the following tasks:

•	 Try to build an ndarray from the data file
•	 Statistic frequency of each device type in the built matrix
•	 List unique OS that appears in the data log
•	 Sort user by provinceID and count the number of users in each province
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Data Analysis with Pandas
In this chapter, we will explore another data analysis library called Pandas.  
The goal of this chapter is to give you some basic knowledge and concrete  
examples for getting started with Pandas.

An overview of the Pandas package
Pandas is a Python package that supports fast, flexible, and expressive data 
structures, as well as computing functions for data analysis. The following  
are some prominent features that Pandas supports:

•	 Data structure with labeled axes. This makes the program clean and clear 
and avoids common errors from misaligned data.

•	 Flexible handling of missing data.
•	 Intelligent label-based slicing, fancy indexing, and subset creation of  

large datasets.
•	 Powerful arithmetic operations and statistical computations on a custom  

axis via axis label.
•	 Robust input and output support for loading or saving data from and to  

files, databases, or HDF5 format.

Related to Pandas installation, we recommend an easy way, that is to install it as 
a part of Anaconda, a cross-platform distribution for data analysis and scientific 
computing. You can refer to the reference at http://docs.continuum.io/
anaconda/ to download and install the library.

http://docs.continuum.io/anaconda/
http://docs.continuum.io/anaconda/
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After installation, we can use it like other Python packages. Firstly, we have to 
import the following packages at the beginning of the program:

>>> import pandas as pd

>>> import numpy as np

The Pandas data structure
Let's first get acquainted with two of Pandas' primary data structures: the Series  
and the DataFrame. They can handle the majority of use cases in finance, statistic, 
social science, and many areas of engineering.

Series
A Series is a one-dimensional object similar to an array, list, or column in table.  
Each item in a Series is assigned to an entry in an index:

>>> s1 = pd.Series(np.random.rand(4),

                   index=['a', 'b', 'c', 'd'])

>>> s1

a    0.6122

b    0.98096

c    0.3350

d    0.7221

dtype: float64

By default, if no index is passed, it will be created to have values ranging from 0 to 
N-1, where N is the length of the Series:

>>> s2 = pd.Series(np.random.rand(4))

>>> s2

0    0.6913

1    0.8487

2    0.8627

3    0.7286

dtype: float64
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We can access the value of a Series by using the index:

>>> s1['c']

0.3350

>>>s1['c'] = 3.14

>>> s1['c', 'a', 'b']

c    3.14

a    0.6122

b    0.98096

This accessing method is similar to a Python dictionary. Therefore, Pandas also 
allows us to initialize a Series object directly from a Python dictionary:

>>> s3 = pd.Series({'001': 'Nam', '002': 'Mary',

                    '003': 'Peter'})

>>> s3

001    Nam

002    Mary

003    Peter

dtype: object

Sometimes, we want to filter or rename the index of a Series created from a Python 
dictionary. At such times, we can pass the selected index list directly to the initial 
function, similarly to the process in the above example. Only elements that exist in 
the index list will be in the Series object. Conversely, indexes that are missing in the 
dictionary are initialized to default NaN values by Pandas:

>>> s4 = pd.Series({'001': 'Nam', '002': 'Mary',

                    '003': 'Peter'}, index=[

                    '002', '001', '024', '065'])

>>> s4

002    Mary

001    Nam

024    NaN

065    NaN

dtype:   object

ect
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The library also supports functions that detect missing data:

>>> pd.isnull(s4)

002    False

001    False

024    True

065    True

dtype: bool

Similarly, we can also initialize a Series from a scalar value:

>>> s5 = pd.Series(2.71, index=['x', 'y'])

>>> s5

x    2.71

y    2.71

dtype: float64

A Series object can be initialized with NumPy objects as well, such as ndarray. 
Moreover, Pandas can automatically align data indexed in different ways in 
arithmetic operations:

>>> s6 = pd.Series(np.array([2.71, 3.14]), index=['z', 'y'])

>>> s6

z    2.71

y    3.14

dtype: float64

>>> s5 + s6

x    NaN

y    5.85

z    NaN

dtype: float64

The DataFrame
The DataFrame is a tabular data structure comprising a set of ordered columns and 
rows. It can be thought of as a group of Series objects that share an index (the column 
names). There are a number of ways to initialize a DataFrame object. Firstly, let's take 
a look at the common example of creating DataFrame from a dictionary of lists:

>>> data = {'Year': [2000, 2005, 2010, 2014],

         'Median_Age': [24.2, 26.4, 28.5, 30.3],
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         'Density': [244, 256, 268, 279]}

>>> df1 = pd.DataFrame(data)

>>> df1

    Density    Median_Age    Year

0  244        24.2        2000

1  256        26.4        2005

2  268        28.5        2010

3  279        30.3        2014

By default, the DataFrame constructor will order the column alphabetically. We can 
edit the default order by passing the column's attribute to the initializing function:

>>> df2 = pd.DataFrame(data, columns=['Year', 'Density', 

                                      'Median_Age'])

>>> df2

    Year    Density    Median_Age

0    2000    244        24.2

1    2005    256        26.4

2    2010    268        28.5

3    2014    279        30.3

>>> df2.index

Int64Index([0, 1, 2, 3], dtype='int64')

We can provide the index labels of a DataFrame similar to a Series:

>>> df3 = pd.DataFrame(data, columns=['Year', 'Density',  

                   'Median_Age'], index=['a', 'b', 'c', 'd'])

>>> df3.index

Index([u'a', u'b', u'c', u'd'], dtype='object')

We can construct a DataFrame out of nested lists as well:

>>> df4 = pd.DataFrame([

    ['Peter', 16, 'pupil', 'TN', 'M', None],

    ['Mary', 21, 'student', 'SG', 'F', None],

    ['Nam', 22, 'student', 'HN', 'M', None],

    ['Mai', 31, 'nurse', 'SG', 'F', None],

    ['John', 28, 'laywer', 'SG', 'M', None]],

columns=['name', 'age', 'career', 'province', 'sex', 'award'])
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Columns can be accessed by column name as a Series can, either by dictionary-like 
notation or as an attribute, if the column name is a syntactically valid attribute name:

>>> df4.name    # or df4['name'] 

0    Peter

1    Mary

2    Nam

3    Mai

4    John

Name: name, dtype: object

To modify or append a new column to the created DataFrame, we specify the 
column name and the value we want to assign:

>>> df4['award'] = None

>>> df4

    name age   career province  sex award

0  Peter  16    pupil       TN    M  None

1    Mary  21  student       SG    F  None

2    Nam   22  student       HN  M  None

3    Mai    31    nurse        SG    F    None

4    John    28    lawer        SG    M    None

Using a couple of methods, rows can be retrieved by position or name:

>>> df4.ix[1]

name           Mary

age              21

career      student

province         SG

sex               F

award          None

Name: 1, dtype: object

A DataFrame object can also be created from different data structures such as a list 
of dictionaries, a dictionary of Series, or a record array. The method to initialize a 
DataFrame object is similar to the examples above.
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Another common case is to provide a DataFrame with data from a location such as 
a text file. In this situation, we use the read_csv function that expects the column 
separator to be a comma, by default. However, we can change that by using the sep 
parameter:

# person.csv file

name,age,career,province,sex

Peter,16,pupil,TN,M

Mary,21,student,SG,F

Nam,22,student,HN,M

Mai,31,nurse,SG,F

John,28,lawer,SG,M

# loading person.cvs into a DataFrame

>>> df4 = pd.read_csv('person.csv')

>>> df4

     name   age   career   province  sex

0    Peter    16    pupil       TN        M

1    Mary     21    student     SG       F

2    Nam      22    student     HN       M

3    Mai      31    nurse       SG       F

4    John     28    laywer      SG       M

While reading a data file, we sometimes want to skip a line or an invalid value. 
As for Pandas 0.16.2, read_csv supports over 50 parameters for controlling the 
loading process. Some common useful parameters are as follows:

•	 sep: This is a delimiter between columns. The default is comma symbol.
•	 dtype: This is a data type for data or columns.
•	 header: This sets row numbers to use as the column names.
•	 skiprows: This skips line numbers to skip at the start of the file.
•	 error_bad_lines: This shows invalid lines (too many fields) that will, by 

default, cause an exception, such that no DataFrame will be returned. If we 
set the value of this parameter as false, the bad lines will be skipped.

Moreover, Pandas also has support for reading and writing a DataFrame directly 
from or to a database such as the read_frame or write_frame function within the 
Pandas module. We will come back to these methods later in this chapter.
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The essential basic functionality
Pandas supports many essential functionalities that are useful to manipulate Pandas 
data structures. In this book, we will focus on the most important features regarding 
exploration and analysis.

