

Python: End-to-end
Data Analysis

Leverage the power of Python to clean, scrape,
analyze, and visualize your data

A course in three modules

BIRMINGHAM - MUMBAI

Python: End-to-end Data Analysis
Copyright © 2016 Packt Publishing

All rights reserved. No part of this course may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this course to ensure the accuracy
of the information presented. However, the information contained in this course
is sold without warranty, either express or implied. Neither the authors, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this course.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this course by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

Published on: May 2017

Production reference: 1050517

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78839-469-7

www.packtpub.com

Credits

Authors
Phuong Vo.T.H

Martin Czygan

Ivan Idris

Magnus VilhelmPersson

Luiz Felipe Martins

Reviewers
Dong Chao

Hai Minh Nguyen

Kenneth Emeka Odoh

Bill Chambers

Alexey Grigorev

Dr. VahidMirjalili

Michele Usuelli

Hang (Harvey) Yu

Laurie Lugrin

Chris Morgan

Michele Pratusevich

Content Development Editor
Aishwarya Pandere

Graphics
Jason Monteiro

Production Coordinator
Deepika Naik

[i]

Preface
The use of Python for data analysis and visualization has only increased in
popularity in the last few years.

The aim of this book is to develop skills to effectively approach almost any data
analysis problem, and extract all of the available information. This is done by
introducing a range of varying techniques and methods such as uni- and multi-
variate linear regression, cluster finding, Bayesian analysis, machine learning, and
time series analysis. Exploratory data analysis is a key aspect to get a sense of what
can be done and to maximize the insights that are gained from the data. Additionally,
emphasis is put on presentation-ready figures that are clear and easy to interpret.

What this learning path covers
Module 1, Getting Started with Python Data Analysis, shows how to work with time-
oriented data in Pandas. How do you clean, inspect, reshape, merge, or group data
– these are the concerns in this chapter. The library of choice in the course will be
Pandas again.

Module 2, Python Data Analysis Cookbook, demonstrates how to visualize
data and mentions frequently encountered pitfalls. Also, discusses
statistical probability distributions and correlation between two variables.

Module 3, Mastering Python Data Analysis, introduces linear, multiple, and logistic
regression with in-depth examples of using SciPy and stats models packages to test
various hypotheses of relationships between variables.

Preface

[ii]

What you need for this learning path
Module 1:

There are not too many requirements to get started. You will need a Python
programming environment installed on your system. Under Linux and Mac OS X,
Python is usually installed by default. Installation on Windows is supported by an
excellent installer provided and maintained by the community.This book uses a
recent Python 2, but many examples will work with Python 3as well.

The versions of the libraries used in this book are the following: NumPy 1.9.2,Pandas
0.16.2, matplotlib 1.4.3, tables 3.2.2, pymongo 3.0.3, redis 2.10.3, and scikit-learn
0.16.1. As these packages are all hosted on PyPI, the Python package index, they can
be easily installed with pip. To install NumPy, you would write:

$ pip install numpy

If you are not using them already, we suggest you take a look at virtual environments
for managing isolating Python environment on your computer. For Python 2, there
are two packages of interest there: virtualenv and virtualenvwrapper. Since Python
3.3, there is a tool in the standard library called pyvenv (https://docs. python.org/3/
library/venv.html), which serves the same purpose.

Most libraries will have an attribute for the version, so if you already have
a library installed, you can quickly check its version:

>>>importredis

>>>redis.__version__'2.10.3'

This works well for most libraries. A few, such as pymongo, use a different attribute
(pymongo uses just version, without the underscores). While all the examples can
be run interactively in a Python shell, we recommend using IPython. IPython
started as a more versatile Python shell, but has since evolved into a powerful tool
for exploration and sharing. We used IPython 4.0.0 with Python 2.7.10. IPython is a
great way to work interactively with Python, be it in the terminal or in the browser.

Module 2:

First, you need a Python 3 distribution. I recommend the full Anaconda distribution
as it comes with the majority of the software we need. I tested the code with Python
3.4 and the following packages:

• joblib 0.8.4

• IPython 3.2.1

Preface

[iii]

• NetworkX 1.9.1

• NLTK 3.0.2

• Numexpr 2.3.1

• pandas 0.16.2

• SciPy 0.16.0

• seaborn 0.6.0

• sqlalchemy 0.9.9

• statsmodels 0.6.1

• matplotlib 1.5.0

• NumPy 1.10.1

• scikit-learn 0.17

• dautil0.0.1a29

For some recipes, you need to install extra software, but this is explained whenever
the software is required.

Module 3:

All you need to follow through the examples in this book is a computer running
any recent version of Python. While the examples use Python 3, they can easily be
adapted to work with Python 2, with only minor changes. The packages used in the
examples are NumPy, SciPy, matplotlib, Pandas, stats models, PyMC, Scikit-learn.
Optionally, the packages basemap and cartopy are used to plot coordinate points
on maps. The easiest way to obtain and maintain a Python environment that meets
all the requirements of this book is to download a prepackaged Python distribution.
In this book, we have checked all the code against Continuum Analytics' Anaconda
Python distribution and Ubuntu Xenial Xerus (16.04) running Python 3.

To download the example data and code, an Internet connection is needed.

Who this learning path is for
This learning path is for developers, analysts, and data scientists who want to learn
data analysis from scratch. This course will provide you with a solid foundation
from which to analyze data with varying complexity. A working knowledge of
Python (and a strong interest in playing with your data) is recommended.

Preface

[iv]

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this course—what you liked or disliked. Reader feedback is important for us as it
helps us develop titles that you will really get the most out of.

To send us general feedback, simply e-mail feedback@packtpub.com, and mention
the course's title in the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide at www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt course, we have a number of things
to help you to get the most from your purchase.

Downloading the example code
You can download the example code files for this course from your account at
http://www.packtpub.com. If you purchased this course elsewhere, you can visit
http://www.packtpub.com/support and register to have the files e-mailed directly
to you.

You can download the code files by following these steps:

1. Log in or register to our website using your e-mail address and password.

2. Hover the mouse pointer on the SUPPORT tab at the top.

3. Click on Code Downloads & Errata.

4. Enter the name of the course in the Search box.

5. Select the course for which you're looking to download the code files.

6. Choose from the drop-down menu where you purchased this course from.

7. Click on Code Download.

You can also download the code files by clicking on the Code Files button on the
course's webpage at the Packt Publishing website. This page can be accessed by
entering the course's name in the Search box. Please note that you need to be logged
into your Packt account.

Preface

[v]

Once the file is downloaded, please make sure that you unzip or extract the folder
using the latest version of:

• WinRAR / 7-Zip for Windows

• Zipeg / iZip / UnRarX for Mac

7-Zip / PeaZip for Linux

The code bundle for the course is also hosted on GitHub at https://github.com/
PacktPublishing/Python-End-to-end-Data-Analysis. We also have other code
bundles from our rich catalog of books, videos, and courses available at https://
github.com/PacktPublishing/. Check them out!

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our courses—maybe a mistake in the
text or the code—we would be grateful if you could report this to us. By doing
so, you can save other readers from frustration and help us improve subsequent
versions of this course. If you find any errata, please report them by visiting http://
www.packtpub.com/submit-errata, selecting your course, clicking on the Errata
Submission Form link, and entering the details of your errata. Once your errata are
verified, your submission will be accepted and the errata will be uploaded to our
website or added to any list of existing errata under the Errata section of that title.

To view the previously submitted errata, go to https://www.packtpub.com/books/
content/support and enter the name of the course in the search field. The required
information will appear under the Errata section.

Piracy
Piracy of copyrighted material on the Internet is an ongoing problem across all
media. At Packt, we take the protection of our copyright and licenses very seriously.
If you come across any illegal copies of our works in any form on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Preface

[vi]

Please contact us at copyright@packtpub.com with a link to the suspected pirated
material.

We appreciate your help in protecting our authors and our ability to bring you
valuable content.

Questions
If you have a problem with any aspect of this course, you can contact us at
questions@packtpub.com, and we will do our best to address the problem.

[i]

Module 1: Getting Started with Python Data Analysis

Chapters 1: Introducing Data Analysis and Libraries	 3
Data analysis and processing	 4
An overview of the libraries in data analysis	 7
Python libraries in data analysis	 9

NumPy	 10
Pandas	 10
Matplotlib	 11
PyMongo	 11
The scikit-learn library	 11

Summary	 11
Chapters 2: NumPy Arrays and Vectorized Computation	 13

NumPy arrays	 14
Data types	 14
Array creation	 16
Indexing and slicing	 18
Fancy indexing	 19
Numerical operations on arrays	 20

Array functions	 21
Data processing using arrays	 23

Loading and saving data	 24
Saving an array	 24
Loading an array	 25

Linear algebra with NumPy	 26
NumPy random numbers	 27
Summary	 30

[ii]

Chapters 3: Data Analysis with Pandas	 33
An overview of the Pandas package	 33
The Pandas data structure	 34

Series	 34
The DataFrame	 36

The essential basic functionality	 40
Reindexing and altering labels	 40
Head and tail	 41
Binary operations	 42
Functional statistics	 43
Function application	 45
Sorting	 46

Indexing and selecting data	 48
Computational tools	 49
Working with missing data	 51
Advanced uses of Pandas for data analysis	 54

Hierarchical indexing	 54
The Panel data	 56

Summary	 58
Chapters 4: Data Visualization	 61

The matplotlib API primer	 62
Line properties	 65
Figures and subplots	 67

Exploring plot types	 70
Scatter plots	 70
Bar plots	 71
Contour plots	 72
Histogram plots	 74

Legends and annotations	 75
Plotting functions with Pandas	 78
Additional Python data visualization tools	 80

Bokeh	 81
MayaVi	 81

Summary	 83
Chapters 5: Time Series	 85

Time series primer	 85
Working with date and time objects	 86
Resampling time series	 94

[iii]

Downsampling time series data	 94
Upsampling time series data	 97
Time zone handling	 99
Timedeltas	 100
Time series plotting	 101
Summary	 105

Chapters 6: Interacting with Databases	 107
Interacting with data in text format	 107

Reading data from text format	 107
Writing data to text format	 112

Interacting with data in binary format	 113
HDF5	 114

Interacting with data in MongoDB	 115
Interacting with data in Redis	 120

The simple value	 120
List	 121
Set	 122
Ordered set	 123

Summary	 124
Chapters 7: Data Analysis Application Examples	 127

Data munging	 128
Cleaning data	 130
Filtering	 133
Merging data	 136
Reshaping data	 139

Data aggregation	 141
Grouping data	 144
Summary	 146

Chapters 8: Machine Learning Models with scikit-learn	 147
An overview of machine learning models	 147
The scikit-learn modules for different models	 148
Data representation in scikit-learn	 150
Supervised learning – classification and regression	 152
Unsupervised learning – clustering and dimensionality reduction	 158
Measuring prediction performance	 162
Summary	 164

[iv]

Module 2: Python Data Analysis Cookbook

Chapter 1: Laying the Foundation for Reproducible
Data Analysis	 167

Introduction	 168
Setting up Anaconda	 168

Getting ready	 169
How to do it...	 169
There's more...	 170
See also	 170

Installing the Data Science Toolbox	 170
Getting ready	 171
How to do it...	 171
How it works...	 172
See also	 172

Creating a virtual environment with virtualenv and virtualenvwrapper	 172
Getting ready	 173
How to do it...	 173
See also	 174

Sandboxing Python applications with
Docker images	 174

Getting ready	 174
How to do it...	 174
How it works...	 176
See also	 176

Keeping track of package versions and history in IPython Notebook	 176
Getting ready	 177
How to do it...	 177
How it works...	 179
See also	 179

Configuring IPython	 179
Getting ready	 180
How to do it...	 180
See also	 181

Learning to log for robust error checking	 182
Getting ready	 182
How to do it...	 182
How it works...	 185
See also	 185

[v]

Unit testing your code	 185
Getting ready	 185
How to do it...	 186
How it works...	 187
See also	 187

Configuring pandas	 188
Getting ready	 188
How to do it...	 188

Configuring matplotlib	 190
Getting ready	 191
How to do it...	 191
How it works...	 194
See also	 194

Seeding random number generators and NumPy print options	 194
Getting ready	 194
How to do it...	 194
See also	 196

