

DevOps: Puppet, Docker,
and Kubernetes

 Get hands-on recipes to automate and manage Linux
containers with the Docker 1.6 environment and jump-start
 your Puppet development

A course in three modules

BIRMINGHAM - MUMBAI

DevOps: Puppet, Docker, and Kubernetes

Copyright © 2017 Packt Publishing

All rights reserved. No part of this course may be reproduced, stored in a retrieval system, or
transmitted in any form or by any means, without the prior written permission of the publisher,
except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this course to ensure the accuracy of the
information presented. However, the information contained in this course is sold without
warranty, either express or implied. Neither the authors, nor Packt Publishing, and its dealers
and distributors will be held liable for any damages caused or alleged to be caused directly or
indirectly by this course.

Packt Publishing has endeavored to provide trademark information about all of the companies
and products mentioned in this course by the appropriate use of capitals. However, Packt
Publishing cannot guarantee the accuracy of this information.

Published on: March 2017

Production reference: 1150317

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN: 978-1-78829-761-5

www.packtpub.com

www.packtpub.com

Credits

Authors
Thomas Uphill

John Arundel

Neependra Khare

Hideto Saito

Hui-Chuan Chloe Lee

Ke-Jou Carol Hsu

Reviewers
Dhruv Ahuja

James Fryman

Jeroen Hooyberghs

Pedro Morgado

Scott Collier

Julien Duponchelle

Allan Espinosa

Vishnu Gopal

Matt Ma

Content Development Editor
Juliana Nair

Graphics
Kirk D'Penha

Production Coordinator
Shantanu N. Zagade

i

Preface
With so many IT management and DevOps tools on the market, both open source and
commercial, it's difficult to know where to start. DevOps is incredibly powerful when
implemented correctly, here's how to get it done.

What this learning path covers
Module 1, Puppet Cookbook (third edition), this module covers all aspects of your puppet
infrastructure using simple easy to follow recipes that are independent and can be used to
solve real world problems quickly.

Puppet Cookbook takes the reader from a basic knowledge of Puppet to a complete and
expert understanding of Puppet's latest and most advanced features.
With emphasis on real-world implementation, this book delves into various aspects of writing
good Puppet code, including using Puppet community style, checking your manifests with
puppet-lint and community best practices. It then shows the readers how to set up Puppet for
the first time, including instructions on installing Puppet, creating your first manifests, using
version control with Puppet and so on. You will also learn to write better manifests, manage
resources, files and applications. You'll then be introduced to powerful tools that have grown
up around Puppet, including Hiera, Facter, and rspec-puppet. Finally, you will also learn to
master common Monitoring, Reporting, and Troubleshooting techniques.

Updated with the latest advancements and best practices, this book gives you a clear
view on how to "connect the dots" and expands your understanding to successfully use
and extend Puppet.

Module 2, Docker Cookbook, this module aims to help you get working with Docker by
providing you with step-by-step recipes that enable you to effectively deploy Docker in your
development, test, and production environments.

Preface

ii

You will start with verifying and installing Docker on different environments and look into
understanding and working with containers and images. Next, you will move on to study the
operations related to images. You then proceed to learn about network and data management
for containers and how to build an environment for Continuous Integration with the help of
services from companies like Shippable and Drone. The book then explores the RESTful
APIs provided by Docker to perform different operations like image/container operations
before taking a look at the Docker Remote API client. The book ends with a look at logs and
troubleshooting Docker to solve issues and bottlenecks.

Module 3, Kubernetes Cookbook, Kubernetes is Google's solution to managing a cluster of
containers. Kubernetes provides a declarative API to manage clusters while giving us a lot
of flexibility. This book will provide you with recipes to better manage containers in different
scenarios in production using Kubernetes.

We will start by giving you a quick brush up on how Kubernetes works with containers along
with an overview of the main Kubernetes features such as Pods, Replication Controllers, and
more. Next, we will teach you how to create Kubernetes cluster and how to run programs on
Kubernetes. We'll explain features such as High Availability Kubernetes master setup, using
Kubernetes with Docker, and orchestration with Kubernetes using AWS. Later, will show you
how to use Kubernetes-UI, and how to set up and manage Kubernetes clusters on the cloud
and bare metal.

Upon completion of this book, you will be able use Kubernetes in production and will have a
better understanding of how to manage your containers using Kubernetes.

What you need for this learning path
The primary softwares required are as follows:

 f Puppet 3.7.3

 f Kubernetes 1.1.3Java

 f Etcd 2.1.1

 f Flanneld 0.5.2

 f Docker 1.7.1

 f Kubernetes 1.2.2

 f Etcd 2.3.1

 f Amazon Web Services

Preface

iii

 f entOS

 � 7.1/ubuntu

 � 14.04/Amazeon

 � Linux 2015.09

 f Debian and Enterprise Linux-based distributions

Who this learning path is for
This Learning Path is for developers, system administrators, and DevOps engineers who want
to use Puppet, Docker, and Kubernetes in their development, QA, or production environments.
This Learning Path assumes experience with Linux administration and requires some
experience with command-line usage and basic text file editing.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about this course—
what you liked or disliked. Reader feedback is important for us as it helps us develop titles
that you will really get the most out of.

To send us general feedback, simply e-mail feedback@packtpub.com, and mention the
course's title in the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing or
contributing to a book, see our author guide at www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt course, we have a number of things to help you
to get the most from your purchase.

Downloading the example code
You can download the example code files for this course from your account at http://
www.packtpub.com. If you purchased this course elsewhere, you can visit http://www.
packtpub.com/support and register to have the files e-mailed directly to you.

Preface

iv

You can download the code files by following these steps:

1. Log in or register to our website using your e-mail address and password.

2. Hover the mouse pointer on the SUPPORT tab at the top.

3. Click on Code Downloads & Errata.

4. Enter the name of the course in the Search box.

5. Select the course for which you're looking to download the code files.

6. Choose from the drop-down menu where you purchased this course from.

7. Click on Code Download.

You can also download the code files by clicking on the Code Files button on the course's
webpage at the Packt Publishing website. This page can be accessed by entering the course's
name in the Search box. Please note that you need to be logged in to your Packt account.

Once the file is downloaded, please make sure that you unzip or extract the folder using the
latest version of:

 f WinRAR / 7-Zip for Windows

 f Zipeg / iZip / UnRarX for Mac

 f 7-Zip / PeaZip for Linux

The code bundle for the course is also hosted on GitHub at https://github.com/
PacktPublishing/DevOps-Puppet-Docker-and-Kubernetes. We also have other
code bundles from our rich catalog of books, videos, and courses available at https://
github.com/PacktPublishing/. Check them out!

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes do
happen. If you find a mistake in one of our courses—maybe a mistake in the text or the
code—we would be grateful if you could report this to us. By doing so, you can save other
readers from frustration and help us improve subsequent versions of this course. If you find
any errata, please report them by visiting http://www.packtpub.com/submit-errata,
selecting your course, clicking on the Errata Submission Form link, and entering the details of
your errata. Once your errata are verified, your submission will be accepted and the errata will
be uploaded to our website or added to any list of existing errata under the Errata section of
that title.

To view the previously submitted errata, go to https://www.packtpub.com/books/
content/support and enter the name of the course in the search field. The required
information will appear under the Errata section.

Preface

v

Piracy
Piracy of copyrighted material on the Internet is an ongoing problem across all media. At
Packt, we take the protection of our copyright and licenses very seriously. If you come across
any illegal copies of our works in any form on the Internet, please provide us with the location
address or website name immediately so that we can pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors and our ability to bring you
valuable content.