Reindexing and altering labels
Reindex is a critical method in the Pandas data structures. It confirms whether  
the new or modified data satisfies a given set of labels along a particular axis of 
Pandas object.

First, let's view a reindex example on a Series object:

>>> s2.reindex([0, 2, 'b', 3])

0    0.6913

2    0.8627

b    NaN

3    0.7286

dtype: float64

When reindexed labels do not exist in the data object, a default value of NaN will be 
automatically assigned to the position; this holds true for the DataFrame case as well:

>>> df1.reindex(index=[0, 2, 'b', 3],

        columns=['Density', 'Year', 'Median_Age','C'])

   Density  Year  Median_Age        C

0      244  2000        24.2      NaN

2      268  2010        28.5      NaN

b      NaN   NaN         NaN      NaN

3      279  2014        30.3      NaN
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We can change the NaN value in the missing index case to a custom value by setting 
the fill_value parameter. Let us take a look at the arguments that the reindex 
function supports, as shown in the following table: 

Argument Description
index This is the new labels/index to conform to.
method This is the method to use for filling holes in a reindexed object. 

The default setting is unfill gaps.
pad/ffill: fill values forward
backfill/bfill: fill values backward
nearest: use the nearest value to fill the gap

copy This return a new object. The default setting is true.
level The matches index values on the passed multiple index level.
fill_value This is the value to use for missing values. The default setting is 

NaN.
limit This is the maximum size gap to fill in forward or backward 

method.

Head and tail
In common data analysis situations, our data structure objects contain many columns 
and a large number of rows. Therefore, we cannot view or load all information of 
the objects. Pandas supports functions that allow us to inspect a small sample. By 
default, the functions return five elements, but we can set a custom number as well. 
The following example shows how to display the first five and the last three rows of 
a longer Series:

>>> s7 = pd.Series(np.random.rand(10000))

>>> s7.head()

0    0.631059

1    0.766085

2    0.066891

3    0.867591

4    0.339678
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dtype: float64

>>> s7.tail(3)

9997    0.412178

9998    0.800711

9999    0.438344

dtype: float64

We can also use these functions for DataFrame objects in the same way.

Binary operations
Firstly, we will consider arithmetic operations between objects. In different indexes 
objects case, the expected result will be the union of the index pairs. We will not 
explain this again because we had an example about it in the above section (s5 + 
s6). This time, we will show another example with a DataFrame:

>>> df5 = pd.DataFrame(np.arange(9).reshape(3,3),0

                       columns=['a','b','c'])

>>> df5

   a  b  c

0  0  1  2

1  3  4  5

2  6  7  8

>>> df6 = pd.DataFrame(np.arange(8).reshape(2,4), 

                      columns=['a','b','c','d'])

>>> df6

   a  b  c  d

0  0  1  2  3

1  4  5  6  7

>>> df5 + df6

    a   b   c   d

0   0   2   4 NaN

1   7   9  11 NaN

2   NaN NaN NaN NaN
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The mechanisms for returning the result between two kinds of data structure are 
similar. A problem that we need to consider is the missing data between objects. In 
this case, if we want to fill with a fixed value, such as 0, we can use the arithmetic 
functions such as add, sub, div, and mul, and the function's supported parameters 
such as fill_value:

>>> df7 = df5.add(df6, fill_value=0)

>>> df7

   a  b   c   d

0  0  2   4   3

1  7  9  11   7

2  6  7   8   NaN

Next, we will discuss comparison operations between data objects. We have some 
supported functions such as equal (eq), not equal (ne), greater than (gt), less than 
(lt), less equal (le), and greater equal (ge). Here is an example:

>>> df5.eq(df6)

       a      b      c      d

0   True   True   True  False

1  False  False  False  False

2  False  False  False  False

Functional statistics
The supported statistics method of a library is really important in data analysis. To 
get inside a big data object, we need to know some summarized information such 
as mean, sum, or quantile. Pandas supports a large number of methods to compute 
them. Let's consider a simple example of calculating the sum information of df5, 
which is a DataFrame object:

>>> df5.sum()

a     9

b    12

c    15

dtype: int64
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When we do not specify which axis we want to calculate sum information, by default, 
the function will calculate on index axis, which is axis 0:

•	 Series: We do not need to specify the axis.
•	 DataFrame: Columns (axis = 1) or index (axis = 0). The default setting is 

axis 0.