Standardizing reports, code style, and data access	 196
Getting ready	 197
How to do it...	 197
See also	 199

Chapter 2: Creating Attractive Data Visualizations	 201
Introduction	 202
Graphing Anscombe's quartet	 202

How to do it...	 202
See also	 205

Choosing seaborn color palettes	 205
How to do it...	 205
See also	 208

Choosing matplotlib color maps	 208
How to do it...	 208
See also	 209

Interacting with IPython Notebook widgets	 209
How to do it...	 209
See also	 213

Viewing a matrix of scatterplots	 213
How to do it...	 213

Visualizing with d3.js via mpld3	 215
Getting ready	 215
How to do it...	 216

[vi]

Creating heatmaps	 217
Getting ready	 217
How to do it...	 217
See also	 219

Combining box plots and kernel density plots with violin plots	 220
How to do it...	 220
See also	 221

Visualizing network graphs with hive plots	 221
Getting ready	 222
How to do it...	 222

Displaying geographical maps	 224
Getting ready	 224
How to do it...	 224

Using ggplot2-like plots	 226
Getting ready	 227
How to do it...	 227

Highlighting data points with influence plots	 228
How to do it...	 229
See also	 231

Chapter 3: Statistical Data Analysis and Probability	 233
Introduction	 234
Fitting data to the exponential distribution	 234

How to do it...	 234
How it works…	 236
See also	 236

Fitting aggregated data to the gamma distribution	 237
How to do it...	 237
See also	 238

Fitting aggregated counts to the Poisson distribution	 238
How to do it...	 239
See also	 241

Determining bias	 241
How to do it...	 242
See also	 244

Estimating kernel density	 244
How to do it...	 244
See also	 246

Determining confidence intervals for mean, variance, and standard
deviation	 247

How to do it...	 247

[vii]

See also	 249
Sampling with probability weights	 249

How to do it...	 250
See also	 252

Exploring extreme values	 253
How to do it...	 253
See also	 256

Correlating variables with Pearson's correlation	 257
How to do it...	 257
See also	 260

Correlating variables with the Spearman rank correlation	 260
How to do it...	 260
See also	 263

Correlating a binary and a continuous variable with the point biserial
correlation	 263

How to do it...	 263
See also	 265

Evaluating relations between variables with ANOVA	 265
How to do it...	 266
See also	 267

Chapter 4: Dealing with Data and Numerical Issues	 269
Introduction	 269
Clipping and filtering outliers	 270

How to do it...	 270
See also	 272

Winsorizing data	 273
How to do it...	 273
See also	 274

Measuring central tendency of noisy data	 275
How to do it...	 275
See also	 277

Normalizing with the Box-Cox transformation	 278
How to do it...	 278
How it works	 280
See also	 280

Transforming data with the power ladder	 280
How to do it...	 281

Transforming data with logarithms	 282
How to do it...	 283

Rebinning data	 284
How to do it...	 285

Applying logit() to transform proportions	 286
How to do it...	 287

Fitting a robust linear model	 288
How to do it...	 289
See also	 291

Taking variance into account with weighted least squares	 291
How to do it...	 291
See also	 294

Using arbitrary precision for optimization	 294
Getting ready	 294
How to do it...	 294
See also	 296

Using arbitrary precision for linear algebra	 297
Getting ready	 297
How to do it...	 297
See also	 299

Chapter 5: Web Mining, Databases, and Big Data	 301
Introduction	 302
Simulating web browsing	 302

Getting ready	 303
How to do it…	 303
See also	 305

Scraping the Web	 305
Getting ready	 306
How to do it…	 306

Dealing with non-ASCII text and HTML entities	 308
Getting ready	 308
How to do it…	 308
See also	 310

Implementing association tables	 310
Getting ready	 310
How to do it…	 310

Setting up database migration scripts	 313
Getting ready	 314
How to do it…	 314
See also	 314

[ix]

Adding a table column to an existing table	 314
Getting ready	 314
How to do it…	 315

Adding indices after table creation	 316
Getting ready	 316
How to do it…	 316
How it works…	 317
See also	 317

Setting up a test web server	 317
Getting ready	 318
How to do it…	 318

Implementing a star schema with fact and dimension tables	 319
How to do it…	 320
See also	 324

Using HDFS	 325
Getting ready	 325
How to do it…	 325
See also	 326

Setting up Spark	 326
Getting ready	 327
How to do it…	 327
See also	 327

Clustering data with Spark	 327
Getting ready	 328
How to do it…	 328
How it works…	 331
There's more…	 331
See also	 331

Chapter 6: Signal Processing and Timeseries	 333
Introduction	 333
Spectral analysis with periodograms	 334

How to do it...	 334
See also	 336

Estimating power spectral density with the Welch method	 336
How to do it...	 336
See also	 338

Analyzing peaks	 338
How to do it...	 338
See also	 340

Measuring phase synchronization	 340
How to do it...	 341
See also	 342

Exponential smoothing	 343
How to do it...	 343
See also	 345

Evaluating smoothing	 346
How to do it...	 346
See also	 348

Using the Lomb-Scargle periodogram	 349
How to do it...	 349
See also	 351

Analyzing the frequency spectrum of audio	 351
How to do it...	 352
See also	 354

Analyzing signals with the discrete cosine transform	 354
How to do it...	 355
See also	 356

Block bootstrapping time series data	 357
How to do it...	 357
See also	 359

Moving block bootstrapping time series data	 359
How to do it...	 360
See also	 362

Applying the discrete wavelet transform	 363
Getting started	 364
How to do it...	 364
See also	 366

Chapter 7: Selecting Stocks with Financial Data Analysis	 367
Introduction	 368
Computing simple and log returns	 368

How to do it...	 369
See also	 369

Ranking stocks with the Sharpe ratio and liquidity	 370
How to do it...	 370
See also	 372

Ranking stocks with the Calmar and
Sortino ratios	 372

How to do it...	 372
See also	 374

[xi]

Analyzing returns statistics	 374
How to do it...	 375

Correlating individual stocks with the broader market	 377
How to do it...	 377

Exploring risk and return	 380
How to do it...	 380
See also	 381

Examining the market with the
non-parametric runs test	 382

How to do it...	 382
See also	 384

Testing for random walks	 385
How to do it...	 385
See also	 386

Determining market efficiency with autoregressive models	 387
How to do it...	 387
See also	 389

Creating tables for a stock prices database	 389
How to do it...	 390

Populating the stock prices database	 391
How to do it...	 391

Optimizing an equal weights two-asset portfolio	 396
How to do it...	 397
See also	 399

Chapter 8: Text Mining and Social Network Analysis	 401
Introduction	 401
Creating a categorized corpus	 402

Getting ready	 402
How to do it...	 403
See also	 405

Tokenizing news articles in sentences
and words	 405

Getting ready	 405
How to do it...	 405
See also	 406

Stemming, lemmatizing, filtering,
and TF-IDF scores	 406

Getting ready	 408
How to do it...	 408
How it works	 409

See also	 410
Recognizing named entities	 410

Getting ready	 410
How to do it...	 411
How it works	 412
See also	 412

Extracting topics with non-negative matrix factorization	 412
How to do it...	 413
How it works	 414
See also	 414

Implementing a basic terms database	 414
How to do it...	 415
How it works	 418
See also	 418

Computing social network density	 418
Getting ready	 419
How to do it...	 419
See also	 420

Calculating social network closeness centrality	 420
Getting ready	 420
How to do it...	 420
See also	 421

Determining the betweenness centrality	 421
Getting ready	 421
How to do it...	 422
See also	 422

Estimating the average clustering coefficient	 423
Getting ready	 423
How to do it...	 423
See also	 424

Calculating the assortativity coefficient
of a graph	 424

Getting ready	 424
How to do it...	 425
See also	 425

Getting the clique number of a graph	 425
Getting ready	 426
How to do it...	 426
See also	 426

[xiii]

Creating a document graph with cosine similarity	 427
How to do it...	 428
See also	 430

Chapter 9: Ensemble Learning and Dimensionality Reduction	 431
Introduction	 432
Recursively eliminating features	 432

How to do it...	 433
How it works	 434
See also	 434

Applying principal component analysis for dimension reduction	 435
How to do it...	 435
See also	 436

Applying linear discriminant analysis for dimension reduction	 437
How to do it...	 437
See also	 438

Stacking and majority voting for multiple models	 438
How to do it...	 439
See also	 441

Learning with random forests	 442
How to do it...	 442
There's more…	 444
See also	 445

Fitting noisy data with the RANSAC algorithm	 445
How to do it...	 446
See also	 448

Bagging to improve results	 449
How to do it...	 449
See also	 451

Boosting for better learning	 452
How to do it...	 452
See also	 454

Nesting cross-validation	 455
How to do it...	 455
See also	 458

Reusing models with joblib	 458
How to do it...	 458
See also	 459

Hierarchically clustering data	 460
How to do it...	 460
See also	 461

Taking a Theano tour	 462
Getting ready	 462
How to do it...	 462
See also	 464

Chapter 10: Evaluating Classifiers, Regressors, and Clusters	 465
Introduction	 466
Getting classification straight with the confusion matrix	 466

How to do it...	 467
How it works	 468
See also	 469

Computing precision, recall, and F1-score	 469
How to do it...	 470
See also	 472

Examining a receiver operating characteristic and the area under a curve	
472

How to do it...	 473
See also	 474

Visualizing the goodness of fit	 475
How to do it...	 475
See also	 476

Computing MSE and median absolute error	 476
How to do it...	 477
See also	 479

Evaluating clusters with the mean
silhouette coefficient	 479

How to do it...	 479
See also	 481

Comparing results with a dummy classifier	 482
How to do it...	 482
See also	 484

Determining MAPE and MPE	 485
How to do it...	 485
See also	 487

Comparing with a dummy regressor	 487
How to do it...	 487
See also	 489

Calculating the mean absolute error
and the residual sum of squares	 490

How to do it...	 490
See also	 492

[xv]

Examining the kappa of classification	 492
How to do it...	 493
How it works	 495
See also	 495

Taking a look at the Matthews correlation coefficient	 495
How to do it...	 495
See also	 497

Chapter 11: Analyzing Images	 499
Introduction	 499
Setting up OpenCV	 500

Getting ready	 500
How to do it...	 501
How it works	 502
There's more	 503

Applying Scale-Invariant Feature Transform (SIFT)	 503
Getting ready	 503
How to do it...	 503
See also	 505

Detecting features with SURF	 505
Getting ready	 506
How to do it...	 506
See also	 507

Quantizing colors	 507
Getting ready	 508
How to do it...	 508
See also	 509

Denoising images	 509
Getting ready	 510
How to do it...	 510
See also	 511

Extracting patches from an image	 511
Getting ready	 512
How to do it...	 512
See also	 514

Detecting faces with Haar cascades	 514
Getting ready	 515
How to do it...	 515
See also	 517

Searching for bright stars	 517
Getting ready	 518

How to do it...	 518
See also	 520

Extracting metadata from images	 521
Getting ready	 521
How to do it...	 521
See also	 523

Extracting texture features from images	 523
Getting ready	 524
How to do it...	 524
See also	 526

Applying hierarchical clustering on images	 526
How to do it...	 526
See also	 527

Segmenting images with spectral clustering	 527
How to do it...	 528
See also	 529

Chapter 12: Parallelism and Performance	 531
Introduction	 531
Just-in-time compiling with Numba	 533

Getting ready	 533
How to do it...	 533
How it works	 534
See also	 535

Speeding up numerical expressions with Numexpr	 535
How to do it...	 535
How it works	 536
See also	 536

Running multiple threads with the threading module	 536
How to do it...	 536
See also	 539

Launching multiple tasks with the concurrent.futures module	 540
How to do it...	 540
See also	 542

Accessing resources asynchronously with the asyncio module	 543
How to do it...	 543
See also	 546

Distributed processing with execnet	 546
Getting ready	 547
How to do it...	 547
See also	 549

[xvii]

Profiling memory usage	 550
Getting ready	 550
How to do it...	 550
See also	 551

Calculating the mean, variance, skewness, and kurtosis on the fly	 551
Getting ready	 552
How to do it...	 552
See also	 556

Caching with a least recently used cache	 556
Getting ready	 556
How to do it...	 556
See also	 559