Questions
If you have a problem with any aspect of this course, you can contact us at questions@
packtpub.com, and we will do our best to address the problem.

i

Module 1: Puppet Cookbook

Chapter 1: Puppet Language and Style 3
Introduction 4
Adding a resource to a node 4
Using Facter to describe a node 5
Installing a package before starting a service 6
Installing, configuring, and starting a service 8
Using community Puppet style 10
Creating a manifest 13
Checking your manifests with Puppet-lint 15
Using modules 17
Using standard naming conventions 22
Using inline templates 24
Iterating over multiple items 25
Writing powerful conditional statements 28
Using regular expressions in if statements 30
Using selectors and case statements 32
Using the in operator 35
Using regular expression substitutions 36
Using the future parser 38

Chapter 2: Puppet Infrastructure 43
Introduction 44
Installing Puppet 44
Managing your manifests with Git 45
Creating a decentralized Puppet architecture 51

ii

Table of Contents

Writing a papply script 54
Running Puppet from cron 57
Bootstrapping Puppet with bash 60
Creating a centralized Puppet infrastructure 63
Creating certificates with multiple DNS names 65
Running Puppet from passenger 66
Setting up the environment 69
Configuring PuppetDB 72
Configuring Hiera 73
Setting node-specific data with Hiera 76
Storing secret data with hiera-gpg 77
Using MessagePack serialization 79
Automatic syntax checking with Git hooks 80
Pushing code around with Git 82
Managing Environments with Git 85

Chapter 3: Writing Better Manifests 89
Introduction 90
Using arrays of resources 90
Using resource defaults 91
Using defined types 94
Using tags 97
Using run stages 100
Using roles and profiles 104
Passing parameters to classes 106
Passing parameters from Hiera 108
Writing reusable, cross-platform manifests 109
Getting information about the environment 112
Importing dynamic information 114
Passing arguments to shell commands 116

Chapter 4: Working with Files and Packages 119
Introduction 120
Making quick edits to config files 120
Editing INI style files with puppetlabs-inifile 123
Using Augeas to reliably edit config files 126
Building config files using snippets 128
Using ERB templates 130
Using array iteration in templates 132
Using EPP templates 135

iii

Table of Contents

Using GnuPG to encrypt secrets 136
Installing packages from a third-party repository 142
Comparing package versions 145

Chapter 5: Users and Virtual Resources 149
Introduction 149
Using virtual resources 150
Managing users with virtual resources 154
Managing users' SSH access 157
Managing users' customization files 161
Using exported resources 164

Chapter 6: Managing Resources and Files 169
Introduction 170
Distributing cron jobs efficiently 170
Scheduling when resources are applied 174
Using host resources 177
Using exported host resources 178
Using multiple file sources 181
Distributing and merging directory trees 184
Cleaning up old files 188
Auditing resources 190
Temporarily disabling resources 191

Chapter 7: Managing Applications 195
Introduction 195
Using public modules 196
Managing Apache servers 198
Creating Apache virtual hosts 200
Creating nginx virtual hosts 204
Managing MySQL 207
Creating databases and users 209

Chapter 8: Internode Coordination 213
Introduction 213
Managing firewalls with iptables 214
Building high-availability services using Heartbeat 220
Managing NFS servers and file shares 227
Using HAProxy to load-balance multiple web servers 236
Managing Docker with Puppet 242

iv

Table of Contents

Chapter 9: External Tools and the Puppet Ecosystem 247
Introduction 248
Creating custom facts 248
Adding external facts 251
Setting facts as environment variables 254
Generating manifests with the Puppet resource command 255
Generating manifests with other tools 257
Using an external node classifier 261
Creating your own resource types 264
Creating your own providers 267
Creating custom functions 269
Testing your puppet manifests with rspec-puppet 273
Using librarian-puppet 278
Using r10k 280

Chapter 10: Monitoring, Reporting, and Troubleshooting 285
Introduction 285
Noop – the don't change anything option 286
Logging command output 289
Logging debug messages 291
Generating reports 293
Producing automatic HTML documentation 295
Drawing dependency graphs 298
Understanding Puppet errors 303
Inspecting configuration settings 306

Module 2: Docker Cookbook

Chapter 1: Introduction and Installation 311
Introduction 311
Verifying the requirements for Docker installation 319
Installing Docker 320
Pulling an image and running a container 321
Adding a nonroot user to administer Docker 324
Setting up the Docker host with Docker Machine 325
Finding help with the Docker command line 328

Chapter 2: Working with Docker Containers 329
Introduction 330
Listing/searching for an image 330
Pulling an image 332

v

Table of Contents

Listing images 334
Starting a container 335
Listing containers 338
Looking at the logs of containers 339
Stopping a container 340
Deleting a container 341
Setting the restart policy on a container 343
Getting privileged access inside a container 344
Exposing a port while starting a container 345
Accessing the host device inside the container 346
Injecting a new process to a running container 347
Returning low-level information about a container 348
Labeling and filtering containers 350

Chapter 3: Working with Docker Images 353
Introduction 354
Creating an account with Docker Hub 355
Creating an image from the container 356
Publishing an image to the registry 358
Looking at the history of an image 360
Deleting an image 361
Exporting an image 363
Importing an image 364
Building images using Dockerfiles 364
Building an Apache image – a Dockerfile example 370
Accessing Firefox from a container – a Dockerfile example 373
Building a WordPress image – a Dockerfile example 377
Setting up a private index/registry 382
Automated builds – with GitHub and Bitbucket 386
Creating the base image – using supermin 389
Creating the base image – using Debootstrap 391
Visualizing dependencies between layers 392

Chapter 4: Network and Data Management for Containers 393
Introduction 393
Accessing containers from outside 398
Managing data in containers 400
Linking two or more containers 404
Developing a LAMP application by linking containers 406
Networking of multihost containers with Flannel 408
Assigning IPv6 addresses to containers 413

vi

Table of Contents

Chapter 5: Docker Use Cases 417
Introduction 417
Testing with Docker 418
Doing CI/CD with Shippable and Red Hat OpenShift 421
Doing CI/CD with Drone 427
Setting up PaaS with OpenShift Origin 430
Building and deploying an app on OpenShift v3 from the source code 434
Configuring Docker as a hypervisor driver for OpenStack 438

Chapter 6: Docker APIs and Language Bindings 443
Introduction 443
Configuring the Docker daemon remote API 444
Performing image operations using remote APIs 446
Performing container operations using remote APIs 449
Exploring Docker remote API client libraries 451
Securing the Docker daemon remote API 452

Chapter 7: Docker Performance 457
Introduction 457
Benchmarking CPU performance 461
Benchmarking disk performance 463
Benchmarking network performance 465
Getting container resource usage using the stats feature 467
Setting up performance monitoring 468

Chapter 8: Docker Orchestration and Hosting Platforms 471
Introduction 471
Running applications with Docker Compose 473
Setting up cluster with Docker Swarm 475
Setting up CoreOS for Docker orchestration 477
Setting up a Project Atomic host 482
Doing atomic update/rollback with Project Atomic 487
Adding more storage for Docker in Project Atomic 488
Setting up Cockpit for Project Atomic 492
Setting up a Kubernetes cluster 495
Scaling up and down in a Kubernetes cluster 498
Setting up WordPress with a Kubernetes cluster 500

Chapter 9: Docker Security 507
Introduction 507
Setting Mandatory Access Control (MAC) with SELinux 510
Allowing writes to volume mounted from the host with SELinux ON 513

vii

Table of Contents

Removing capabilities to breakdown the power of a root user inside
a container 514
Sharing namespaces between the host and the container 516

Chapter 10: Getting Help and Tips and Tricks 519
Introduction 519
Starting Docker in debug mode 520
Building a Docker binary from the source 521
Building images without using cached layers 522
Building your own bridge for container communication 522
Changing the default execution driver of Docker 524
Selecting the logging driver for containers 524
Getting real-time Docker events for containers 525

Module 3: Kubernetes Cookbook 529

Chapter 1: Building Your Own Kubernetes 531
Introduction 531
Exploring architecture 531
Preparing your environment 538
Building datastore 543
Creating an overlay network 552
Configuring master 563
Configuring nodes 571
Run your first container in Kubernetes 579

Chapter 2: Walking through Kubernetes Concepts 587
Introduction 587
An overview of Kubernetes control 588
Working with pods 591
Working with a replication controller 597
Working with services 606
Working with volumes 617
Working with secrets 634
Working with names 639
Working with namespaces 644
Working with labels and selectors 651

Chapter 3: Playing with Containers 659
Introduction 659
Scaling your containers 659
Updating live containers 663

viii

Table of Contents

Forwarding container ports 670
Ensuring flexible usage of your containers 684
Working with configuration files 694

Chapter 4: Building a High Availability Cluster 703
Introduction 703
Clustering etcd 703
Building multiple masters 711

Chapter 5: Building a Continuous Delivery Pipeline 723
Introduction 723
Moving monolithic to microservices 723
Integrating with Jenkins 737
Working with the private Docker registry 746
Setting up the Continuous Delivery pipeline 752

Chapter 6: Building Kubernetes on AWS 765
Introduction 765
Building the Kubernetes infrastructure in AWS 766
Managing applications using AWS OpsWorks 775
Auto-deploying Kubernetes through Chef recipes 783
Using AWS CloudFormation for fast provisioning 799

Chapter 7: Advanced Cluster Administration 821
Introduction 821
Advanced settings in kubeconfig 822
Setting resource in nodes 828
Playing with WebUI 834
Working with a RESTful API 838
Authentication and authorization 843

Chapter 8: Logging and Monitoring 851
Introduction 851
Collecting application logs 851
Working with Kubernetes logs 862
Working with etcd log 866
Monitoring master and node 870

Bibliography 883
Index 885

Module 1

Puppet Cookbook

Jump-start your puppet deployment using engaging and practical recipes

1
Puppet Language

and Style

"Computer language design is just like a stroll in the park. Jurassic Park, that is."