We also have the skipna parameter that allows us to decide whether to exclude 
missing data or not. By default, it is set as true:

>>> df7.sum(skipna=False)

a    13

b    18

c    23

d   NaN

dtype: float64

Another function that we want to consider is describe(). It is very convenient for 
us to summarize most of the statistical information of a data structure such as the 
Series and DataFrame, as well:

>>> df5.describe()

         a    b    c

count  3.0  3.0  3.0

mean   3.0  4.0  5.0

std    3.0  3.0  3.0

min    0.0  1.0  2.0

25%    1.5  2.5  3.5

50%    3.0  4.0  5.0

75%    4.5  5.5  6.5

max    6.0  7.0  8.0

We can specify percentiles to include or exclude in the output by using the 
percentiles parameter; for example, consider the following:

>>> df5.describe(percentiles=[0.5, 0.8])

         a    b    c

count  3.0  3.0  3.0

mean   3.0  4.0  5.0

std    3.0  3.0  3.0
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min    0.0  1.0  2.0

50%    3.0  4.0  5.0

80%    4.8  5.8  6.8

max    6.0  7.0  8.0

Here, we have a summary table for common supported statistics functions  
in Pandas:

Function Description
idxmin(axis), 
idxmax(axis)

This compute the index labels with the minimum 
or maximum corresponding values.

value_counts() This compute the frequency of unique values.
count() This return the number of non-null values in a 

data object.
mean(), median(), 
min(), max()

This return mean, median, minimum, and 
maximum values of an axis in a data object.

std(), var(), sem() These return the standard deviation, variance, 
and standard error of mean.

abs() This gets the absolute value of a data object.

Function application
Pandas supports function application that allows us to apply some functions 
supported in other packages such as NumPy or our own functions on data structure 
objects. Here, we illustrate two examples of these cases, firstly, using apply to 
execute the std() function, which is the standard deviation calculating function of 
the NumPy package:

>>> df5.apply(np.std, axis=1)    # default: axis=0

0    0.816497

1    0.816497

2    0.816497

dtype: float64
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Secondly, if we want to apply a formula to a data object, we can also useapply 
function by following these steps:

1.	 Define the function or formula that you want to apply on a data object.
2.	 Call the defined function or formula via apply. In this step, we also need  

to figure out the axis that we want to apply the calculation to:
>>> f = lambda x: x.max() – x.min()    # step 1

>>> df5.apply(f, axis=1)               # step 2

0    2

1    2

2    2

dtype: int64

>>> def sigmoid(x):

    return 1/(1 + np.exp(x))

>>> df5.apply(sigmoid)

     a           b         c

0  0.500000  0.268941  0.119203

1  0.047426  0.017986  0.006693

2  0.002473  0.000911  0.000335

Sorting
There are two kinds of sorting method that we are interested in: sorting by row or 
column index and sorting by data value.

Firstly, we will consider methods for sorting by row and column index. In this case, 
we have the sort_index () function. We also have axis parameter to set whether 
the function should sort by row or column. The ascending option with the true or 
false value will allow us to sort data in ascending or descending order. The default 
setting for this option is true:

>>> df7 = pd.DataFrame(np.arange(12).reshape(3,4),  

                       columns=['b', 'd', 'a', 'c'],

                       index=['x', 'y', 'z'])

>>> df7

   b  d   a   c

x  0  1   2   3

y  4  5   6   7

z  8  9  10  11
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>>> df7.sort_index(axis=1)

    a  b   c  d

x   2  0   3  1

y   6  4   7  5

z  10  8  11  9

Series has a method order that sorts by value. For NaN values in the object, we can 
also have a special treatment via the na_position option:

>>> s4.order(na_position='first')

024     NaN

065     NaN

002    Mary

001     Nam

dtype: object

>>> s4

002    Mary

001     Nam

024     NaN

065     NaN

dtype: object

Besides that, Series also has the sort() function that sorts data by value. However, 
the function will not return a copy of the sorted data:

>>> s4.sort(na_position='first')

>>> s4

024     NaN

065     NaN

002    Mary

001     Nam

dtype: object
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If we want to apply sort function to a DataFrame object, we need to figure out which 
columns or rows will be sorted:

>>> df7.sort(['b', 'd'], ascending=False)

   b  d   a   c

z  8  9  10  11

y  4  5   6   7

x  0  1   2   3

If we do not want to automatically save the sorting result to the current data object, 
we can change the setting of the inplace parameter to False.