Caching HTTP requests	 559
Getting ready	 559
How to do it...	 560
See also	 560

Streaming counting with the Count-min sketch	 561
How to do it...	 562
See also	 563

Harnessing the power of the GPU with OpenCL	 564
Getting ready	 564
How to do it...	 564
See also	 566

	 567
	 573

IPython 573
Matplotlib 574
NumPy 575
pandas 576
Scikit-learn 577
SciPy 578
Seaborn 578
Statsmodels 579

	 581
IPython notebooks and open data	 581
Mathematics and statistics	 582

Presentations 582

[xviii]

	
 585

IPython notebooks	 585
Command-line tools	 586
The alias command	 586
Command-line history	 587
Reproducible sessions	 587
Docker tips	 588

Preface 1

Chapter 1: Tools of the Trade 7
Before you start 7
Using the notebook interface 9
Imports 10
An example using the Pandas library 10
Summary 18

Chapter 2: Exploring Data 19
The General Social Survey 20

Obtaining the data 20
Reading the data 21

Univariate data 23
Histograms 23

Making things pretty 28
Characterization 29

Concept of statistical inference 32
Numeric summaries and boxplots 33

Relationships between variables – scatterplots 37
Summary 40

Chapter 3: Learning About Models 41
Models and experiments 41
The cumulative distribution function 42
Working with distributions 51
The probability density function 61
Where do models come from? 63
Multivariate distributions 68
Summary 70

Chapter 4: Regression 71
Introducing linear regression 72

Getting the dataset 73
Testing with linear regression 81

Multivariate regression 91
Adding economic indicators 91

Module 3: Mastering Python Data Analysis

[ii]

Taking a step back 98
Logistic regression 100

Some notes 107
Summary 107

Chapter 5: Clustering 108
Introduction to cluster finding 109

Starting out simple – John Snow on cholera 110
K-means clustering 116

Suicide rate versus GDP versus absolute latitude 116
Hierarchical clustering analysis 122

Reading in and reducing the data 122
Hierarchical cluster algorithm 132

Summary 137
Chapter 6: Bayesian Methods 138

The Bayesian method 138
Credible versus confidence intervals 139
Bayes formula 139
Python packages 140

U.S. air travel safety record 141
Getting the NTSB database 141
Binning the data 147
Bayesian analysis of the data 150

Binning by month 158
Plotting coordinates 160

Cartopy 160
Mpl toolkits – basemap 162

Climate change – CO2 in the atmosphere 163
Getting the data 164
Creating and sampling the model 166

Summary 173
Chapter 7: Supervised and Unsupervised Learning 174

Introduction to machine learning 174
Scikit-learn 175
Linear regression 176

Climate data 176
Checking with Bayesian analysis and OLS 181

Clustering 183
Seeds classification 188

[iii]

Visualizing the data 189
Feature selection 194
Classifying the data 196

The SVC linear kernel 198
The SVC Radial Basis Function 199
The SVC polynomial 200
K-Nearest Neighbour 200
Random Forest 201

Choosing your classifier 202
Summary 203

Chapter 8: Time Series Analysis 204
Introduction 204
Pandas and time series data 206
Indexing and slicing 209
Resampling, smoothing, and other estimates 212
Stationarity 218
Patterns and components 220

Decomposing components 221
Differencing 227

Time series models 229
Autoregressive – AR 230
Moving average – MA 232
Selecting p and q 233

Automatic function 234
The (Partial) AutoCorrelation Function 234

Autoregressive Integrated Moving Average – ARIMA 235
Summary 236

Appendix: More on Jupyter Notebook and matplotlib Styles 238
Jupyter Notebook 238

Useful keyboard shortcuts 239
Command mode shortcuts 239
Edit mode shortcuts 239

Markdown cells 240
Notebook Python extensions 241

Installing the extensions 241
Codefolding 243
Collapsible headings 245
Help panel 247
Initialization cells 247
NbExtensions menu item 249

[iv]

Ruler 249
Skip-traceback 250
Table of contents 252

Other Jupyter Notebook tips 254
External connections 255
Export 255
Additional file types 255

Matplotlib styles 256
Useful resources 261

General resources 261
Packages 262
Data repositories 264
Visualization of data 265

Summary 266
Index 267

Module 1

Getting Started with Python Data Analysis

Learn to use powerful Python libraries for effective data processing and analysis

[3]

Introducing Data Analysis
and Libraries

Data is raw information that can exist in any form, usable or not. We can easily get
data everywhere in our lives; for example, the price of gold on the day of writing
was $ 1.158 per ounce. This does not have any meaning, except describing the price
of gold. This also shows that data is useful based on context.

With the relational data connection, information appears and allows us to expand
our knowledge beyond the range of our senses. When we possess gold price data
gathered over time, one piece of information we might have is that the price has
continuously risen from $1.152 to $1.158 over three days. This could be used by
someone who tracks gold prices.

Knowledge helps people to create value in their lives and work. This value is
based on information that is organized, synthesized, or summarized to enhance
comprehension, awareness, or understanding. It represents a state or potential for
action and decisions. When the price of gold continuously increases for three days, it
will likely decrease on the next day; this is useful knowledge.

Introducing Data Analysis and Libraries

[4]

The following figure illustrates the steps from data to knowledge; we call this
process, the data analysis process and we will introduce it in the next section:

Data

Collecting

Summarizing

organizing

Gold price today is 1158$

Gold price has risen
for three days

Gold price will slightly
decrease on next day

Knowledge

Information

Decision making

Synthesising

Analysing

In this chapter, we will cover the following topics:

•	 Data analysis and process
•	 An overview of libraries in data analysis using different programming

languages
•	 Common Python data analysis libraries

Data analysis and processing
Data is getting bigger and more diverse every day. Therefore, analyzing and
processing data to advance human knowledge or to create value is a big challenge.
To tackle these challenges, you will need domain knowledge and a variety of skills,
drawing from areas such as computer science, artificial intelligence (AI) and
machine learning (ML), statistics and mathematics, and knowledge domain, as
shown in the following figure:

Chapter 1

[5]

Computer
Science

Artificial
Intelligent &

Machine
Learning

Knowledge
Domain

Statistics &
Mathematics

Data Analysis

Math

...
.

Data expertise
....

Algorithms
....

Pr
og

ram
ming

...
.

Let's go through data analysis and its domain knowledge:

•	 Computer science: We need this knowledge to provide abstractions for
efficient data processing. Basic Python programming experience is required
to follow the next chapters. We will introduce Python libraries used in data
analysis.

•	 Artificial intelligence and machine learning: If computer science knowledge
helps us to program data analysis tools, artificial intelligence and machine
learning help us to model the data and learn from it in order to build smart
products.

•	 Statistics and mathematics: We cannot extract useful information from raw
data if we do not use statistical techniques or mathematical functions.

•	 Knowledge domain: Besides technology and general techniques, it is
important to have an insight into the specific domain. What do the data fields
mean? What data do we need to collect? Based on the expertise, we explore
and analyze raw data by applying the above techniques, step by step.

Introducing Data Analysis and Libraries

[6]

Data analysis is a process composed of the following steps:

•	 Data requirements: We have to define what kind of data will be collected
based on the requirements or problem analysis. For example, if we want to
detect a user's behavior while reading news on the internet, we should be
aware of visited article links, dates and times, article categories, and the time
the user spends on different pages.

•	 Data collection: Data can be collected from a variety of sources: mobile,
personal computer, camera, or recording devices. It may also be obtained in
different ways: communication, events, and interactions between person and
person, person and device, or device and device. Data appears whenever and
wherever in the world. The problem is how we can find and gather it to solve
our problem? This is the mission of this step.

•	 Data processing: Data that is initially obtained must be processed or
organized for analysis. This process is performance-sensitive. How fast can
we create, insert, update, or query data? When building a real product that
has to process big data, we should consider this step carefully. What kind of
database should we use to store data? What kind of data structure, such as
analysis, statistics, or visualization, is suitable for our purposes?

•	 Data cleaning: After being processed and organized, the data may still
contain duplicates or errors. Therefore, we need a cleaning step to reduce
those situations and increase the quality of the results in the following
steps. Common tasks include record matching, deduplication, and column
segmentation. Depending on the type of data, we can apply several types of
data cleaning. For example, a user's history of visits to a news website might
contain a lot of duplicate rows, because the user might have refreshed certain
pages many times. For our specific issue, these rows might not carry any
meaning when we explore the user's behavior so we should remove them
before saving it to our database. Another situation we may encounter is click
fraud on news—someone just wants to improve their website ranking or
sabotage awebsite. In this case, the data will not help us to explore a user's
behavior. We can use thresholds to check whether a visit page event comes
from a real person or from malicious software.

•	 Exploratory data analysis: Now, we can start to analyze data through a
variety of techniques referred to as exploratory data analysis. We may detect
additional problems in data cleaning or discover requests for further data.
Therefore, these steps may be iterative and repeated throughout the whole
data analysis process. Data visualization techniques are also used to examine
the data in graphs or charts. Visualization often facilitates understanding of
data sets, especially if they are large or high-dimensional.

Chapter 1

[7]

•	 Modelling and algorithms: A lot of mathematical formulas and algorithms
may be applied to detect or predict useful knowledge from the raw data. For
example, we can use similarity measures to cluster users who have exhibited
similar news-reading behavior and recommend articles of interest to them
next time. Alternatively, we can detect users' genders based on their news
reading behavior by applying classification models such as the Support
Vector Machine (SVM) or linear regression. Depending on the problem, we
may use different algorithms to get an acceptable result. It can take a lot of
time to evaluate the accuracy of the algorithms and choose the best one to
implement for a certain product.

•	 Data product: The goal of this step is to build data products that receive data
input and generate output according to the problem requirements. We will
apply computer science knowledge to implement our selected algorithms as
well as manage the data storage.

An overview of the libraries in data
analysis
There are numerous data analysis libraries that help us to process and analyze data.
They use different programming languages, and have different advantages and
disadvantages of solving various data analysis problems. Now, we will introduce
some common libraries that may be useful for you. They should give you an
overview of the libraries in the field. However, the rest of this book focuses on
Python-based libraries.

Some of the libraries that use the Java language for data analysis are as follows:

•	 Weka: This is the library that I became familiar with the first time I learned
about data analysis. It has a graphical user interface that allows you to run
experiments on a small dataset. This is great if you want to get a feel for what
is possible in the data processing space. However, if you build a complex
product, I think it is not the best choice, because of its performance, sketchy
API design, non-optimal algorithms, and little documentation (http://www.
cs.waikato.ac.nz/ml/weka/).

http://www.cs.waikato.ac.nz/ml/weka/
http://www.cs.waikato.ac.nz/ml/weka/

Introducing Data Analysis and Libraries

[8]

•	 Mallet: This is another Java library that is used for statistical natural
language processing, document classification, clustering, topic modeling,
information extraction, and other machine-learning applications on text.
There is an add-on package for Mallet, called GRMM, that contains support
for inference in general, graphical models, and training of Conditional
random fields (CRF) with arbitrary graphical structures. In my experience,
the library performance and the algorithms are better than Weka. However,
its only focus is on text-processing problems. The reference page is at
http://mallet.cs.umass.edu/.

•	 Mahout: This is Apache's machine-learning framework built on top of
Hadoop; its goal is to build a scalable machine-learning library. It looks
promising, but comes with all the baggage and overheads of Hadoop.
The homepage is at http://mahout.apache.org/.

•	 Spark: This is a relatively new Apache project, supposedly up to a hundred
times faster than Hadoop. It is also a scalable library that consists of common
machine-learning algorithms and utilities. Development can be done in
Python as well as in any JVM language. The reference page is at
https://spark.apache.org/docs/1.5.0/mllib-guide.html.

Here are a few libraries that are implemented in C++:

•	 Vowpal Wabbit: This library is a fast, out-of-core learning system sponsored
by Microsoft Research and, previously, Yahoo! Research. It has been
used to learn a tera-feature (1012) dataset on 1,000 nodes in one hour.
More information can be found in the publication at http://arxiv.org/
abs/1110.4198.