— Larry Wall

In this chapter, we will cover the following recipes:

 f Adding a resource to a node
 f Using Facter to describe a node
 f Installing a package before starting a service
 f Installing, configuring, and starting a service
 f Using community Puppet style
 f Creating a manifest
 f Checking your manifests with Puppet-lint
 f Using modules
 f Using standard naming conventions
 f Using inline templates
 f Iterating over multiple items
 f Writing powerful conditional statements
 f Using regular expressions in if statements
 f Using selectors and case statements
 f Using the in operator
 f Using regular expression substitutions
 f Using the future parser

Puppet Language and Style

4

Introduction
In this chapter, we'll start with the basics of Puppet syntax and show you how some of the
syntactic sugar in Puppet is used. We'll then move on to how Puppet deals with dependencies
and how to make Puppet do the work for you.

We'll look at how to organize and structure your code into modules following community
conventions, so that other people will find it easy to read and maintain your code. I'll also
show you some powerful features of Puppet language, which will let you write concise, yet
expressive manifests.

Adding a resource to a node
This recipe will introduce the language and show you the basics of writing Puppet code. A
beginner may wish to reference Puppet 3: Beginner's Guide, John Arundel, Packt Publishing in
addition to this section. Puppet code files are called manifests; manifests declare resources.
A resource in Puppet may be a type, class, or node. A type is something like a file or package
or anything that has a type declared in the language. The current list of standard types is
available on puppetlabs website at https://docs.puppetlabs.com/references/
latest/type.html. I find myself referencing this site very often. You may define your own
types, either using a mechanism, similar to a subroutine, named defined types, or you can
extend the language using a custom type. Types are the heart of the language; they describe
the things that make up a node (node is the word Puppet uses for client computers/devices).
Puppet uses resources to describe the state of a node; for example, we will declare the
following package resource for a node using a site manifest (site.pp).

How to do it...
Create a site.pp file and place the following code in it:

 node default {
 package { 'httpd':
 ensure => 'installed'
 }
 }

Downloading the example code
You can download the example code files for all Packt books you have
purchased from your account at http://www.packtpub.com. If you
purchased this book elsewhere, you can visit http://www.packtpub.
com/support and register to have the files e-mailed directly to you.

https://docs.puppetlabs.com/references/latest/type.html
https://docs.puppetlabs.com/references/latest/type.html
http://www.packtpub.com
http://www.packtpub.com/support
http://www.packtpub.com/support

Chapter 1

5

How it works...
This manifest will ensure that any node, on which this manifest is applied, will install a
package called 'httpd'. The default keyword is a wildcard to Puppet; it applies anything
within the node default definition to any node. When Puppet applies the manifest to a node,
it uses a Resource Abstraction Layer (RAL) to translate the package type into the package
management system of the target node. What this means is that we can use the same
manifest to install the httpd package on any system for which Puppet has a Provider for the
package type. Providers are the pieces of code that do the real work of applying a manifest.
When the previous code is applied to a node running on a YUM-based distribution, the YUM
provider will be used to install the httpd RPM packages. When the same code is applied to a
node running on an APT-based distribution, the APT provider will be used to install the httpd
DEB package (which may not exist, most debian-based systems call this package apache2;
we'll deal with this sort of naming problem later).

Using Facter to describe a node
Facter is a separate utility upon which Puppet depends. It is the system used by Puppet to
gather information about the target system (node); facter calls the nuggets of information
facts. You may run facter from the command line to obtain real-time information from
the system.

How to do it...
1. Use facter to find the current uptime of the system, the uptime fact:

t@cookbook ~$ facter uptime
0:12 hours

2. Compare this with the output of the Linux uptime command:
t@cookbook ~$ uptime
 01:18:52 up 12 min, 1 user, load average: 0.00, 0.00, 0.00

How it works...
When facter is installed (as a dependency for puppet), several fact definitions are installed
by default. You can reference each of these facts by name from the command line.

There's more...
Running facter without any arguments causes facter to print all the facts known about the
system. We will see in later chapters that facter can be extended with your own custom facts.
All facts are available for you to use as variables; variables are discussed in the next section.

Puppet Language and Style

6

Variables
Variables in Puppet are marked with a dollar sign ($) character. When using variables within a
manifest, it is preferred to enclose the variable within braces "${myvariable}" instead of
"$myvariable". All of the facts from facter can be referenced as top scope variables (we
will discuss scope in the next section). For example, the fully qualified domain name (FQDN)
of the node may be referenced by "${::fqdn}". Variables can only contain alphabetic
characters, numerals, and the underscore character (_). As a matter of style, variables
should start with an alphabetic character. Never use dashes in variable names.

Scope
In the variable example explained in the There's more… section, the fully qualified domain
name was referred to as ${::fqdn} rather than ${fqdn}; the double colons are how
Puppet differentiates scope. The highest level scope, top scope or global, is referred to by two
colons (::) at the beginning of a variable identifier. To reduce namespace collisions, always
use fully scoped variable identifiers in your manifests. For a Unix user, think of top scope
variables as the / (root) level. You can refer to variables using the double colon syntax similar
to how you would refer to a directory by its full path. For the developer, you can think of top
scope variables as global variables; however, unlike global variables, you must always refer to
them with the double colon notation to guarantee that a local variable isn't obscuring the top
scope variable.

Installing a package before starting
a service

To show how ordering works, we'll create a manifest that installs httpd and then ensures the
httpd package service is running.

How to do it...
1. We start by creating a manifest that defines the service:

 service {'httpd':
 ensure => running,
 require => Package['httpd'],
 }

2. The service definition references a package resource named httpd; we now need to
define that resource:

 package {'httpd':
 ensure => 'installed',
 }

Chapter 1

7

How it works...
In this example, the package will be installed before the service is started. Using require
within the definition of the httpd service ensures that the package is installed first,
regardless of the order within the manifest file.

Capitalization
Capitalization is important in Puppet. In our previous example, we created a package named
httpd. If we wanted to refer to this package later, we would capitalize its type (package)
as follows:

Package['httpd']

To refer to a class, for example, the something::somewhere class, which has already been
included/defined in your manifest, you can reference it with the full path as follows:

Class['something::somewhere']

When you have a defined type, for example the following defined type:

example::thing {'one':}

The preceding resource may be referenced later as follows:

Example::Thing['one']

Knowing how to reference previously defined resources is necessary for the next section on
metaparameters and ordering.

Learning metaparameters and ordering
All the manifests that will be used to define a node are compiled into a catalog. A catalog is
the code that will be applied to configure a node. It is important to remember that manifests
are not applied to nodes sequentially. There is no inherent order to the application of
manifests. With this in mind, in the previous httpd example, what if we wanted to ensure
that the httpd process started after the httpd package was installed?

We couldn't rely on the httpd service coming after the httpd package in the manifests.
What we have to do is use metaparameters to tell Puppet the order in which we want
resources applied to the node. Metaparameters are parameters that can be applied to any
resource and are not specific to any one resource type. They are used for catalog compilation
and as hints to Puppet but not to define anything about the resource to which they are
attached. When dealing with ordering, there are four metaparameters used:

 f before

 f require

 f notify

 f subscribe

Puppet Language and Style

8

The before and require metaparameters specify a direct ordering; notify implies
before and subscribe implies require. The notify metaparameter is only applicable
to services; what notify does is tell a service to restart after the notifying resource has been
applied to the node (this is most often a package or file resource). In the case of files, once
the file is created on the node, a notify parameter will restart any services mentioned. The
subscribe metaparameter has the same effect but is defined on the service; the service
will subscribe to the file.

Trifecta
The relationship between package and service previously mentioned is an important and
powerful paradigm of Puppet. Adding one more resource-type file into the fold, creates what
puppeteers refer to as the trifecta. Almost all system administration tasks revolve around
these three resource types. As a system administrator, you install a package, configure the
package with files, and then start the service.

Diagram of Trifecta (Files require package for directory, service requires files and package)

Idempotency
A key concept of Puppet is that the state of the system when a catalog is applied to a node
cannot affect the outcome of Puppet run. In other words, at the end of Puppet run (if the
run was successful), the system will be in a known state and any further application of the
catalog will result in a system that is in the same state. This property of Puppet is known as
idempotency. Idempotency is the property that no matter how many times you do something,
it remains in the same state as the first time you did it. For instance, if you had a light switch
and you gave the instruction to turn it on, the light would turn on. If you gave the instruction
again, the light would remain on.