Indexing and selecting data
In this section, we will focus on how to get, set, or slice subsets of Pandas data 
structure objects. As we learned in previous sections, Series or DataFrame objects 
have axis labeling information. This information can be used to identify items that 
we want to select or assign a new value to in the object:

>>> s4[['024', '002']]    # selecting data of Series object

024     NaN

002    Mary

dtype: object

>>> s4[['024', '002']] = 'unknown' # assigning data

>>> s4

024    unknown

065        NaN

002    unknown

001        Nam

dtype: object

If the data object is a DataFrame structure, we can also proceed in a similar way:

>>> df5[['b', 'c']]

   b  c

0  1  2

1  4  5

2  7  8



Chapter 3

[ 49 ]

For label indexing on the rows of DataFrame, we use the ix function that enables us 
to select a set of rows and columns in the object. There are two parameters that we 
need to specify: the row and column labels that we want to get. By default, if we do 
not specify the selected column names, the function will return selected rows with all 
columns in the object:

>>> df5.ix[0]

a    0

b    1

c    2

Name: 0, dtype: int64

>>> df5.ix[0, 1:3]

b    1

c    2

Name: 0, dtype: int64

Moreover, we have many ways to select and edit data contained in a Pandas object. 
We summarize these functions in the following table:

Method Description
icol, irow This selects a single row or column by integer location.
get_value, set_value This selects or sets a single value of a data object by row 

or column label.
xs This selects a single column or row as a Series by label.

Pandas data objects may contain duplicate indices. In this case, 
when we get or set a data value via index label, it will affect all 
rows or columns that have the same selected index name.

Computational tools
Let's start with correlation and covariance computation between two data objects. 
Both the Series and DataFrame have a cov method. On a DataFrame object, this 
method will compute the covariance between the Series inside the object:

>>> s1 = pd.Series(np.random.rand(3))

>>> s1
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0    0.460324

1    0.993279

2    0.032957

dtype: float64

>>> s2 = pd.Series(np.random.rand(3))

>>> s2

0    0.777509

1    0.573716

2    0.664212

dtype: float64

>>> s1.cov(s2)

-0.024516360159045424

>>> df8 = pd.DataFrame(np.random.rand(12).reshape(4,3),  

                       columns=['a','b','c'])

>>> df8

          a         b         c

0  0.200049  0.070034  0.978615

1  0.293063  0.609812  0.788773

2  0.853431  0.243656  0.978057

0.985584  0.500765  0.481180

>>> df8.cov()

          a         b         c

a  0.155307  0.021273 -0.048449

b  0.021273  0.059925 -0.040029

c -0.048449 -0.040029  0.055067

Usage of the correlation method is similar to the covariance method. It computes the 
correlation between Series inside a data object in case the data object is a DataFrame. 
However, we need to specify which method will be used to compute the correlations. 
The available methods are pearson, kendall, and spearman. By default, the function 
applies the spearman method:

>>> df8.corr(method = 'spearman')

     a    b    c

a  1.0  0.4 -0.8

b  0.4  1.0 -0.8

c -0.8 -0.8  1.0
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We also have the corrwith function that supports calculating correlations between 
Series that have the same label contained in different DataFrame objects:

>>> df9 = pd.DataFrame(np.arange(8).reshape(4,2), 

                       columns=['a', 'b'])

>>> df9

   a  b

0  0  1

1  2  3

2  4  5

3  6  7

>>> df8.corrwith(df9)

a    0.955567

b    0.488370

c         NaN

dtype: float64

Working with missing data
In this section, we will discuss missing, NaN, or null values, in Pandas data 
structures. It is a very common situation to arrive with missing data in an object.  
One such case that creates missing data is reindexing:

>>> df8 = pd.DataFrame(np.arange(12).reshape(4,3),  

                       columns=['a', 'b', 'c'])

   a   b   c

0  0   1   2

1  3   4   5

2  6   7   8

3  9  10  11

>>> df9 = df8.reindex(columns = ['a', 'b', 'c', 'd'])

   a   b   c   d

0  0   1   2 NaN

1  3   4   5 NaN

2  6   7   8 NaN

4  9  10  11 NaN
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>>> df10 = df8.reindex([3, 2, 'a', 0])

    a   b   c

3   9  10  11

2   6   7   8

a NaN NaN NaN

0   0   1   2

To manipulate missing values, we can use the isnull() or notnull() functions to 
detect the missing values in a Series object, as well as in a DataFrame object:

>>> df10.isnull()

       a      b      c

3  False  False  False

2  False  False  False

a   True   True   True

0  False  False  False

On a Series, we can drop all null data and index values by using the dropna 
function:

>>> s4 = pd.Series({'001': 'Nam', '002': 'Mary',

                    '003': 'Peter'},

                    index=['002', '001', '024', '065'])

>>> s4

002    Mary

001     Nam

024     NaN

065     NaN

dtype: object

>>> s4.dropna()    # dropping all null value of Series object

002    Mary

001     Nam

dtype: object
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With a DataFrame object, it is a little bit more complex than with Series. We can tell 
which rows or columns we want to drop and also if all entries must be null or a 
single null value is enough. By default, the function will drop any row containing a 
missing value:

>>> df9.dropna()    # all rows will be dropped

Empty DataFrame

Columns: [a, b, c, d]

Index: []

>>> df9.dropna(axis=1)

   a   b   c

0  0   1   2

1  3   4   5

2  6   7   8

3  9  10  11

Another way to control missing values is to use the supported parameters of 
functions that we introduced in the previous section. They are also very useful to 
solve this problem. In our experience, we should assign a fixed value in missing 
cases when we create data objects. This will make our objects cleaner in later 
processing steps. For example, consider the following:

>>> df11 = df8.reindex([3, 2, 'a', 0], fill_value = 0)

>>> df11

   a   b   c

3  9  10  11

2  6   7   8

a  0   0   0

0  0   1   2

We can alse use the fillna function to fill a custom value in missing values:

>>> df9.fillna(-1)

   a   b   c  d

0  0   1   2 -1

1  3   4   5 -1

2  6   7   8 -1

3  9  10  11 -1
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Advanced uses of Pandas for data 
analysis
In this section we will consider some advanced Pandas use cases.

Hierarchical indexing
Hierarchical indexing provides us with a way to work with higher dimensional  
data in a lower dimension by structuring the data object into multiple index  
levels on an axis:

>>> s8 = pd.Series(np.random.rand(8), index=[['a','a','b','b','c','c', 
'd','d'], [0, 1, 0, 1, 0,1, 0, 1, ]])

>>> s8

a  0    0.721652

   1    0.297784

b  0    0.271995

   1    0.125342

c  0    0.444074

   1    0.948363

d  0    0.197565

   1    0.883776

dtype: float64

In the preceding example, we have a Series object that has two index levels.  
The object can be rearranged into a DataFrame using the unstack function.  
In an inverse situation, the stack function can be used:

>>> s8.unstack()

          0         1

a  0.549211  0.420874

b  0.051516  0.715021

c  0.503072  0.720772

d  0.373037  0.207026
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We can also create a DataFrame to have a hierarchical index in both axes:

>>> df = pd.DataFrame(np.random.rand(12).reshape(4,3),

                      index=[['a', 'a', 'b', 'b'],

                               [0, 1, 0, 1]],

                      columns=[['x', 'x', 'y'], [0, 1, 0]])

>>> df

            x                   y

            0         1         0

a 0  0.636893  0.729521  0.747230

  1  0.749002  0.323388  0.259496

b 0  0.214046  0.926961  0.679686

0.013258  0.416101  0.626927

>>> df.index

MultiIndex(levels=[['a', 'b'], [0, 1]],

           labels=[[0, 0, 1, 1], [0, 1, 0, 1]])

>>> df.columns

MultiIndex(levels=[['x', 'y'], [0, 1]],

           labels=[[0, 0, 1], [0, 1, 0]])

The methods for getting or setting values or subsets of the data objects with multiple 
index levels are similar to those of the nonhierarchical case:

>>> df['x']

            0         1

a 0  0.636893  0.729521

  1  0.749002  0.323388

b 0  0.214046  0.926961

0.013258  0.416101

>>> df[[0]]

            x

            0

a 0  0.636893

  1  0.749002

b 0  0.214046

0.013258
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>>> df.ix['a', 'x']

          0         1

0  0.636893  0.729521

0.749002  0.323388

>>> df.ix['a','x'].ix[1]

0    0.749002

1    0.323388

Name: 1, dtype: float64

After grouping data into multiple index levels, we can also use most of the 
descriptive and statistics functions that have a level option, which can be used to 
specify the level we want to process:

>>> df.std(level=1)

          x                   y

          0         1         0

0  0.298998  0.139611  0.047761

0.520250  0.065558  0.259813

>>> df.std(level=0)

          x                   y

          0         1         0

a  0.079273  0.287180  0.344880

b  0.141979  0.361232  0.037306

The Panel data
The Panel is another data structure for three-dimensional data in Pandas.  
However, it is less frequently used than the Series or the DataFrame. You can think 
of a Panel as a table of DataFrame objects. We can create a Panel object from a 3D 
ndarray or a dictionary of DataFrame objects:

# create a Panel from 3D ndarray

>>> panel = pd.Panel(np.random.rand(2, 4, 5),

                     items = ['item1', 'item2'])

>>> panel

<class 'pandas.core.panel.Panel'>

Dimensions: 2 (items) x 4 (major_axis) x 5 (minor_axis)

Items axis: item1 to item2

Major_axis axis: 0 to 3
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Minor_axis axis: 0 to 4

>>> df1 = pd.DataFrame(np.arange(12).reshape(4, 3), 

                       columns=['a','b','c'])

>>> df1

   a   b   c

0  0   1   2

1  3   4   5

2  6   7   8

9  10  11

>>> df2 = pd.DataFrame(np.arange(9).reshape(3, 3), 

                       columns=['a','b','c'])

>>> df2

   a  b  c

0  0  1  2

1  3  4  5

6  7  8

# create another Panel from a dict of DataFrame objects

>>> panel2 = pd.Panel({'item1': df1, 'item2': df2})

>>> panel2

<class 'pandas.core.panel.Panel'>

Dimensions: 2 (items) x 4 (major_axis) x 3 (minor_axis)

Items axis: item1 to item2

Major_axis axis: 0 to 3

Minor_axis axis: a to c

Each item in a Panel is a DataFrame. We can select an item, by item name:

>>> panel2['item1']

   a   b   c

0  0   1   2

1  3   4   5

2  6   7   8

3  9  10  11
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Alternatively, if we want to select data via an axis or data position, we can use the ix 
method, like on Series or DataFrame:

>>> panel2.ix[:, 1:3, ['b', 'c']]

<class 'pandas.core.panel.Panel'>

Dimensions: 2 (items) x 3 (major_axis) x 2 (minor_axis)

Items axis: item1 to item2

Major_axis axis: 1 to 3

Minor_axis axis: b to c

>>> panel2.ix[:, 2, :]

   item1  item2

a      6      6

b      7      7

c      8      8

Summary
We have finished covering the basics of the Pandas data analysis library. Whenever 
you learn about a library for data analysis, you need to consider the three parts that 
we explained in this chapter. Data structures: we have two common data object types 
in the Pandas library; Series and DataFrames. Method to access and manipulate 
data objects: Pandas supports many way to select, set or slice subsets of data object. 
However, the general mechanism is using index labels or the positions of items 
to identify values. Functions and utilities: They are the most important part of a 
powerful library. In this chapter, we covered all common supported functions of 
Pandas which allow us compute statistics on data easily. The library also has a lot 
of other useful functions and utilities that we could not explain in this chapter. We 
encourage you to start your own research, if you want to expand your experience 
with Pandas. It helps us to process large data in an optimized way. You will see 
more of Pandas in action later in this book.

Until now, we learned about two popular Python libraries: NumPy and Pandas. 
Pandas is built on NumPy, and as a result it allows for a bit more convenient 
interaction with data. However, in some situations, we can flexibly combine  
both of them to accomplish our goals.
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Practice exercises

The link https://www.census.gov/2010census/csv/pop_change.csv contains an 
US census dataset. It has 23 columns and one row for each US state, as well as a few 
rows for macro regions such as North, South, and West.

•	 Get this dataset into a Pandas DataFrame. Hint: just skip those rows that do 
not seem helpful, such as comments or description.

•	 While the dataset contains change metrics for each decade, we are interested 
in the population change during the second half of the twentieth century, 
that is between, 1950 and 2000. Which region has seen the biggest and the 
smallest population growth in this time span? Also, which US state?

Advanced open-ended exercise:

•	 Find more census data on the internet; not just on the US but on the world's 
countries. Try to find GDP data for the same time as well. Try to align this 
data to explore patterns. How are GDP and population growth related? Are 
there any special cases. such as countries with high GDP but low population 
growth or countries with the opposite history?

https://www.census.gov/2010census/csv/pop_change.csv