•	 MultiBoost: This package is a multiclass, multi label, and multitask
classification boosting software implemented in C++. If you use
this software, you should refer to the paper published in 2012 in the
JournalMachine Learning Research, MultiBoost: A Multi-purpose Boosting
Package, D.Benbouzid, R. Busa-Fekete, N. Casagrande, F.-D. Collin, and B. Kégl.

•	 MLpack: This is also a C++ machine-learning library, developed by the
Fundamental Algorithmic and Statistical Tools Laboratory (FASTLab)
at Georgia Tech. It focusses on scalability, speed, and ease-of-use, and was
presented at the BigLearning workshop of NIPS 2011. Its homepage is at
http://www.mlpack.org/about.html.

•	 Caffe: The last C++ library we want to mention is Caffe. This is a deep
learning framework made with expression, speed, and modularity in mind.
It is developed by the Berkeley Vision and Learning Center (BVLC) and
community contributors. You can find more information about it at
http://caffe.berkeleyvision.org/.

http://mallet.cs.umass.edu/
http://mahout.apache.org/
https://spark.apache.org/docs/1.5.0/mllib-guide.html
http://arxiv.org/abs/1110.4198
http://arxiv.org/abs/1110.4198
http://www.mlpack.org/about.html
http://caffe.berkeleyvision.org/

Chapter 1

[9]

Other libraries for data processing and analysis are as follows:

•	 Statsmodels: This is a great Python library for statistical modeling and is
mainly used for predictive and exploratory analysis.

•	 Modular toolkit for data processing (MDP): This is a collection of
supervised and unsupervised learning algorithms and other data processing
units that can be combined into data processing sequences and more complex
feed-forward network architectures (http://mdp-toolkit.sourceforge.
net/index.html).

•	 Orange: This is an open source data visualization and analysis for novices
and experts. It is packed with features for data analysis and has add-ons
for bioinformatics and text mining. It contains an implementation of
self-organizing maps, which sets it apart from the other projects as well
(http://orange.biolab.si/).

•	 Mirador: This is a tool for the visual exploration of complex datasets,
supporting Mac and Windows. It enables users to discover correlation patterns
and derive new hypotheses from data (http://orange.biolab.si/).

•	 RapidMiner: This is another GUI-based tool for data mining, machine
learning, and predictive analysis (https://rapidminer.com/).

•	 Theano: This bridges the gap between Python and lower-level languages.
Theano gives very significant performance gains, particularly for large
matrix operations, and is, therefore, a good choice for deep learning models.
However, it is not easy to debug because of the additional compilation layer.

•	 Natural language processing toolkit (NLTK): This is written in Python with
very unique and salient features.

Here, I could not list all libraries for data analysis. However, I think the above
libraries are enough to take a lot of your time to learn and build data analysis
applications. I hope you will enjoy them after reading this book.

Python libraries in data analysis
Python is a multi-platform, general-purpose programming language that can run
on Windows, Linux/Unix, and Mac OS X, and has been ported to Java and .NET
virtual machines as well. It has a powerful standard library. In addition, it has
many libraries for data analysis: Pylearn2, Hebel, Pybrain, Pattern, MontePython,
and MILK. In this book, we will cover some common Python data analysis libraries
such as Numpy, Pandas, Matplotlib, PyMongo, and scikit-learn. Now, to help you
get started, I will briefly present an overview of each library for those who are less
familiar with the scientific Python stack.

http://mdp-toolkit.sourceforge.net/index.html
http://mdp-toolkit.sourceforge.net/index.html
http://orange.biolab.si/
http://orange.biolab.si/
https://rapidminer.com/

Introducing Data Analysis and Libraries

[10]

NumPy
One of the fundamental packages used for scientific computing in Python is Numpy.
Among other things, it contains the following:

•	 A powerful N-dimensional array object
•	 Sophisticated (broadcasting) functions for performing array computations
•	 Tools for integrating C/C++ and Fortran code
•	 Useful linear algebra operations, Fourier transformations, and random

number capabilities

Besides this, it can also be used as an efficient multidimensional container of
generic data. Arbitrary data types can be defined and integrated with a wide
variety of databases.

Pandas
Pandas is a Python package that supports rich data structures and functions for
analyzing data, and is developed by the PyData Development Team. It is focused on
the improvement of Python's data libraries. Pandas consists of the following things:

•	 A set of labeled array data structures; the primary of which are Series,
DataFrame, and Panel

•	 Index objects enabling both simple axis indexing and multilevel/hierarchical
axis indexing

•	 An intergraded group by engine for aggregating and transforming datasets
•	 Date range generation and custom date offsets
•	 Input/output tools that load and save data from flat files or PyTables/HDF5

format
•	 Optimal memory versions of the standard data structures
•	 Moving window statistics and static and moving window linear/panel

regression

Due to these features, Pandas is an ideal tool for systems that need complex
data structures or high-performance time series functions such as financial data
analysis applications.

Chapter 1

[11]

Matplotlib
Matplotlib is the single most used Python package for 2D-graphics. It provides
both a very quick way to visualize data from Python and publication-quality
figures in many formats: line plots, contour plots, scatter plots, and Basemap plots.
It comes with a set of default settings, but allows customization of all kinds of
properties. However, we can easily create our chart with the defaults of almost
every property in Matplotlib.

PyMongo
MongoDB is a type of NoSQL database. It is highly scalable, robust, and perfect to
work with JavaScript-based web applications, because we can store data as JSON
documents and use flexible schemas.

PyMongo is a Python distribution containing tools for working with MongoDB.
Many tools have also been written for working with PyMongo to add more features
such as MongoKit, Humongolus, MongoAlchemy, and Ming.

The scikit-learn library
The scikit-learn is an open source machine-learning library using the Python
programming language. It supports various machine learning models, such as
classification, regression, and clustering algorithms, interoperated with the Python
numerical and scientific libraries NumPy and SciPy. The latest scikit-learn version is
0.16.1, published in April 2015.

Summary
In this chapter, we presented three main points. Firstly, we figured out the
relationship between raw data, information and knowledge. Due to its contribution
to our lives, we continued to discuss an overview of data analysis and processing
steps in the second section. Finally, we introduced a few common supported libraries
that are useful for practical data analysis applications. Among those, in the next
chapters, we will focus on Python libraries in data analysis.

Introducing Data Analysis and Libraries

[12]

Practice exercise

The following table describes users' rankings on Snow White movies:

UserID Sex Location Ranking
A Male Philips 4
B Male VN 2
C Male Canada 1
D Male Canada 2
E Female VN 5
F Female NY 4

Exercise 1: What information can we find in this table? What kind of knowledge can
we derive from it?

Exercise 2: Based on the data analysis process in this chapter, try to define the data
requirements and analysis steps needed to predict whether user B likes Maleficent
movies or not.

[13]

NumPy Arrays and
Vectorized Computation

NumPy is the fundamental package supported for presenting and computing data
with high performance in Python. It provides some interesting features as follows:

•	 Extension package to Python for multidimensional arrays (ndarrays),
various derived objects (such as masked arrays), matrices providing
vectorization operations, and broadcasting capabilities. Vectorization can
significantly increase the performance of array computations by taking
advantage of Single Instruction Multiple Data (SIMD) instruction sets in
modern CPUs.

•	 Fast and convenient operations on arrays of data, including mathematical
manipulation, basic statistical operations, sorting, selecting, linear algebra,
random number generation, discrete Fourier transforms, and so on.

•	 Efficiency tools that are closer to hardware because of integrating
C/C++/Fortran code.

NumPy is a good starting package for you to get familiar with arrays and
array-oriented computing in data analysis. Also, it is the basic step to learn
other, more effective tools such as Pandas, which we will see in the next chapter.
We will be using NumPy version 1.9.1.

NumPy Arrays and Vectorized Computation

[14]

NumPy arrays
An array can be used to contain values of a data object in an experiment or
simulation step, pixels of an image, or a signal recorded by a measurement device.
For example, the latitude of the Eiffel Tower, Paris is 48.858598 and the longitude
is 2.294495. It can be presented in a NumPy array object as p:

>>> import numpy as np

>>> p = np.array([48.858598, 2.294495])

>>> p

Output: array([48.858598, 2.294495])

This is a manual construction of an array using the np.array function. The standard
convention to import NumPy is as follows:

>>> import numpy as np

You can, of course, put from numpy import * in your code to avoid having to write
np. However, you should be careful with this habit because of the potential code
conflicts (further information on code conventions can be found in the Python Style
Guide, also known as PEP8, at https://www.python.org/dev/peps/pep-0008/).

There are two requirements of a NumPy array: a fixed size at creation and a uniform,
fixed data type, with a fixed size in memory. The following functions help you to get
information on the p matrix:

>>> p.ndim # getting dimension of array p

1

>>> p.shape # getting size of each array dimension

(2,)

>>> len(p) # getting dimension length of array p

2

>>> p.dtype # getting data type of array p

dtype('float64')

Data types
There are five basic numerical types including Booleans (bool), integers (int),
unsigned integers (uint), floating point (float), and complex. They indicate how
many bits are needed to represent elements of an array in memory. Besides that,
NumPy also has some types, such as intc and intp, that have different bit sizes
depending on the platform.

https://www.python.org/dev/peps/pep-0008/

Chapter 2

[15]

See the following table for a listing of NumPy's supported data types:

Type Type
code

Description Range of value

bool Boolean stored as a byte True/False
intc Similar to C int (int32 or int

64)
intp Integer used for indexing

(same as C size_t)
int8, uint8 i1, u1 Signed and unsigned 8-bit

integer types
int8: (-128 to 127)
uint8: (0 to 255)

int16,
uint16

i2, u2 Signed and unsigned 16-bit
integer types

int16: (-32768 to 32767)
uint16: (0 to 65535)

int32,
uint32

I4, u4 Signed and unsigned 32-bit
integer types

int32: (-2147483648 to
2147483647
uint32: (0 to 4294967295)

int64,
uinit64

i8, u8 Signed and unsigned 64-bit
integer types

Int64: (-9223372036854775808
to 9223372036854775807)
uint64: (0 to
18446744073709551615)

float16 f2 Half precision float: sign bit,
5 bits exponent, and 10b bits
mantissa

float32 f4 / f Single precision float: sign
bit, 8 bits exponent, and 23
bits mantissa

float64 f8 / d Double precision float: sign
bit, 11 bits exponent, and 52
bits mantissa

complex64,
complex128,
complex256

c8,
c16,
c32

Complex numbers
represented by two 32-bit,
64-bit, and 128-bit floats

object 0 Python object type
string_ S Fixed-length string type Declare a string dtype with

length 10, using S10
unicode_ U Fixed-length Unicode type Similar to string_ example, we

have 'U10'

NumPy Arrays and Vectorized Computation

[16]

We can easily convert or cast an array from one dtype to another using the astype
method:

>>> a = np.array([1, 2, 3, 4])

>>> a.dtype

dtype('int64')

>>> float_b = a.astype(np.float64)

>>> float_b.dtype

dtype('float64')

The astype function will create a new array with a copy of
data from an old array, even though the new dtype is similar
to the old one.

Array creation
There are various functions provided to create an array object. They are very useful
for us to create and store data in a multidimensional array in different situations.

Now, in the following table we will summarize some of NumPy's common functions
and their use by examples for array creation:

Function Description Example
empty,
empty_like

Create a new array
of the given shape
and type, without
initializing elements

>>> np.empty([3,2], dtype=np.float64)

array([[0., 0.], [0., 0.], [0., 0.]])

>>> a = np.array([[1, 2], [4, 3]])

>>> np.empty_like(a)

array([[0, 0], [0, 0]])

eye,
identity

Create a NxN
identity matrix with
ones on the diagonal
and zero elsewhere

>>> np.eye(2, dtype=np.int)

array([[1, 0], [0, 1]])

ones, ones_
like

Create a new array
with the given shape
and type, filled with
1s for all elements

>>> np.ones(5)

array([1., 1., 1., 1., 1.])

>>> np.ones(4, dtype=np.int)

array([1, 1, 1, 1])

>>> x = np.array([[0,1,2], [3,4,5]])

>>> np.ones_like(x)

array([[1, 1, 1],[1, 1, 1]])

Chapter 2

[17]

Function Description Example
zeros,
zeros_like

This is similar to
ones, ones_like,
but initializing
elements with 0s
instead

>>> np.zeros(5)

array([0., 0., 0., 0-, 0.])