Installing, configuring, and starting a
service

There are many examples of this pattern online. In our simple example, we will create an
Apache configuration file under /etc/httpd/conf.d/cookbook.conf. The /etc/httpd/
conf.d directory will not exist until the httpd package is installed. After this file is created, we
would want httpd to restart to notice the change; we can achieve this with a notify parameter.

Chapter 1

9

How to do it...
We will need the same definitions as our last example; we need the package and service
installed. We now need two more things. We need the configuration file and index page
(index.html) created. For this, we follow these steps:

1. As in the previous example, we ensure the service is running and specify that the
service requires the httpd package:
 service {'httpd':
 ensure => running,
 require => Package['httpd'],
 }

2. We then define the package as follows:
 package {'httpd':
 ensure => installed,
 }

3. Now, we create the /etc/httpd/conf.d/cookbook.conf configuration file; the /
etc/httpd/conf.d directory will not exist until the httpd package is installed. The
require metaparameter tells Puppet that this file requires the httpd package to be
installed before it is created:
 file {'/etc/httpd/conf.d/cookbook.conf':
 content => "<VirtualHost *:80>\nServername
 cookbook\nDocumentRoot
 /var/www/cookbook\n</VirtualHost>\n",
 require => Package['httpd'],
 notify => Service['httpd'],
 }

4. We then go on to create an index.html file for our virtual host in /var/www/
cookbook. This directory won't exist yet, so we need to create this as well, using
the following code:

 file {'/var/www/cookbook':
 ensure => directory,
 }
 file {'/var/www/cookbook/index.html':
 content => "<html><h1>Hello World!</h1></html>\n",
 require => File['/var/www/cookbook'],
 }

Puppet Language and Style

10

How it works…
The require attribute to the file resources tell Puppet that we need the /var/www/
cookbook directory created before we can create the index.html file. The important
concept to remember is that we cannot assume anything about the target system (node).
We need to define everything on which the target depends. Anytime you create a file in a
manifest, you have to ensure that the directory containing that file exists. Anytime you
specify that a service should be running, you have to ensure that the package providing
that service is installed.

In this example, using metaparameters, we can be confident that no matter what state the
node is in before running Puppet, after Puppet runs, the following will be true:

 f httpd will be running

 f The VirtualHost configuration file will exist

 f httpd will restart and be aware of the VirtualHost file

 f The DocumentRoot directory will exist

 f An index.html file will exist in the DocumentRoot directory

Using community Puppet style
If other people need to read or maintain your manifests, or if you want to share code
with the community, it's a good idea to follow the existing style conventions as closely as
possible. These govern such aspects of your code as layout, spacing, quoting, alignment,
and variable references, and the official puppetlabs recommendations on style are available
at http://docs.puppetlabs.com/guides/style_guide.html.

How to do it…
In this section, I'll show you a few of the more important examples and how to make sure that
your code is style compliant.

Indentation
Indent your manifests using two spaces (not tabs), as follows:

service {'httpd':
 ensure => running,
}

http://docs.puppetlabs.com/guides/style_guide.html
http://docs.puppetlabs.com/guides/style_guide.html
http://docs.puppetlabs.com/guides/style_guide.html

Chapter 1

11

Quoting
Always quote your resource names, as follows:

package { 'exim4':

We cannot do this as follows though:

package { exim4:

Use single quotes for all strings, except when:

 f The string contains variable references such as "${::fqdn}"

 f The string contains character escape sequences such as "\n"

Consider the following code:

file { '/etc/motd':
 content => "Welcome to ${::fqdn}\n"
}

Puppet doesn't process variable references or escape sequences unless they're inside
double quotes.

Always quote parameter values that are not reserved words in Puppet. For example,
the following values are not reserved words:

name => 'Nucky Thompson',
mode => '0700',
owner => 'deploy',

However, these values are reserved words and therefore not quoted:

ensure => installed,
enable => true,
ensure => running,

False
There is only one thing in Puppet that is false, that is, the word false without any quotes.
The string "false" evaluates to true and the string "true" also evaluates to true.
Actually, everything besides the literal false evaluates to true (when treated as a Boolean):

if "false" {
 notify { 'True': }
}
if 'false' {
 notify { 'Also true': }
}

Puppet Language and Style

12

if false {
 notify { 'Not true': }
}

When this code is run through puppet apply, the first two notifies are triggered. The final
notify is not triggered; it is the only one that evaluates to false.

Variables
Always include curly braces ({}) around variable names when referring to them in strings,
for example, as follows:

source => "puppet:///modules/webserver/${brand}.conf",

Otherwise, Puppet's parser has to guess which characters should be a part of the variable
name and which belong to the surrounding string. Curly braces make it explicit.

Parameters
Always end lines that declare parameters with a comma, even if it is the last parameter:

service { 'memcached':
 ensure => running,
 enable => true,
}

This is allowed by Puppet, and makes it easier if you want to add parameters later, or reorder
the existing parameters.

When declaring a resource with a single parameter, make the declaration all on one line and
with no trailing comma, as shown in the following snippet:

package { 'puppet': ensure => installed }

Where there is more than one parameter, give each parameter its own line:

package { 'rake':
 ensure => installed,
 provider => gem,
 require => Package['rubygems'],
}

To make the code easier to read, line up the parameter arrows in line with the longest
parameter, as follows:

file { "/var/www/${app}/shared/config/rvmrc":
 owner => 'deploy',
 group => 'deploy',

Chapter 1

13

 content => template('rails/rvmrc.erb'),
 require => File["/var/www/${app}/shared/config"],
}

The arrows should be aligned per resource, but not across the whole file, otherwise it can
make it difficult for you to cut and paste code from one file to another.

Symlinks
When declaring file resources which are symlinks, use ensure => link and set the target
attribute, as follows:

file { '/etc/php5/cli/php.ini':
 ensure => link,
 target => '/etc/php.ini',
}

Creating a manifest
If you already have some Puppet code (known as a Puppet manifest), you can skip this section
and go on to the next. If not, we'll see how to create and apply a simple manifest.

How to do it...
To create and apply a simple manifest, follow these steps:

1. First, install Puppet locally on your machine or create a virtual machine and install
Puppet on that machine. For YUM-based systems, use https://yum.puppetlabs.
com/ and for APT-based systems, use https://apt.puppetlabs.com/. You may
also use gem to install Puppet. For our examples, we'll install Puppet using gem on a
Debian Wheezy system (hostname: cookbook). To use gem, we need the rubygems
package as follows:
t@cookbook:~$ sudo apt-get install rubygems

Reading package lists... Done

Building dependency tree

Reading state information... Done

The following NEW packages will be installed:

 rubygems

0 upgraded, 1 newly installed, 0 to remove and 0 not upgraded.

Need to get 0 B/597 kB of archives.

After this operation, 3,844 kB of additional disk space will be
used.

https://apt.puppetlabs.com/
https://apt.puppetlabs.com/
https://apt.puppetlabs.com/

Puppet Language and Style

14

Selecting previously unselected package rubygems.

(Reading database ... 30390 files and directories currently
installed.)

Unpacking rubygems (from .../rubygems_1.8.24-1_all.deb) ...

Processing triggers for man-db ...

Setting up rubygems (1.8.24-1) ...

2. Now, use gem to install Puppet:
t@cookbook $ sudo gem install puppet
Successfully installed hiera-1.3.4
Fetching: facter-2.3.0.gem (100%)
Successfully installed facter-2.3.0
Fetching: puppet-3.7.3.gem (100%)
Successfully installed puppet-3.7.3
Installing ri documentation for hiera-1.3.4
Installing ri documentation for facter-2.3.0
Installing ri documentation for puppet-3.7.3
Done installing documentation for hiera, facter, puppet after 239
seconds

3. Three gems are installed. Now, with Puppet installed, we can create a directory to
contain our Puppet code:
t@cookbook:~$ mkdir -p .puppet/manifests
t@cookbook:~$ cd .puppet/manifests
t@cookbook:~/.puppet/manifests$

4. Within your manifests directory, create the site.pp file with the following content:
 node default {
 file { '/tmp/hello':
 content => "Hello, world!\n",
 }
 }

5. Test your manifest with the puppet apply command. This will tell Puppet to read
the manifest, compare it to the state of the machine, and make any necessary
changes to that state:
t@cookbook:~/.puppet/manifests$ puppet apply site.pp
Notice: Compiled catalog for cookbook in environment production in
0.14 seconds
Notice: /Stage[main]/Main/Node[default]/File[/tmp/hello]/ensure:
defined content as '{md5}746308829575e17c3331bbcb00c0898b'

Notice: Finished catalog run in 0.04 seconds

Chapter 1

15

6. To see if Puppet did what we expected (create the /tmp/hello file with the Hello,
world! content), run the following command:

t@cookbook:~/puppet/manifests$ cat /tmp/hello

Hello, world!

 t@cookbook:~/puppet/manifests$

Note that creating the file in /tmp did not require special permissions. We
did not run Puppet via sudo. Puppet need not be run through sudo; there
are cases where running via an unprivileged user can be useful.

There's more…
When several people are working on a code base, it's easy for style inconsistencies to
creep in. Fortunately, there's a tool available which can automatically check your code for
compliance with the style guide: puppet-lint. We'll see how to use this in the next section.

Checking your manifests with Puppet-lint
The puppetlabs official style guide outlines a number of style conventions for Puppet code,
some of which we've touched on in the preceding section. For example, according to the
style guide, manifests:

 f Must use two-space soft tabs
 f Must not use literal tab characters
 f Must not contain trailing white space
 f Should not exceed an 80 character line width
 f Should align parameter arrows (=>) within blocks

Following the style guide will make sure that your Puppet code is easy to read and maintain,
and if you're planning to release your code to the public, style compliance is essential.

The puppet-lint tool will automatically check your code against the style guide. The next
section explains how to use it.

Puppet Language and Style

16

Getting ready
Here's what you need to do to install Puppet-lint:

1. We'll install Puppet-lint using the gem provider because the gem version is much
more up to date than the APT or RPM packages available. Create a puppet-lint.
pp manifest as shown in the following code snippet:
 package {'puppet-lint':
 ensure => 'installed',
 provider => 'gem',
 }

2. Run puppet apply on the puppet-lint.pp manifest, as shown in the
following command:

t@cookbook ~$ puppet apply puppet-lint.pp Notice: Compiled catalog
for node1.example.com in environment production in 0.42 seconds

Notice: /Stage[main]/Main/Package[puppet-lint]/ensure: created

Notice: Finished catalog run in 2.96 seconds

t@cookbook ~$ gem list puppet-lint *** LOCAL GEMS *** puppet-lint
(1.0.1)

How to do it...
Follow these steps to use Puppet-lint:

1. Choose a Puppet manifest file that you want to check with Puppet-lint, and run the
following command:
t@cookbook ~$ puppet-lint puppet-lint.pp

WARNING: indentation of => is not properly aligned on line 2

ERROR: trailing whitespace found on line 4

2. As you can see, Puppet-lint found a number of problems with the manifest file.
Correct the errors, save the file, and rerun Puppet-lint to check that all is well. If
successful, you'll see no output:

t@cookbook ~$ puppet-lint puppet-lint.pp

t@cookbook ~$

There's more...
You can find out more about Puppet-lint at https://github.com/rodjek/puppet-lint.

https://github.com/rodjek/puppet-lint

Chapter 1

17

Should you follow Puppet style guide and, by extension, keep your code lint-clean? It's up to
you, but here are a couple of things to think about:

 f It makes sense to use some style conventions, especially when you're working
collaboratively on code. Unless you and your colleagues can agree on standards for
whitespace, tabs, quoting, alignment, and so on, your code will be messy and difficult
to read or maintain.

 f If you're choosing a set of style conventions to follow, the logical choice would be that
issued by puppetlabs and adopted by the community for use in public modules.

Having said that, it's possible to tell Puppet-lint to ignore certain checks if you've chosen not
to adopt them in your codebase. For example, if you don't want Puppet-lint to warn you about
code lines exceeding 80 characters, you can run Puppet-lint with the following option:

t@cookbook ~$ puppet-lint --no-80chars-check

Run puppet-lint --help to see the complete list of check configuration commands.

See also
 f The Automatic syntax checking with Git hooks recipe in Chapter 2,

Puppet Infrastructure

 f The Testing your Puppet manifests with rspec-puppet recipe in Chapter 9, External
Tools and the Puppet Ecosystem

Using modules
One of the most important things you can do to make your Puppet manifests clearer and more
maintainable is to organize them into modules.

Modules are self-contained bundles of Puppet code that include all the files necessary to
implement a thing. Modules may contain flat files, templates, Puppet manifests, custom fact
declarations, augeas lenses, and custom Puppet types and providers.

Separating things into modules makes it easier to reuse and share code; it's also the most
logical way to organize your manifests. In this example, we'll create a module to manage
memcached, a memory caching system commonly used with web applications.

Puppet Language and Style

18

How to do it…
Following are the steps to create an example module:

1. We will use Puppet's module subcommand to create the directory structure for our
new module:
t@cookbook:~$ mkdir -p .puppet/modules

t@cookbook:~$ cd .puppet/modules

t@cookbook:~/.puppet/modules$ puppet module generate thomas-
memcached

We need to create a metadata.json file for this module. Please
answer the following questions; if the question is not applicable
to this module, feel free to leave it blank. Puppet uses Semantic
Versioning (semver.org) to version modules.What version is this
module? [0.1.0]

--> Who wrote this module? [thomas]

--> What license does this module code fall under? [Apache 2.0]

--> How would you describe this module in a single sentence?

--> A module to install memcached Where is this module's source
code repository?

--> Where can others go to learn more about this module?

--> Where can others go to file issues about this module?

-->

--

{

 "name": "thomas-memcached",

 "version": "0.1.0",

 "author": "thomas",

 "summary": "A module to install memcached",

 "license": "Apache 2.0",

 "source": "",

 "issues_url": null,

 "project_page": null,

 "dependencies": [

 {

 "version_range": ">= 1.0.0",

 "name": "puppetlabs-stdlib"

 }

]

}

Chapter 1

19

--

About to generate this metadata; continue? [n/Y]

--> y

Notice: Generating module at /home/thomas/.puppet/modules/thomas-
memcached...

Notice: Populating ERB templates...

Finished; module generated in thomas-memcached.

thomas-memcached/manifests

thomas-memcached/manifests/init.pp

thomas-memcached/spec

thomas-memcached/spec/classes

thomas-memcached/spec/classes/init_spec.rb

thomas-memcached/spec/spec_helper.rb

thomas-memcached/README.md

thomas-memcached/metadata.json

thomas-memcached/Rakefile

thomas-memcached/tests

thomas-memcached/tests/init.pp

This command creates the module directory and creates some empty files as starting
points. To use the module, we'll create a symlink to the module name (memcached).

t@cookbook:~/.puppet/modules$ ln –s thomas-memcached memcached

2. Now, edit memcached/manifests/init.pp and change the class definition
at the end of the file to the following. Note that puppet module generate created
many lines of comments; in a production module you would want to edit those
default comments:
class memcached {
 package { 'memcached':
 ensure => installed,
 }

 file { '/etc/memcached.conf':
 source => 'puppet:///modules/memcached/memcached.conf',
 owner => 'root',
 group => 'root',
 mode => '0644',
 require => Package['memcached'],
 }

Puppet Language and Style

20

 service { 'memcached':
 ensure => running,
 enable => true,
 require => [Package['memcached'],
 File['/etc/memcached.conf']],
 }
}

3. Create the modules/thomas-memcached/files directory and then create a file
named memcached.conf with the following contents:
-m 64
-p 11211
-u nobody
-l 127.0.0.1

4. Change your site.pp file to the following:
node default {
 include memcached
}

5. We would like this module to install memcached. We'll need to run Puppet with root
privileges, and we'll use sudo for that. We'll need Puppet to be able to find the module
in our home directory; we can specify this on the command line when we run Puppet
as shown in the following code snippet:
t@cookbook:~$ sudo puppet apply --modulepath=/home/thomas/.puppet/
modules /home/thomas/.puppet/manifests/site.pp
Notice: Compiled catalog for cookbook.example.com in environment
production in 0.33 seconds
Notice: /Stage[main]/Memcached/File[/etc/memcached.conf]/content:
content changed '{md5}a977521922a151c959ac953712840803' to '{md5}9
429eff3e3354c0be232a020bcf78f75'
Notice: Finished catalog run in 0.11 seconds

6. Check whether the new service is running:
t@cookbook:~$ sudo service memcached status
[ok] memcached is running.

How it works…
When we created the module using Puppet's module generate command, we used the name
thomas-memcached. The name before the hyphen is your username or your username on
Puppet forge (an online repository of modules). Since we want Puppet to be able to find the
module by the name memcached, we make a symbolic link between thomas-memcached
and memcached.