>>> np.zeros(4, dtype=np.int)

array([0, 0, 0, 0])

>>> x = np.array([[0, 1, 2], [3, 4,
5]])

>>> np.zeros_like(x)

array([[0, 0, 0],[0, 0, 0]])

arange Create an array with
even spaced values
in a given interval

>>> np.arange(2, 5)

array([2, 3, 4])

>>> np.arange(4, 12, 5)

array([4, 9])

full, full_
like

Create a new array
with the given shape
and type, filled with
a selected value

>>> np.full((2,2), 3, dtype=np.int)

array([[3, 3], [3, 3]])

>>> x = np.ones(3)

>>> np.full_like(x, 2)

array([2., 2., 2.])

array Create an array from
the existing data

>>> np.array([[1.1, 2.2, 3.3], [4.4,
5.5, 6.6]])

array([1.1, 2.2, 3.3], [4.4, 5.5,
6.6]])

asarray Convert the input to
an array

>>> a = [3.14, 2.46]

>>> np.asarray(a)

array([3.14, 2.46])

copy Return an array copy
of the given object

>>> a = np.array([[1, 2], [3, 4]])

>>> np.copy(a)

array([[1, 2], [3, 4]])

fromstring Create 1-D array
from a string or text

>>> np.fromstring('3.14 2.17',
dtype=np.float, sep=' ')

array([3.14, 2.17])

NumPy Arrays and Vectorized Computation

[18]

Indexing and slicing
As with other Python sequence types, such as lists, it is very easy to access and
assign a value of each array's element:

>>> a = np.arange(7)

>>> a

array([0, 1, 2, 3, 4, 5, 6])

>>> a[1], a [4], a[-1]

(1, 4, 6)

In Python, array indices start at 0. This is in contrast to Fortran or
Matlab, where indices begin at 1.

As another example, if our array is multidimensional, we need tuples of integers to
index an item:

>>> a = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]])

>>> a[0, 2] # first row, third column

3

>>> a[0, 2] = 10

>>> a

array([[1, 2, 10], [4, 5, 6], [7, 8, 9]])

>>> b = a[2]

>>> b

array([7, 8, 9])

>>> c = a[:2]

>>> c

array([[1, 2, 10], [4, 5, 6]])

We call b and c as array slices, which are views on the original one. It means that the
data is not copied to b or c, and whenever we modify their values, it will be reflected
in the array a as well:

>>> b[-1] = 11

>>> a

array([[1, 2, 10], [4, 5, 6], [7, 8, 11]])

We use a colon (:) character to take the entire axis when we
omit the index number.

Chapter 2

[19]

Fancy indexing
Besides indexing with slices, NumPy also supports indexing with Boolean or integer
arrays (masks). This method is called fancy indexing. It creates copies, not views.

First, we take a look at an example of indexing with a Boolean mask array:

>>> a = np.array([3, 5, 1, 10])

>>> b = (a % 5 == 0)

>>> b

array([False, True, False, True], dtype=bool)

>>> c = np.array([[0, 1], [2, 3], [4, 5], [6, 7]])

>>> c[b]

array([[2, 3], [6, 7]])

The second example is an illustration of using integer masks on arrays:

>>> a = np.array([[1, 2, 3, 4],

 [5, 6, 7, 8],

 [9, 10, 11, 12],

 [13, 14, 15, 16]])

>>> a[[2, 1]]

array([[9, 10, 11, 12], [5, 6, 7, 8]])

>>> a[[-2, -1]] # select rows from the end

array([[9, 10, 11, 12], [13, 14, 15, 16]])

>>> a[[2, 3], [0, 1]] # take elements at (2, 0) and (3, 1)

array([9, 14])

The mask array must have the same length as the axis that
it's indexing.

Downloading the example code
You can download the example code files for all Packt books
you have purchased from your account at http://www.
packtpub.com. If you purchased this book elsewhere, you can
visit http://www.packtpub.com/support and register to
have the files e-mailed directly to you.

http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com/support

NumPy Arrays and Vectorized Computation

[20]

Numerical operations on arrays
We are getting familiar with creating and accessing ndarrays. Now, we continue to
the next step, applying some mathematical operations to array data without writing
any for loops, of course, with higher performance.

Scalar operations will propagate the value to each element of the array:

>>> a = np.ones(4)

>>> a * 2

array([2., 2., 2., 2.])

>>> a + 3

array([4., 4., 4., 4.])

All arithmetic operations between arrays apply the operation element wise:

>>> a = np.ones([2, 4])

>>> a * a

array([[1., 1., 1., 1.], [1., 1., 1., 1.]])

>>> a + a

array([[2., 2., 2., 2.], [2., 2., 2., 2.]])

Also, here are some examples of comparisons and logical operations:

>>> a = np.array([1, 2, 3, 4])

>>> b = np.array([1, 1, 5, 3])

>>> a == b

array([True, False, False, False], dtype=bool)

>>> np.array_equal(a, b) # array-wise comparison

False

>>> c = np.array([1, 0])

>>> d = np.array([1, 1])

>>> np.logical_and(c, d) # logical operations

array([True, False])

Chapter 2

[21]

Array functions
Many helpful array functions are supported in NumPy for analyzing data. We will
list some part of them that are common in use. Firstly, the transposing function
is another kind of reshaping form that returns a view on the original data array
without copying anything:

>>> a = np.array([[0, 5, 10], [20, 25, 30]])

>>> a.reshape(3, 2)

array([[0, 5], [10, 20], [25, 30]])

>>> a.T

array([[0, 20], [5, 25], [10, 30]])

In general, we have the swapaxes method that takes a pair of axis numbers and
returns a view on the data, without making a copy:

>>> a = np.array([[[0, 1, 2], [3, 4, 5]],

 [[6, 7, 8], [9, 10, 11]]])

>>> a.swapaxes(1, 2)

array([[[0, 3],

 [1, 4],

 [2, 5]],

 [[6, 9],

 [7, 10],

 [8, 11]]])

The transposing function is used to do matrix computations; for example, computing
the inner matrix product XT.X using np.dot:

>>> a = np.array([[1, 2, 3],[4,5,6]])

>>> np.dot(a.T, a)

array([[17, 22, 27],

 [22, 29, 36],

 [27, 36, 45]])

NumPy Arrays and Vectorized Computation

[22]

Sorting data in an array is also an important demand in processing data. Let's take a
look at some sorting functions and their use:

>>> a = np.array ([[6, 34, 1, 6], [0, 5, 2, -1]])

>>> np.sort(a) # sort along the last axis

array([[1, 6, 6, 34], [-1, 0, 2, 5]])

>>> np.sort(a, axis=0) # sort along the first axis

array([[0, 5, 1, -1], [6, 34, 2, 6]])

>>> b = np.argsort(a) # fancy indexing of sorted array

>>> b

array([[2, 0, 3, 1], [3, 0, 2, 1]])

>>> a[0][b[0]]

array([1, 6, 6, 34])

>>> np.argmax(a) # get index of maximum element

1

See the following table for a listing of array functions:

Function Description Example
sin, cos, tan,
cosh, sinh, tanh,
arcos, arctan,
deg2rad

Trigonometric
and hyperbolic
functions

>>> a = np.array([0.,30., 45.])

>>> np.sin(a * np.pi / 180)

array([0., 0.5, 0.7071678])

around, round,
rint, fix, floor,
ceil, trunc

Rounding elements
of an array to the
given or nearest
number

>>> a = np.array([0.34, 1.65])

>>> np.round(a)

array([0., 2.])

sqrt, square, exp,
expm1, exp2, log,
log10, log1p,
logaddexp

Computing the
exponents and
logarithms of an
array

>>> np.exp(np.array([2.25,
3.16]))

array([9.4877, 23.5705])

Chapter 2

[23]

Function Description Example
add, negative,
multiply, devide,
power, substract,
mod, modf,
remainder

Set of arithmetic
functions on arrays

>>> a = np.arange(6)

>>> x1 = a.reshape(2,3)

>>> x2 = np.arange(3)

>>> np.multiply(x1, x2)

array([[0,1,4],[0,4,10]])

greater,
greater_equal,
less, less_equal,
equal, not_equal

Perform
elementwise
comparison: >, >=,
<, <=, ==, !=

>>> np.greater(x1, x2)

array([[False, False, False],
[True, True, True]], dtype =
bool)

Data processing using arrays
With the NumPy package, we can easily solve many kinds of data processing
tasks without writing complex loops. It is very helpful for us to control our code
as well as the performance of the program. In this part, we want to introduce some
mathematical and statistical functions.

See the following table for a listing of mathematical and statistical functions:

Function Description Example
sum Calculate the sum

of all the elements
in an array or
along the axis

>>> a = np.array([[2,4], [3,5]])

>>> np.sum(a, axis=0)

array([5, 9])

prod Compute the
product of array
elements over the
given axis

>>> np.prod(a, axis=1)

array([8, 15])

diff Calculate the
discrete difference
along the given
axis

>>> np.diff(a, axis=0)

array([[1,1]])

gradient Return the
gradient of an
array

>>> np.gradient(a)

[array([[1., 1.], [1., 1.]]),
array([[2., 2.], [2., 2.]])]

cross Return the cross
product of two
arrays

>>> b = np.array([[1,2], [3,4]])

>>> np.cross(a,b)

array([0, -3])

NumPy Arrays and Vectorized Computation

[24]

Function Description Example
std, var Return standard

deviation and
variance of arrays

>>> np.std(a)

1.1180339

>>> np.var(a)

1.25

mean Calculate
arithmetic mean
of an array

>>> np.mean(a)

3.5

where Return elements,
either from x or
y, that satisfy a
condition

>>> np.where([[True, True], [False,
True]], [[1,2],[3,4]], [[5,6],[7,8]])

array([[1,2], [7, 4]])

unique Return the sorted
unique values in
an array

>>> id = np.array(['a', 'b', 'c',
'c', 'd'])

>>> np.unique(id)

array(['a', 'b', 'c', 'd'],
dtype='|S1')

intersect1d Compute the
sorted and
common elements
in two arrays

>>> a = np.array(['a', 'b', 'a', 'c',
'd', 'c'])

>>> b = np.array(['a', 'xyz', 'klm',
'd'])

>>> np.intersect1d(a,b)

array(['a', 'd'], dtype='|S3')

Loading and saving data
We can also save and load data to and from a disk, either in text or binary format,
by using different supported functions in NumPy package.

Saving an array
Arrays are saved by default in an uncompressed raw binary format, with the file
extension .npy by the np.save function:

>>> a = np.array([[0, 1, 2], [3, 4, 5]])

>>> np.save('test1.npy', a)

Chapter 2

[25]

The library automatically assigns the .npy extension, if we omit it.

If we want to store several arrays into a single file in an uncompressed .npz format,
we can use the np.savez function, as shown in the following example:

>>> a = np.arange(4)

>>> b = np.arange(7)

>>> np.savez('test2.npz', arr0=a, arr1=b)

The .npz file is a zipped archive of files named after the variables they contain.
When we load an .npz file, we get back a dictionary-like object that can be queried
for its lists of arrays:

>>> dic = np.load('test2.npz')

>>> dic['arr0']

array([0, 1, 2, 3])

Another way to save array data into a file is using the np.savetxt function that
allows us to set format properties in the output file:

>>> x = np.arange(4)

>>> # e.g., set comma as separator between elements

>>> np.savetxt('test3.out', x, delimiter=',')

Loading an array
We have two common functions such as np.load and np.loadtxt, which
correspond to the saving functions, for loading an array:

>>> np.load('test1.npy')

array([[0, 1, 2], [3, 4, 5]])

>>> np.loadtxt('test3.out', delimiter=',')

array([0., 1., 2., 3.])

Similar to the np.savetxt function, the np.loadtxt function also has a lot of options
for loading an array from a text file.