Chapter 1

21

Modules have a specific directory structure. Not all of these directories need to be present,
but if they are, this is how they should be organized:

modules/
 └MODULE_NAME/ never use a dash (-) in a module name
 └examples/ example usage of the module
 └files/ flat files used by the module
 └lib/
 └facter/ define new facts for facter
 └puppet/
 └parser/
 └functions/ define a new puppet function, like
sort()
 └provider/ define a provider for a new or existing type
 └util/ define helper functions (in ruby)
 └type/ define a new type in puppet
 └manifests/
 └init.pp class MODULE_NAME { }
 └spec/ rSpec tests
 └templates/ erb template files used by the module

All manifest files (those containing Puppet code) live in the manifests directory. In our
example, the memcached class is defined in the manifests/init.pp file, which will
be imported automatically.

Inside the memcached class, we refer to the memcached.conf file:

file { '/etc/memcached.conf':
 source => 'puppet:///modules/memcached/memcached.conf',
}

The preceding source parameter tells Puppet to look for the file in:

MODULEPATH/ (/home/thomas/.puppet/modules)
 └memcached/
 └files/
 └memcached.conf

There's more…
Learn to love modules because they'll make your Puppet life a lot easier. They're not
complicated, however, practice and experience will help you judge when things should be
grouped into modules, and how best to arrange your module structure. Modules can hold
more than manifests and files as we'll see in the next two sections.

Puppet Language and Style

22

Templates
If you need to use a template as a part of the module, place it in the module's templates
directory and refer to it as follows:

file { '/etc/memcached.conf':
 content => template('memcached/memcached.conf.erb'),
}

Puppet will look for the file in:

MODULEPATH/memcached/templates/memcached.conf.erb

Facts, functions, types, and providers
Modules can also contain custom facts, custom functions, custom types, and providers.

For more information about these, refer to Chapter 9, External Tools and the Puppet Ecosystem.

Third-party modules
You can download modules provided by other people and use them in your own manifests just
like the modules you create. For more on this, see Using Public Modules recipe in Chapter 7,
Managing Applications.

Module organization
For more details on how to organize your modules, see puppetlabs website:

http://docs.puppetlabs.com/puppet/3/reference/modules_fundamentals.
html

See also
 f The Creating custom facts recipe in Chapter 9, External Tools and the Puppet Ecosystem

 f The Using public modules recipe in Chapter 7, Managing Applications

 f The Creating your own resource types recipe in Chapter 9, External Tools and the
Puppet Ecosystem

 f The Creating your own providers recipe in Chapter 9, External Tools and the
Puppet Ecosystem

Using standard naming conventions
Choosing appropriate and informative names for your modules and classes will be a big help
when it comes to maintaining your code. This is even truer if other people need to read and
work on your manifests.

http://docs.puppetlabs.com/puppet/3/reference/modules_fundamentals.html
http://docs.puppetlabs.com/puppet/3/reference/modules_fundamentals.html

Chapter 1

23

How to do it…
Here are some tips on how to name things in your manifests:

1. Name modules after the software or service they manage, for example, apache
or haproxy.

2. Name classes within modules (subclasses) after the function or service they provide
to the module, for example, apache::vhosts or rails::dependencies.

3. If a class within a module disables the service provided by that module, name
it disabled. For example, a class that disables Apache should be named
apache::disabled.

4. Create a roles and profiles hierarchy of modules. Each node should have a single
role consisting of one or more profiles. Each profile module should configure a
single service.

5. The module that manages users should be named user.

6. Within the user module, declare your virtual users within the class user::virtual
(for more on virtual users and other resources, see the Using virtual resources recipe
in Chapter 5, Users and Virtual Resources).

7. Within the user module, subclasses for particular groups of users should be named
after the group, for example, user::sysadmins or user::contractors.

8. When using Puppet to deploy the config files for different services, name the file after
the service, but with a suffix indicating what kind of file it is, for example:

 � Apache init script: apache.init

 � Logrotate config snippet for Rails: rails.logrotate

 � Nginx vhost file for mywizzoapp: mywizzoapp.vhost.nginx

 � MySQL config for standalone server: standalone.mysql

9. If you need to deploy a different version of a file depending on the operating system
release, for example, you can use a naming convention like the following:
memcached.lucid.conf
memcached.precise.conf

10. You can have Puppet automatically select the appropriate version as follows:
source = > "puppet:///modules/memcached
 /memcached.${::lsbdistrelease}.conf",

11. If you need to manage, for example, different Ruby versions, name the class after the
version it is responsible for, for example, ruby192 or ruby186.

Puppet Language and Style

24

There's more…
Puppet community maintains a set of best practice guidelines for your Puppet infrastructure,
which includes some hints on naming conventions:

http://docs.puppetlabs.com/guides/best_practices.html

Some people prefer to include multiple classes on a node by using a comma-separated list,
rather than separate include statements, for example:

 node 'server014' inherits 'server' {
 include mail::server, repo::gem, repo::apt, zabbix
 }

This is a matter of style, but I prefer to use separate include statements, one on a line,
because it makes it easier to copy and move around class inclusions between nodes without
having to tidy up the commas and indentation every time.

I mentioned inheritance in a couple of the preceding examples; if you're not sure what this is,
don't worry, I'll explain this in detail in the next chapter.

Using inline templates
Templates are a powerful way of using Embedded Ruby (ERB) to help build config files
dynamically. You can also use ERB syntax directly without having to use a separate file by
calling the inline_template function. ERB allows you to use conditional logic, iterate over
arrays, and include variables.

How to do it…
Here's an example of how to use inline_template:

Pass your Ruby code to inline_template within Puppet manifest, as follows:

cron { 'chkrootkit':
 command => '/usr/sbin/chkrootkit >
 /var/log/chkrootkit.log 2>&1',
 hour => inline_template('<%= @hostname.sum % 24 %>'),
 minute => '00',
}

http://docs.puppetlabs.com/guides/best_practices.html

Chapter 1

25

How it works…
Anything inside the string passed to inline_template is executed as if it were an ERB
template. That is, anything inside the <%= and %> delimiters will be executed as Ruby code,
and the rest will be treated as a string.

In this example, we use inline_template to compute a different hour for this cron resource
(a scheduled job) for each machine, so that the same job does not run at the same time on
all machines. For more on this technique, see the Distributing cron jobs efficiently recipe in
Chapter 6, Managing Resources and Files.

There's more...
In ERB code, whether inside a template file or an inline_template string, you can access
your Puppet variables directly by name using an @ prefix, if they are in the current scope or the
top scope (facts):

<%= @fqdn %>

To reference variables in another scope, use scope.lookupvar, as follows:

<%= "The value of something from otherclass is " +
 scope.lookupvar('otherclass::something') %>

You should use inline templates sparingly. If you really need to use some complicated logic in
your manifest, consider using a custom function instead (see the Creating custom functions
recipe in Chapter 9, External Tools and the Puppet Ecosystem).

See also
 f The Using ERB templates recipe in Chapter 4, Working with Files and Packages

 f The Using array iteration in templates recipe in Chapter 4, Working with Files
and Packages

Iterating over multiple items
Arrays are a powerful feature in Puppet; wherever you want to perform the same operation on
a list of things, an array may be able to help. You can create an array just by putting its content
in square brackets:

$lunch = ['franks', 'beans', 'mustard']

Puppet Language and Style

26

How to do it…
Here's a common example of how arrays are used:

1. Add the following code to your manifest:
$packages = ['ruby1.8-dev',
 'ruby1.8',
 'ri1.8',
 'rdoc1.8',
 'irb1.8',
 'libreadline-ruby1.8',
 'libruby1.8',
 'libopenssl-ruby']

package { $packages: ensure => installed }

2. Run Puppet and note that each package should now be installed.

How it works…
Where Puppet encounters an array as the name of a resource, it creates a resource for each
element in the array. In the example, a new package resource is created for each of the
packages in the $packages array, with the same parameters (ensure => installed).
This is a very compact way to instantiate many similar resources.

There's more…
Although arrays will take you a long way with Puppet, it's also useful to know about an even
more flexible data structure: the hash.

Using hashes
A hash is like an array, but each of the elements can be stored and looked up by name
(referred to as the key), for example (hash.pp):

$interface = {
 'name' => 'eth0',
 'ip' => '192.168.0.1',
 'mac' => '52:54:00:4a:60:07'
}
notify { "(${interface['ip']}) at ${interface['mac']} on
 ${interface['name']}": }

Chapter 1

27

When we run Puppet on this, we see the following notify in the output:

t@cookbook:~/.puppet/manifests$ puppet apply hash.pp

Notice: (192.168.0.1) at 52:54:00:4a:60:07 on etho

Hash values can be anything that you can assign to variables, strings, function calls,
expressions, and even other hashes or arrays. Hashes are useful to store a bunch of
information about a particular thing because by accessing each element of the hash
using a key, we can quickly find the information for which we are looking.