NumPy Arrays and Vectorized Computation

[26]

Linear algebra with NumPy
Linear algebra is a branch of mathematics concerned with vector spaces and the
mappings between those spaces. NumPy has a package called linalg that supports
powerful linear algebra functions. We can use these functions to find eigenvalues
and eigenvectors or to perform singular value decomposition:

>>> A = np.array([[1, 4, 6],

 [5, 2, 2],

 [-1, 6, 8]])

>>> w, v = np.linalg.eig(A)

>>> w # eigenvalues

array([-0.111 + 1.5756j, -0.111 – 1.5756j, 11.222+0.j])

>>> v # eigenvector

array([[-0.0981 + 0.2726j, -0.0981 – 0.2726j, 0.5764+0.j],

 [0.7683+0.j, 0.7683-0.j, 0.4591+0.j],

 [-0.5656 – 0.0762j, -0.5656 + 0.00763j, 0.6759+0.j]])

The function is implemented using the geev Lapack routines that compute the
eigenvalues and eigenvectors of general square matrices.

Another common problem is solving linear systems such as Ax = b with A as a
matrix and x and b as vectors. The problem can be solved easily using the
numpy.linalg.solve function:

>>> A = np.array([[1, 4, 6], [5, 2, 2], [-1, 6, 8]])

>>> b = np.array([[1], [2], [3]])

>>> x = np.linalg.solve(A, b)

>>> x

array([[-1.77635e-16], [2.5], [-1.5]])

The following table will summarise some commonly used functions in the numpy.
linalg package:

Function Description Example
dot Calculate the dot

product of two arrays
>>> a = np.array([[1, 0],[0, 1]])

>>> b = np.array([[4, 1],[2, 2]])

>>> np.dot(a,b)

array([[4, 1],[2, 2]])

Chapter 2

[27]

Function Description Example
inner, outer Calculate the inner and

outer product of two
arrays

>>> a = np.array([1, 1, 1])

>>> b = np.array([3, 5, 1])

>>> np.inner(a,b)

9

linalg.norm Find a matrix or vector
norm

>>> a = np.arange(3)

>>> np.linalg.norm(a)

2.23606

linalg.det Compute the
determinant of an array

>>> a = np.array([[1,2],[3,4]])

>>> np.linalg.det(a)

-2.0

linalg.inv Compute the inverse of
a matrix

>>> a = np.array([[1,2],[3,4]])

>>> np.linalg.inv(a)

array([[-2., 1.],[1.5, -0.5]])

linalg.qr Calculate the QR
decomposition

>>> a = np.array([[1,2],[3,4]])

>>> np.linalg.qr(a)

(array([[0.316, 0.948], [0.948,
0.316]]), array([[3.162, 4.427],
[0., 0.632]]))

linalg.cond Compute the condition
number of a matrix

>>> a = np.array([[1,3],[2,4]])

>>> np.linalg.cond(a)

14.933034

trace Compute the sum of the
diagonal element

>>> np.trace(np.arange(6)).

reshape(2,3))

4

NumPy random numbers
An important part of any simulation is the ability to generate random numbers.
For this purpose, NumPy provides various routines in the submodule random.
It uses a particular algorithm, called the Mersenne Twister, to generate
pseudorandom numbers.

NumPy Arrays and Vectorized Computation

[28]

First, we need to define a seed that makes the random numbers predictable.
When the value is reset, the same numbers will appear every time. If we do not
assign the seed, NumPy automatically selects a random seed value based on the
system's random number generator device or on the clock:

>>> np.random.seed(20)

An array of random numbers in the [0.0, 1.0] interval can be generated as
follows:

>>> np.random.rand(5)

array([0.5881308, 0.89771373, 0.89153073, 0.81583748,

 0.03588959])

>>> np.random.rand(5)

array([0.69175758, 0.37868094, 0.51851095, 0.65795147,

 0.19385022])

>>> np.random.seed(20) # reset seed number

>>> np.random.rand(5)

array([0.5881308, 0.89771373, 0.89153073, 0.81583748,

 0.03588959])

If we want to generate random integers in the half-open interval [min, max],
we can user the randint(min, max, length) function:

>>> np.random.randint(10, 20, 5)

array([17, 12, 10, 16, 18])

NumPy also provides for many other distributions, including the Beta,
bionomial, chi-square, Dirichlet, exponential, F, Gamma, geometric, or Gumbel.

Chapter 2

[29]

The following table will list some distribution functions and give examples for
generating random numbers:

Function Description Example
binomial Draw samples from a

binomial distribution
(n: number of trials, p:
probability)

>>> n, p = 100, 0.2

>>> np.random.binomial(n, p, 3)

array([17, 14, 23])

dirichlet Draw samples using a
Dirichlet distribution

>>> np.random.
dirichlet(alpha=(2,3), size=3)

array([[0.519, 0.480], [0.639,
0.36],

 [0.838, 0.161]])

poisson Draw samples from a
Poisson distribution

>>> np.random.poisson(lam=2, size=
2)

array([4,1])

normal Draw samples using
a normal Gaussian
distribution

>>> np.random.normal

(loc=2.5, scale=0.3, size=3)

array([2.4436, 2.849, 2.741)

uniform Draw samples using a
uniform distribution

>>> np.random.uniform(

low=0.5, high=2.5, size=3)

array([1.38, 1.04, 2.19[)

We can also use the random number generation to shuffle items in a list. Sometimes
this is useful when we want to sort a list in a random order:

>>> a = np.arange(10)

>>> np.random.shuffle(a)

>>> a

array([7, 6, 3, 1, 4, 2, 5, 0, 9, 8])

NumPy Arrays and Vectorized Computation

[30]

The following figure shows two distributions, binomial and poisson , side by side
with various parameters (the visualization was created with matplotlib, which will
be covered in Chapter 4, Data Visualization):

Summary
In this chapter, we covered a lot of information related to the NumPy package,
especially commonly used functions that are very helpful to process and analyze
data in ndarray. Firstly, we learned the properties and data type of ndarray in the
NumPy package. Secondly, we focused on how to create and manipulate an ndarray
in different ways, such as conversion from other structures, reading an array from
disk, or just generating a new array with given values. Thirdly, we studied how
to access and control the value of each element in ndarray by using indexing
and slicing.

Chapter 2

[31]

Then, we are getting familiar with some common functions and operations
on ndarray.

And finally, we continue with some advance functions that are related to
statistic, linear algebra and sampling data. Those functions play important
role in data analysis.

However, while NumPy by itself does not provide very much high-level data
analytical functionality, having an understanding of it will help you use tools such
as Pandas much more effectively. This tool will be discussed in the next chapter.

Practice exercises

Exercise 1: Using an array creation function, let's try to create arrays variable in the
following situations:

•	 Create ndarray from the existing data
•	 Initialize ndarray which elements are filled with ones, zeros, or a

given interval
•	 Loading and saving data from a file to an ndarray

Exercise 2: What is the difference between np.dot(a, b) and (a*b)?

Exercise 3: Consider the vector [1, 2, 3, 4, 5] building a new vector with four
consecutive zeros interleaved between each value.

Exercise 4: Taking the data example file chapter2-data.txt, which includes
information on a system log, solves the following tasks:

•	 Try to build an ndarray from the data file
•	 Statistic frequency of each device type in the built matrix
•	 List unique OS that appears in the data log
•	 Sort user by provinceID and count the number of users in each province

[33]

Data Analysis with Pandas
In this chapter, we will explore another data analysis library called Pandas.
The goal of this chapter is to give you some basic knowledge and concrete
examples for getting started with Pandas.

An overview of the Pandas package
Pandas is a Python package that supports fast, flexible, and expressive data
structures, as well as computing functions for data analysis. The following
are some prominent features that Pandas supports:

•	 Data structure with labeled axes. This makes the program clean and clear
and avoids common errors from misaligned data.

•	 Flexible handling of missing data.
•	 Intelligent label-based slicing, fancy indexing, and subset creation of

large datasets.
•	 Powerful arithmetic operations and statistical computations on a custom

axis via axis label.
•	 Robust input and output support for loading or saving data from and to

files, databases, or HDF5 format.

Related to Pandas installation, we recommend an easy way, that is to install it as
a part of Anaconda, a cross-platform distribution for data analysis and scientific
computing. You can refer to the reference at http://docs.continuum.io/
anaconda/ to download and install the library.

http://docs.continuum.io/anaconda/
http://docs.continuum.io/anaconda/

Data Analysis with Pandas

[34]

After installation, we can use it like other Python packages. Firstly, we have to
import the following packages at the beginning of the program:

>>> import pandas as pd

>>> import numpy as np

The Pandas data structure
Let's first get acquainted with two of Pandas' primary data structures: the Series
and the DataFrame. They can handle the majority of use cases in finance, statistic,
social science, and many areas of engineering.

Series
A Series is a one-dimensional object similar to an array, list, or column in table.
Each item in a Series is assigned to an entry in an index:

>>> s1 = pd.Series(np.random.rand(4),

 index=['a', 'b', 'c', 'd'])

>>> s1

a 0.6122

b 0.98096

c 0.3350

d 0.7221

dtype: float64

By default, if no index is passed, it will be created to have values ranging from 0 to
N-1, where N is the length of the Series:

>>> s2 = pd.Series(np.random.rand(4))

>>> s2

0 0.6913

1 0.8487

2 0.8627

3 0.7286

dtype: float64

Chapter 3

[35]

We can access the value of a Series by using the index:

>>> s1['c']

0.3350

>>>s1['c'] = 3.14

>>> s1['c', 'a', 'b']

c 3.14

a 0.6122

b 0.98096

This accessing method is similar to a Python dictionary. Therefore, Pandas also
allows us to initialize a Series object directly from a Python dictionary:

>>> s3 = pd.Series({'001': 'Nam', '002': 'Mary',

 '003': 'Peter'})

>>> s3

001 Nam

002 Mary

003 Peter

dtype: object

Sometimes, we want to filter or rename the index of a Series created from a Python
dictionary. At such times, we can pass the selected index list directly to the initial
function, similarly to the process in the above example. Only elements that exist in
the index list will be in the Series object. Conversely, indexes that are missing in the
dictionary are initialized to default NaN values by Pandas:

>>> s4 = pd.Series({'001': 'Nam', '002': 'Mary',

 '003': 'Peter'}, index=[

 '002', '001', '024', '065'])

>>> s4

002 Mary

001 Nam

024 NaN

065 NaN

dtype: object

ect

Data Analysis with Pandas

[36]

The library also supports functions that detect missing data:

>>> pd.isnull(s4)

002 False

001 False

024 True

065 True

dtype: bool

Similarly, we can also initialize a Series from a scalar value:

>>> s5 = pd.Series(2.71, index=['x', 'y'])

>>> s5

x 2.71

y 2.71

dtype: float64

A Series object can be initialized with NumPy objects as well, such as ndarray.
Moreover, Pandas can automatically align data indexed in different ways in
arithmetic operations:

>>> s6 = pd.Series(np.array([2.71, 3.14]), index=['z', 'y'])

>>> s6

z 2.71

y 3.14

dtype: float64

>>> s5 + s6

x NaN

y 5.85

z NaN

dtype: float64

The DataFrame
The DataFrame is a tabular data structure comprising a set of ordered columns and
rows. It can be thought of as a group of Series objects that share an index (the column
names). There are a number of ways to initialize a DataFrame object. Firstly, let's take
a look at the common example of creating DataFrame from a dictionary of lists:

>>> data = {'Year': [2000, 2005, 2010, 2014],

 'Median_Age': [24.2, 26.4, 28.5, 30.3],

Chapter 3

[37]

 'Density': [244, 256, 268, 279]}

>>> df1 = pd.DataFrame(data)

>>> df1

 Density Median_Age Year

0 244 24.2 2000

1 256 26.4 2005

2 268 28.5 2010

3 279 30.3 2014

By default, the DataFrame constructor will order the column alphabetically. We can
edit the default order by passing the column's attribute to the initializing function:

>>> df2 = pd.DataFrame(data, columns=['Year', 'Density',

 'Median_Age'])

>>> df2

 Year Density Median_Age

0 2000 244 24.2

1 2005 256 26.4

2 2010 268 28.5

3 2014 279 30.3

>>> df2.index

Int64Index([0, 1, 2, 3], dtype='int64')

We can provide the index labels of a DataFrame similar to a Series:

>>> df3 = pd.DataFrame(data, columns=['Year', 'Density',

 'Median_Age'], index=['a', 'b', 'c', 'd'])

>>> df3.index

Index([u'a', u'b', u'c', u'd'], dtype='object')

We can construct a DataFrame out of nested lists as well:

>>> df4 = pd.DataFrame([

 ['Peter', 16, 'pupil', 'TN', 'M', None],

 ['Mary', 21, 'student', 'SG', 'F', None],

 ['Nam', 22, 'student', 'HN', 'M', None],

 ['Mai', 31, 'nurse', 'SG', 'F', None],

 ['John', 28, 'laywer', 'SG', 'M', None]],

columns=['name', 'age', 'career', 'province', 'sex', 'award'])

Data Analysis with Pandas

[38]

Columns can be accessed by column name as a Series can, either by dictionary-like
notation or as an attribute, if the column name is a syntactically valid attribute name:

>>> df4.name # or df4['name']

0 Peter

1 Mary

2 Nam

3 Mai

4 John

Name: name, dtype: object

To modify or append a new column to the created DataFrame, we specify the
column name and the value we want to assign:

>>> df4['award'] = None

>>> df4

 name age career province sex award

0 Peter 16 pupil TN M None

1 Mary 21 student SG F None

2 Nam 22 student HN M None

3 Mai 31 nurse SG F None

4 John 28 lawer SG M None

Using a couple of methods, rows can be retrieved by position or name:

>>> df4.ix[1]

name Mary

age 21

career student

province SG

sex F

award None

Name: 1, dtype: object

A DataFrame object can also be created from different data structures such as a list
of dictionaries, a dictionary of Series, or a record array. The method to initialize a
DataFrame object is similar to the examples above.

Chapter 3

[39]

Another common case is to provide a DataFrame with data from a location such as
a text file. In this situation, we use the read_csv function that expects the column
separator to be a comma, by default. However, we can change that by using the sep
parameter:

person.csv file

name,age,career,province,sex

Peter,16,pupil,TN,M

Mary,21,student,SG,F

Nam,22,student,HN,M

Mai,31,nurse,SG,F

John,28,lawer,SG,M

loading person.cvs into a DataFrame

>>> df4 = pd.read_csv('person.csv')

>>> df4

 name age career province sex

0 Peter 16 pupil TN M

1 Mary 21 student SG F

2 Nam 22 student HN M

3 Mai 31 nurse SG F

4 John 28 laywer SG M

While reading a data file, we sometimes want to skip a line or an invalid value.
As for Pandas 0.16.2, read_csv supports over 50 parameters for controlling the
loading process. Some common useful parameters are as follows:

•	 sep: This is a delimiter between columns. The default is comma symbol.
•	 dtype: This is a data type for data or columns.
•	 header: This sets row numbers to use as the column names.
•	 skiprows: This skips line numbers to skip at the start of the file.
•	 error_bad_lines: This shows invalid lines (too many fields) that will, by

default, cause an exception, such that no DataFrame will be returned. If we
set the value of this parameter as false, the bad lines will be skipped.

Moreover, Pandas also has support for reading and writing a DataFrame directly
from or to a database such as the read_frame or write_frame function within the
Pandas module. We will come back to these methods later in this chapter.

Data Analysis with Pandas

[40]

The essential basic functionality
Pandas supports many essential functionalities that are useful to manipulate Pandas
data structures. In this book, we will focus on the most important features regarding
exploration and analysis.

Reindexing and altering labels
Reindex is a critical method in the Pandas data structures. It confirms whether
the new or modified data satisfies a given set of labels along a particular axis of
Pandas object.

First, let's view a reindex example on a Series object:

>>> s2.reindex([0, 2, 'b', 3])

0 0.6913

2 0.8627

b NaN

3 0.7286

dtype: float64

When reindexed labels do not exist in the data object, a default value of NaN will be
automatically assigned to the position; this holds true for the DataFrame case as well:

>>> df1.reindex(index=[0, 2, 'b', 3],

 columns=['Density', 'Year', 'Median_Age','C'])

 Density Year Median_Age C

0 244 2000 24.2 NaN

2 268 2010 28.5 NaN

b NaN NaN NaN NaN

3 279 2014 30.3 NaN

Chapter 3

[41]

We can change the NaN value in the missing index case to a custom value by setting
the fill_value parameter. Let us take a look at the arguments that the reindex
function supports, as shown in the following table:

Argument Description
index This is the new labels/index to conform to.
method This is the method to use for filling holes in a reindexed object.

The default setting is unfill gaps.
pad/ffill: fill values forward
backfill/bfill: fill values backward
nearest: use the nearest value to fill the gap

copy This return a new object. The default setting is true.
level The matches index values on the passed multiple index level.
fill_value This is the value to use for missing values. The default setting is

NaN.
limit This is the maximum size gap to fill in forward or backward

method.

Head and tail
In common data analysis situations, our data structure objects contain many columns
and a large number of rows. Therefore, we cannot view or load all information of
the objects. Pandas supports functions that allow us to inspect a small sample. By
default, the functions return five elements, but we can set a custom number as well.
The following example shows how to display the first five and the last three rows of
a longer Series:

>>> s7 = pd.Series(np.random.rand(10000))

>>> s7.head()

0 0.631059

1 0.766085

2 0.066891

3 0.867591

4 0.339678

Data Analysis with Pandas

[42]

dtype: float64

>>> s7.tail(3)

9997 0.412178

9998 0.800711

9999 0.438344

dtype: float64

We can also use these functions for DataFrame objects in the same way.

Binary operations
Firstly, we will consider arithmetic operations between objects. In different indexes
objects case, the expected result will be the union of the index pairs. We will not
explain this again because we had an example about it in the above section (s5 +
s6). This time, we will show another example with a DataFrame:

>>> df5 = pd.DataFrame(np.arange(9).reshape(3,3),0

 columns=['a','b','c'])

>>> df5

 a b c

0 0 1 2

1 3 4 5

2 6 7 8

>>> df6 = pd.DataFrame(np.arange(8).reshape(2,4),

 columns=['a','b','c','d'])

>>> df6

 a b c d

0 0 1 2 3

1 4 5 6 7

>>> df5 + df6

 a b c d

0 0 2 4 NaN

1 7 9 11 NaN

2 NaN NaN NaN NaN

Chapter 3

[43]

The mechanisms for returning the result between two kinds of data structure are
similar. A problem that we need to consider is the missing data between objects. In
this case, if we want to fill with a fixed value, such as 0, we can use the arithmetic
functions such as add, sub, div, and mul, and the function's supported parameters
such as fill_value:

>>> df7 = df5.add(df6, fill_value=0)

>>> df7

 a b c d

0 0 2 4 3

1 7 9 11 7

2 6 7 8 NaN

Next, we will discuss comparison operations between data objects. We have some
supported functions such as equal (eq), not equal (ne), greater than (gt), less than
(lt), less equal (le), and greater equal (ge). Here is an example:

>>> df5.eq(df6)

 a b c d

0 True True True False

1 False False False False

2 False False False False

Functional statistics
The supported statistics method of a library is really important in data analysis. To
get inside a big data object, we need to know some summarized information such
as mean, sum, or quantile. Pandas supports a large number of methods to compute
them. Let's consider a simple example of calculating the sum information of df5,
which is a DataFrame object:

>>> df5.sum()

a 9

b 12

c 15

dtype: int64

Data Analysis with Pandas

[44]

When we do not specify which axis we want to calculate sum information, by default,
the function will calculate on index axis, which is axis 0:

•	 Series: We do not need to specify the axis.
•	 DataFrame: Columns (axis = 1) or index (axis = 0). The default setting is

axis 0.

We also have the skipna parameter that allows us to decide whether to exclude
missing data or not. By default, it is set as true:

>>> df7.sum(skipna=False)

a 13

b 18

c 23

d NaN

dtype: float64

Another function that we want to consider is describe(). It is very convenient for
us to summarize most of the statistical information of a data structure such as the
Series and DataFrame, as well:

>>> df5.describe()

 a b c

count 3.0 3.0 3.0

mean 3.0 4.0 5.0

std 3.0 3.0 3.0

min 0.0 1.0 2.0

25% 1.5 2.5 3.5

50% 3.0 4.0 5.0

75% 4.5 5.5 6.5

max 6.0 7.0 8.0

We can specify percentiles to include or exclude in the output by using the
percentiles parameter; for example, consider the following:

>>> df5.describe(percentiles=[0.5, 0.8])

 a b c

count 3.0 3.0 3.0

mean 3.0 4.0 5.0

std 3.0 3.0 3.0

Chapter 3

[45]

min 0.0 1.0 2.0

50% 3.0 4.0 5.0

80% 4.8 5.8 6.8

max 6.0 7.0 8.0

Here, we have a summary table for common supported statistics functions
in Pandas:

Function Description
idxmin(axis),
idxmax(axis)

This compute the index labels with the minimum
or maximum corresponding values.

value_counts() This compute the frequency of unique values.
count() This return the number of non-null values in a

data object.
mean(), median(),
min(), max()

This return mean, median, minimum, and
maximum values of an axis in a data object.

std(), var(), sem() These return the standard deviation, variance,
and standard error of mean.

abs() This gets the absolute value of a data object.

Function application
Pandas supports function application that allows us to apply some functions
supported in other packages such as NumPy or our own functions on data structure
objects. Here, we illustrate two examples of these cases, firstly, using apply to
execute the std() function, which is the standard deviation calculating function of
the NumPy package:

>>> df5.apply(np.std, axis=1) # default: axis=0

0 0.816497

1 0.816497

2 0.816497

dtype: float64

Data Analysis with Pandas

[46]

Secondly, if we want to apply a formula to a data object, we can also useapply
function by following these steps:

1.	 Define the function or formula that you want to apply on a data object.
2.	 Call the defined function or formula via apply. In this step, we also need

to figure out the axis that we want to apply the calculation to:
>>> f = lambda x: x.max() – x.min() # step 1

>>> df5.apply(f, axis=1) # step 2

0 2

1 2

2 2

dtype: int64

>>> def sigmoid(x):

 return 1/(1 + np.exp(x))

>>> df5.apply(sigmoid)

 a b c

0 0.500000 0.268941 0.119203

1 0.047426 0.017986 0.006693

2 0.002473 0.000911 0.000335

Sorting
There are two kinds of sorting method that we are interested in: sorting by row or
column index and sorting by data value.

Firstly, we will consider methods for sorting by row and column index. In this case,
we have the sort_index () function. We also have axis parameter to set whether
the function should sort by row or column. The ascending option with the true or
false value will allow us to sort data in ascending or descending order. The default
setting for this option is true:

>>> df7 = pd.DataFrame(np.arange(12).reshape(3,4),

 columns=['b', 'd', 'a', 'c'],

 index=['x', 'y', 'z'])

>>> df7

 b d a c

x 0 1 2 3

y 4 5 6 7

z 8 9 10 11

Chapter 3

[47]

>>> df7.sort_index(axis=1)

 a b c d

x 2 0 3 1

y 6 4 7 5

z 10 8 11 9

Series has a method order that sorts by value. For NaN values in the object, we can
also have a special treatment via the na_position option:

>>> s4.order(na_position='first')

024 NaN

065 NaN

002 Mary

001 Nam

dtype: object

>>> s4

002 Mary

001 Nam

024 NaN

065 NaN

dtype: object

Besides that, Series also has the sort() function that sorts data by value. However,
the function will not return a copy of the sorted data:

>>> s4.sort(na_position='first')

>>> s4

024 NaN

065 NaN

002 Mary

001 Nam

dtype: object

Data Analysis with Pandas

[48]

If we want to apply sort function to a DataFrame object, we need to figure out which
columns or rows will be sorted:

>>> df7.sort(['b', 'd'], ascending=False)

 b d a c

z 8 9 10 11

y 4 5 6 7

x 0 1 2 3

If we do not want to automatically save the sorting result to the current data object,
we can change the setting of the inplace parameter to False.