Creating arrays with the split function
You can declare literal arrays using square brackets, as follows:

define lunchprint() {
 notify { "Lunch included ${name}":}": }
}

$lunch = ['egg', 'beans', 'chips']
lunchprint { $lunch: }

Now, when we run Puppet on the preceding code, we see the following notice messages in
the output:

t@mylaptop ~ $ puppet apply lunchprint.pp

...

Notice: Lunch included chips

Notice: Lunch included beans

Notice: Lunch included egg

However, Puppet can also create arrays for you from strings, using the split function,
as follows:

$menu = 'egg beans chips'
$items = split($menu, ' ')
lunchprint { $items: }

Running puppet apply against this new manifest, we see the same messages in the output:

t@mylaptop ~ $ puppet apply lunchprint2.pp

...

Notice: Lunch included chips

Notice: Lunch included beans

Notice: Lunch included egg.

Puppet Language and Style

28

Note that split takes two arguments: the first argument is the string to be split. The second
argument is the character to split on; in this example, a single space. As Puppet works its way
through the string, when it encounters a space, it will interpret it as the end of one item and the
beginning of the next. So, given the string 'egg beans chips', this will be split into three items.

The character to split on can be any character or string:

$menu = 'egg and beans and chips'
$items = split($menu, ' and ')

The character can also be a regular expression, for example, a set of alternatives separated by
a | (pipe) character:

$lunch = 'egg:beans,chips'
$items = split($lunch, ':|,')

Writing powerful conditional statements
Puppet's if statement allows you to change the manifest behavior based on the value of
a variable or an expression. With it, you can apply different resources or parameter values
depending on certain facts about the node, for example, the operating system, or the
memory size.

You can also set variables within the manifest, which can change the behavior of included
classes. For example, nodes in data center A might need to use different DNS servers than
nodes in data center B, or you might need to include one set of classes for an Ubuntu system,
and a different set for other systems.

How to do it…
Here's an example of a useful conditional statement. Add the following code to your manifest:

 if $::timezone == 'UTC' {
 notify { 'Universal Time Coordinated':}
 } else {
 notify { "$::timezone is not UTC": }
 }

How it works…
Puppet treats whatever follows an if keyword as an expression and evaluates it. If the
expression evaluates to true, Puppet will execute the code within the curly braces.

Optionally, you can add an else branch, which will be executed if the expression evaluates
to false.

Chapter 1

29

There's more…
Here are some more tips on using if statements.

Elsif branches
You can add further tests using the elsif keyword, as follows:

if $::timezone == 'UTC' {
 notify { 'Universal Time Coordinated': }
} elsif $::timezone == 'GMT' {
 notify { 'Greenwich Mean Time': }
} else {
 notify { "$::timezone is not UTC": }
}

Comparisons
You can check whether two values are equal using the == syntax, as in our example:

if $::timezone == 'UTC' {

}

Alternatively, you can check whether they are not equal using !=:

if $::timezone != 'UTC' {
 …
}

You can also compare numeric values using < and >:

if $::uptime_days > 365 {
 notify { 'Time to upgrade your kernel!': }
}

To test whether a value is greater (or less) than or equal to another value, use <= or >=:

if $::mtu_eth0 <= 1500 {
 notify {"Not Jumbo Frames": }
}

Puppet Language and Style

30

Combining expressions
You can put together the kind of simple expressions described previously into more complex
logical expressions, using and, or, and not:

if ($::uptime_days > 365) and ($::kernel == 'Linux') {
 …
}

if ($role == 'webserver') and (($datacenter == 'A') or ($datacenter
== 'B')) {
 …
}

See also
 f The Using the in operator recipe in this chapter

 f The Using selectors and case statements recipe in this chapter

Using regular expressions in if statements
Another kind of expression you can test in if statements and other conditionals is the regular
expression. A regular expression is a powerful way to compare strings using pattern matching.

How to do it…
This is one example of using a regular expression in a conditional statement. Add the following
to your manifest:

if $::architecture =~ /64/ {
 notify { '64Bit OS Installed': }
} else {
 notify { 'Upgrade to 64Bit': }
 fail('Not 64 Bit')
}

Chapter 1

31

How it works…
Puppet treats the text supplied between the forward slashes as a regular expression,
specifying the text to be matched. If the match succeeds, the if expression will be true and
so the code between the first set of curly braces will be executed. In this example, we used a
regular expression because different distributions have different ideas on what to call 64bit;
some use amd64, while others use x86_64. The only thing we can count on is the presence of
the number 64 within the fact. Some facts that have version numbers in them are treated as
strings to Puppet. For instance, $::facterversion. On my test system, this is 2.0.1, but
when I try to compare that with 2, Puppet fails to make the comparison:

Error: comparison of String with 2 failed at /home/thomas/.puppet/
manifests/version.pp:1 on node cookbook.example.com

If you wanted instead to do something if the text does not match, use !~ rather than =~:

if $::kernel !~ /Linux/ {
 notify { 'Not Linux, could be Windows, MacOS X, AIX, or ?': }
}

There's more…
Regular expressions are very powerful, but can be difficult to understand and debug. If you
find yourself using a regular expression so complex that you can't see at a glance what it does,
think about simplifying your design to make it easier. However, one particularly useful feature
of regular expressions is the ability to capture patterns.

Capturing patterns
You can not only match text using a regular expression, but also capture the matched text
and store it in a variable:

$input = 'Puppet is better than manual configuration'
if $input =~ /(.*) is better than (.*)/ {
 notify { "You said '${0}'. Looks like you're comparing ${1}
 to ${2}!": }
}

The preceding code produces this output:

You said 'Puppet is better than manual configuration'. Looks like you're comparing Puppet
to manual configuration!

The variable $0 stores the whole matched text (assuming the overall match succeeded). If you
put brackets around any part of the regular expression, it creates a group, and any matched
groups will also be stored in variables. The first matched group will be $1, the second $2, and
so on, as shown in the preceding example.

Puppet Language and Style

32

Regular expression syntax
Puppet's regular expression syntax is the same as Ruby's, so resources that explain Ruby's
regular expression syntax will also help you with Puppet. You can find a good introduction to
Ruby's regular expression syntax at this website:

http://www.tutorialspoint.com/ruby/ruby_regular_expressions.htm.

See also
 f Refer to the Using regular expression substitutions recipe in this chapter

Using selectors and case statements
Although you could write any conditional statement using if, Puppet provides a couple of extra
forms to help you express conditionals more easily: the selector and the case statement.

How to do it…
Here are some examples of selector and case statements:

1. Add the following code to your manifest:
$systemtype = $::operatingsystem ? {
 'Ubuntu' => 'debianlike',
 'Debian' => 'debianlike',
 'RedHat' => 'redhatlike',
 'Fedora' => 'redhatlike',
 'CentOS' => 'redhatlike',
 default => 'unknown',
}

notify { "You have a ${systemtype} system": }

2. Add the following code to your manifest:

class debianlike {
 notify { 'Special manifest for Debian-like systems': }
}

class redhatlike {
 notify { 'Special manifest for RedHat-like systems': }
}

case $::operatingsystem {
 'Ubuntu',

http://www.tutorialspoint.com/ruby/ruby_regular_expressions.htm

Chapter 1

33

 'Debian': {
 include debianlike
 }
 'RedHat',
 'Fedora',
 'CentOS',
 'Springdale': {
 include redhatlike
 }
 default: {
 notify { "I don't know what kind of system you have!":
 }
 }
}

How it works…
Our example demonstrates both the selector and the case statement, so let's see in detail
how each of them works.

Selector
In the first example, we used a selector (the ? operator) to choose a value for the
$systemtype variable depending on the value of $::operatingsystem. This is similar
to the ternary operator in C or Ruby, but instead of choosing between two possible values,
you can have as many values as you like.

Puppet will compare the value of $::operatingsystem to each of the possible values we
have supplied in Ubuntu, Debian, and so on. These values could be regular expressions (for
example, for a partial string match, or to use wildcards), but in our case, we have just used
literal strings.

As soon as it finds a match, the selector expression returns whatever value is associated
with the matching string. If the value of $::operatingsystem is Fedora, for example, the
selector expression will return the redhatlike string and this will be assigned to the variable
$systemtype.