Indexing and selecting data
In this section, we will focus on how to get, set, or slice subsets of Pandas data
structure objects. As we learned in previous sections, Series or DataFrame objects
have axis labeling information. This information can be used to identify items that
we want to select or assign a new value to in the object:

>>> s4[['024', '002']] # selecting data of Series object

024 NaN

002 Mary

dtype: object

>>> s4[['024', '002']] = 'unknown' # assigning data

>>> s4

024 unknown

065 NaN

002 unknown

001 Nam

dtype: object

If the data object is a DataFrame structure, we can also proceed in a similar way:

>>> df5[['b', 'c']]

 b c

0 1 2

1 4 5

2 7 8

Chapter 3

[49]

For label indexing on the rows of DataFrame, we use the ix function that enables us
to select a set of rows and columns in the object. There are two parameters that we
need to specify: the row and column labels that we want to get. By default, if we do
not specify the selected column names, the function will return selected rows with all
columns in the object:

>>> df5.ix[0]

a 0

b 1

c 2

Name: 0, dtype: int64

>>> df5.ix[0, 1:3]

b 1

c 2

Name: 0, dtype: int64

Moreover, we have many ways to select and edit data contained in a Pandas object.
We summarize these functions in the following table:

Method Description
icol, irow This selects a single row or column by integer location.
get_value, set_value This selects or sets a single value of a data object by row

or column label.
xs This selects a single column or row as a Series by label.

Pandas data objects may contain duplicate indices. In this case,
when we get or set a data value via index label, it will affect all
rows or columns that have the same selected index name.

Computational tools
Let's start with correlation and covariance computation between two data objects.
Both the Series and DataFrame have a cov method. On a DataFrame object, this
method will compute the covariance between the Series inside the object:

>>> s1 = pd.Series(np.random.rand(3))

>>> s1

Data Analysis with Pandas

[50]

0 0.460324

1 0.993279

2 0.032957

dtype: float64

>>> s2 = pd.Series(np.random.rand(3))

>>> s2

0 0.777509

1 0.573716

2 0.664212

dtype: float64

>>> s1.cov(s2)

-0.024516360159045424

>>> df8 = pd.DataFrame(np.random.rand(12).reshape(4,3),

 columns=['a','b','c'])

>>> df8

 a b c

0 0.200049 0.070034 0.978615

1 0.293063 0.609812 0.788773

2 0.853431 0.243656 0.978057

0.985584 0.500765 0.481180

>>> df8.cov()

 a b c

a 0.155307 0.021273 -0.048449

b 0.021273 0.059925 -0.040029

c -0.048449 -0.040029 0.055067

Usage of the correlation method is similar to the covariance method. It computes the
correlation between Series inside a data object in case the data object is a DataFrame.
However, we need to specify which method will be used to compute the correlations.
The available methods are pearson, kendall, and spearman. By default, the function
applies the spearman method:

>>> df8.corr(method = 'spearman')

 a b c

a 1.0 0.4 -0.8

b 0.4 1.0 -0.8

c -0.8 -0.8 1.0

Chapter 3

[51]

We also have the corrwith function that supports calculating correlations between
Series that have the same label contained in different DataFrame objects:

>>> df9 = pd.DataFrame(np.arange(8).reshape(4,2),

 columns=['a', 'b'])

>>> df9

 a b

0 0 1

1 2 3

2 4 5

3 6 7

>>> df8.corrwith(df9)

a 0.955567

b 0.488370

c NaN

dtype: float64

Working with missing data
In this section, we will discuss missing, NaN, or null values, in Pandas data
structures. It is a very common situation to arrive with missing data in an object.
One such case that creates missing data is reindexing:

>>> df8 = pd.DataFrame(np.arange(12).reshape(4,3),

 columns=['a', 'b', 'c'])

 a b c

0 0 1 2

1 3 4 5

2 6 7 8

3 9 10 11

>>> df9 = df8.reindex(columns = ['a', 'b', 'c', 'd'])

 a b c d

0 0 1 2 NaN

1 3 4 5 NaN

2 6 7 8 NaN

4 9 10 11 NaN

Data Analysis with Pandas

[52]

>>> df10 = df8.reindex([3, 2, 'a', 0])

 a b c

3 9 10 11

2 6 7 8

a NaN NaN NaN

0 0 1 2

To manipulate missing values, we can use the isnull() or notnull() functions to
detect the missing values in a Series object, as well as in a DataFrame object:

>>> df10.isnull()

 a b c

3 False False False

2 False False False

a True True True

0 False False False

On a Series, we can drop all null data and index values by using the dropna
function:

>>> s4 = pd.Series({'001': 'Nam', '002': 'Mary',

 '003': 'Peter'},

 index=['002', '001', '024', '065'])

>>> s4

002 Mary

001 Nam

024 NaN

065 NaN

dtype: object

>>> s4.dropna() # dropping all null value of Series object

002 Mary

001 Nam

dtype: object

Chapter 3

[53]

With a DataFrame object, it is a little bit more complex than with Series. We can tell
which rows or columns we want to drop and also if all entries must be null or a
single null value is enough. By default, the function will drop any row containing a
missing value:

>>> df9.dropna() # all rows will be dropped

Empty DataFrame

Columns: [a, b, c, d]

Index: []

>>> df9.dropna(axis=1)

 a b c

0 0 1 2

1 3 4 5

2 6 7 8

3 9 10 11

Another way to control missing values is to use the supported parameters of
functions that we introduced in the previous section. They are also very useful to
solve this problem. In our experience, we should assign a fixed value in missing
cases when we create data objects. This will make our objects cleaner in later
processing steps. For example, consider the following:

>>> df11 = df8.reindex([3, 2, 'a', 0], fill_value = 0)

>>> df11

 a b c

3 9 10 11

2 6 7 8

a 0 0 0

0 0 1 2

We can alse use the fillna function to fill a custom value in missing values:

>>> df9.fillna(-1)

 a b c d

0 0 1 2 -1

1 3 4 5 -1

2 6 7 8 -1

3 9 10 11 -1

Data Analysis with Pandas

[54]

Advanced uses of Pandas for data
analysis
In this section we will consider some advanced Pandas use cases.

Hierarchical indexing
Hierarchical indexing provides us with a way to work with higher dimensional
data in a lower dimension by structuring the data object into multiple index
levels on an axis:

>>> s8 = pd.Series(np.random.rand(8), index=[['a','a','b','b','c','c',
'd','d'], [0, 1, 0, 1, 0,1, 0, 1,]])

>>> s8

a 0 0.721652

 1 0.297784

b 0 0.271995

 1 0.125342

c 0 0.444074

 1 0.948363

d 0 0.197565

 1 0.883776

dtype: float64

In the preceding example, we have a Series object that has two index levels.
The object can be rearranged into a DataFrame using the unstack function.
In an inverse situation, the stack function can be used:

>>> s8.unstack()

 0 1

a 0.549211 0.420874

b 0.051516 0.715021

c 0.503072 0.720772

d 0.373037 0.207026

Chapter 3

[55]

We can also create a DataFrame to have a hierarchical index in both axes:

>>> df = pd.DataFrame(np.random.rand(12).reshape(4,3),

 index=[['a', 'a', 'b', 'b'],

 [0, 1, 0, 1]],

 columns=[['x', 'x', 'y'], [0, 1, 0]])

>>> df

 x y

 0 1 0

a 0 0.636893 0.729521 0.747230

 1 0.749002 0.323388 0.259496

b 0 0.214046 0.926961 0.679686

0.013258 0.416101 0.626927

>>> df.index

MultiIndex(levels=[['a', 'b'], [0, 1]],

 labels=[[0, 0, 1, 1], [0, 1, 0, 1]])

>>> df.columns

MultiIndex(levels=[['x', 'y'], [0, 1]],

 labels=[[0, 0, 1], [0, 1, 0]])

The methods for getting or setting values or subsets of the data objects with multiple
index levels are similar to those of the nonhierarchical case:

>>> df['x']

 0 1

a 0 0.636893 0.729521

 1 0.749002 0.323388

b 0 0.214046 0.926961

0.013258 0.416101

>>> df[[0]]

 x

 0

a 0 0.636893

 1 0.749002

b 0 0.214046

0.013258

Data Analysis with Pandas

[56]

>>> df.ix['a', 'x']

 0 1

0 0.636893 0.729521

0.749002 0.323388

>>> df.ix['a','x'].ix[1]

0 0.749002

1 0.323388

Name: 1, dtype: float64

After grouping data into multiple index levels, we can also use most of the
descriptive and statistics functions that have a level option, which can be used to
specify the level we want to process:

>>> df.std(level=1)

 x y

 0 1 0

0 0.298998 0.139611 0.047761

0.520250 0.065558 0.259813

>>> df.std(level=0)

 x y

 0 1 0

a 0.079273 0.287180 0.344880

b 0.141979 0.361232 0.037306

The Panel data
The Panel is another data structure for three-dimensional data in Pandas.
However, it is less frequently used than the Series or the DataFrame. You can think
of a Panel as a table of DataFrame objects. We can create a Panel object from a 3D
ndarray or a dictionary of DataFrame objects:

create a Panel from 3D ndarray

>>> panel = pd.Panel(np.random.rand(2, 4, 5),

 items = ['item1', 'item2'])

>>> panel

<class 'pandas.core.panel.Panel'>

Dimensions: 2 (items) x 4 (major_axis) x 5 (minor_axis)

Items axis: item1 to item2

Major_axis axis: 0 to 3

Chapter 3

[57]

Minor_axis axis: 0 to 4

>>> df1 = pd.DataFrame(np.arange(12).reshape(4, 3),

 columns=['a','b','c'])

>>> df1

 a b c

0 0 1 2

1 3 4 5

2 6 7 8

9 10 11

>>> df2 = pd.DataFrame(np.arange(9).reshape(3, 3),

 columns=['a','b','c'])

>>> df2

 a b c

0 0 1 2

1 3 4 5

6 7 8

create another Panel from a dict of DataFrame objects

>>> panel2 = pd.Panel({'item1': df1, 'item2': df2})

>>> panel2

<class 'pandas.core.panel.Panel'>

Dimensions: 2 (items) x 4 (major_axis) x 3 (minor_axis)

Items axis: item1 to item2

Major_axis axis: 0 to 3

Minor_axis axis: a to c

Each item in a Panel is a DataFrame. We can select an item, by item name:

>>> panel2['item1']

 a b c

0 0 1 2

1 3 4 5

2 6 7 8

3 9 10 11

Data Analysis with Pandas

[58]

Alternatively, if we want to select data via an axis or data position, we can use the ix
method, like on Series or DataFrame:

>>> panel2.ix[:, 1:3, ['b', 'c']]

<class 'pandas.core.panel.Panel'>

Dimensions: 2 (items) x 3 (major_axis) x 2 (minor_axis)

Items axis: item1 to item2

Major_axis axis: 1 to 3

Minor_axis axis: b to c

>>> panel2.ix[:, 2, :]

 item1 item2

a 6 6

b 7 7

c 8 8

Summary
We have finished covering the basics of the Pandas data analysis library. Whenever
you learn about a library for data analysis, you need to consider the three parts that
we explained in this chapter. Data structures: we have two common data object types
in the Pandas library; Series and DataFrames. Method to access and manipulate
data objects: Pandas supports many way to select, set or slice subsets of data object.
However, the general mechanism is using index labels or the positions of items
to identify values. Functions and utilities: They are the most important part of a
powerful library. In this chapter, we covered all common supported functions of
Pandas which allow us compute statistics on data easily. The library also has a lot
of other useful functions and utilities that we could not explain in this chapter. We
encourage you to start your own research, if you want to expand your experience
with Pandas. It helps us to process large data in an optimized way. You will see
more of Pandas in action later in this book.

Until now, we learned about two popular Python libraries: NumPy and Pandas.
Pandas is built on NumPy, and as a result it allows for a bit more convenient
interaction with data. However, in some situations, we can flexibly combine
both of them to accomplish our goals.

Chapter 3

[59]

Practice exercises

The link https://www.census.gov/2010census/csv/pop_change.csv contains an
US census dataset. It has 23 columns and one row for each US state, as well as a few
rows for macro regions such as North, South, and West.

•	 Get this dataset into a Pandas DataFrame. Hint: just skip those rows that do
not seem helpful, such as comments or description.

•	 While the dataset contains change metrics for each decade, we are interested
in the population change during the second half of the twentieth century,
that is between, 1950 and 2000. Which region has seen the biggest and the
smallest population growth in this time span? Also, which US state?

Advanced open-ended exercise:

•	 Find more census data on the internet; not just on the US but on the world's
countries. Try to find GDP data for the same time as well. Try to align this
data to explore patterns. How are GDP and population growth related? Are
there any special cases. such as countries with high GDP but low population
growth or countries with the opposite history?

https://www.census.gov/2010census/csv/pop_change.csv