Case statement
Unlike selectors, the case statement does not return a value. case statements come in
handy when you want to execute different code depending on the value of some expression.
In our second example, we used the case statement to include either the debianlike or
redhatlike class, depending on the value of $::operatingsystem.

Puppet Language and Style

34

Again, Puppet compares the value of $::operatingsystem to a list of potential matches.
These could be regular expressions or strings, or as in our example, comma-separated lists of
strings. When it finds a match, the associated code between curly braces is executed. So, if
the value of $::operatingsystem is Ubuntu, then the code including debianlike will
be executed.

There's more…
Once you've got a grip of the basic use of selectors and case statements, you may find the
following tips useful.

Regular expressions
As with if statements, you can use regular expressions with selectors and case statements,
and you can also capture the values of the matched groups and refer to them using $1, $2,
and so on:

case $::lsbdistdescription {
 /Ubuntu (.+)/: {
 notify { "You have Ubuntu version ${1}": }
 }
 /CentOS (.+)/: {
 notify { "You have CentOS version ${1}": }
 }
 default: {}
}

Defaults
Both selectors and case statements let you specify a default value, which is chosen if none of
the other options match (the style guide suggests you always have a default clause defined):

$lunch = 'Filet mignon.'
$lunchtype = $lunch ? {
 /fries/ => 'unhealthy',
 /salad/ => 'healthy',
 default => 'unknown',
}

notify { "Your lunch was ${lunchtype}": }

The output is as follows:

t@mylaptop ~ $ puppet apply lunchtype.pp

Notice: Your lunch was unknown

Chapter 1

35

Notice: /Stage[main]/Main/Notify[Your lunch was unknown]/message: defined
'message' as 'Your lunch was unknown'

When the default action shouldn't normally occur, use the fail() function to halt the
Puppet run.

Using the in operator
The in operator tests whether one string contains another string. Here's an example:

if 'spring' in 'springfield'

The preceding expression is true if the spring string is a substring of springfield, which it
is. The in operator can also test for membership of arrays as follows:

if $crewmember in ['Frank', 'Dave', 'HAL']

When in is used with a hash, it tests whether the string is a key of the hash:

$ifaces = { 'lo' => '127.0.0.1',
 'eth0' => '192.168.0.1' }
if 'eth0' in $ifaces {
 notify { "eth0 has address ${ifaces['eth0']}": }
}

How to do it…
The following steps will show you how to use the in operator:

1. Add the following code to your manifest:
if $::operatingsystem in ['Ubuntu', 'Debian'] {
 notify { 'Debian-type operating system detected': }
} elsif $::operatingsystem in ['RedHat', 'Fedora', 'SuSE',
 'CentOS'] {
 notify { 'RedHat-type operating system detected': }
} else {
 notify { 'Some other operating system detected': }
}

2. Run Puppet:

t@cookbook:~/.puppet/manifests$ puppet apply in.pp

Notice: Compiled catalog for cookbook.example.com in environment
production in 0.03 seconds

Notice: Debian-type operating system detected

Puppet Language and Style

36

Notice: /Stage[main]/Main/Notify[Debian-type operating system
detected]/message: defined 'message' as 'Debian-type operating
system detected'

Notice: Finished catalog run in 0.02 seconds

There's more…
The value of an in expression is Boolean (true or false) so you can assign it to a variable:

$debianlike = $::operatingsystem in ['Debian', 'Ubuntu']

if $debianlike {
 notify { 'You are in a maze of twisty little packages, all alike': }
}

Using regular expression substitutions
Puppet's regsubst function provides an easy way to manipulate text, search and replace
expressions within strings, or extract patterns from strings. We often need to do this with
data obtained from a fact, for example, or from external programs.

In this example, we'll see how to use regsubst to extract the first three octets of an IPv4
address (the network part, assuming it's a /24 class C address).

How to do it…
Follow these steps to build the example:

1. Add the following code to your manifest:
$class_c = regsubst($::ipaddress, '(.*)\..*', '\1.0')
notify { "The network part of ${::ipaddress} is ${class_c}": }

2. Run Puppet:

t@cookbook:~/.puppet/manifests$ puppet apply ipaddress.pp

Notice: Compiled catalog for cookbook.example.com in environment
production in 0.02 seconds

Notice: The network part of 192.168.122.148 is

 192.168.122.0

Notice: /Stage[main]/Main/Notify[The network part of
192.168.122.148 is

 192.168.122.0]/message: defined 'message' as 'The network part
of 192.168.122.148 is

Chapter 1

37

 192.168.122.0'

Notice: Finished catalog run in 0.03 seconds

How it works…
The regsubst function takes at least three parameters: source, pattern, and replacement.
In our example, we specified the source string as $::ipaddress, which, on this machine,
is as follows:

192.168.122.148

We specify the pattern function as follows:

(.*)\..*

We specify the replacement function as follows:

\1.0

The pattern captures all of the string up to the last period (\.) in the \1 variable. We then
match on .*, which matches everything to the end of the string, so when we replace the
string at the end with \1.0, we end up with only the network portion of the IP address,
which evaluates to the following:

192.168.122.0

We could have got the same result in other ways, of course, including the following:

$class_c = regsubst($::ipaddress, '\.\d+$', '.0')

Here, we only match the last octet and replace it with .0, which achieves the same result
without capturing.

There's more…
The pattern function can be any regular expression, using the same (Ruby) syntax as regular
expressions in if statements.

See also
 f The Importing dynamic information recipe in Chapter 3, Writing Better Manifests

 f The Getting information about the environment recipe in Chapter 3, Writing
Better Manifests

 f The Using regular expressions in if statements recipe in this chapter

Puppet Language and Style

38

Using the future parser
Puppet language is evolving at the moment; many features that are expected to be included
in the next major release (4) are available if you enable the future parser.

Getting ready
 f Ensure that the rgen gem is installed.

 f Set parser = future in the [main] section of your puppet.conf(/etc/
puppet/puppet.conf for open source Puppet as root,/etc/puppetlabs/
puppet/puppet.conf for Puppet Enterprise, and~/.puppet/puppet.conf
for a non-root user running puppet).

 f To temporarily test with the future parser, use --parser=future on the
command line.

How to do it...
Many of the experimental features deal with how code is evaluated, for example, in an earlier
example we compared the value of the $::facterversion fact with a number, but the
value is treated as a string so the code fails to compile. Using the future parser, the value is
converted and no error is reported as shown in the following command line output:

t@cookbook:~/.puppet/manifests$ puppet apply --parser=future version.pp

Notice: Compiled catalog for cookbook.example.com in environment
production in 0.36 seconds

Notice: Finished catalog run in 0.03 seconds

Appending to and concatenating arrays
You can concatenate arrays with the + operator or append them with the << operator. In the
following example, we use the ternary operator to assign a specific package name to the
$apache variable. We then append that value to an array using the << operator:

$apache = $::osfamily ? {
 'Debian' => 'apache2',
 'RedHat' => 'httpd'
}
$packages = ['memcached'] << $apache
package {$packages: ensure => installed}

If we have two arrays, we can use the + operator to concatenate the two arrays. In this
example, we define an array of system administrators ($sysadmins) and another array
of application owners ($appowners). We can then concatenate the array and use it as an
argument to our allowed users:

Chapter 1

39

$sysadmins = ['thomas','john','josko']
$appowners = ['mike', 'patty', 'erin']
$users = $sysadmins + $appowners
notice ($users)

When we apply this manifest, we see that the two arrays have been joined as shown in the
following command line output:

t@cookbook:~/.puppet/manifests$ puppet apply --parser=future concat.pp
Notice: [thomas, john, josko, mike, patty, erin]

Notice: Compiled catalog for cookbook.example.com in environment
production in 0.36 seconds

Notice: Finished catalog run in 0.03 seconds

Merging Hashes

If we have two hashes, we can merge them using the same + operator we used for arrays.
Consider our $interfaces hash from a previous example; we can add another interface to
the hash:

$iface = {
 'name' => 'eth0',
 'ip' => '192.168.0.1',
 'mac' => '52:54:00:4a:60:07'
} + {'route' => '192.168.0.254'}
notice ($iface)

When we apply this manifest, we see that the route attribute has been merged into the hash
(your results may differ, the order in which the hash prints is unpredictable), as follows:

t@cookbook:~/.puppet/manifests$ puppet apply --parser=future hash2.pp

Notice: {route => 192.168.0.254, name => eth0, ip => 192.168.0.1, mac =>
52:54:00:4a:60:07}

Notice: Compiled catalog for cookbook.example.com in environment
production in 0.36 seconds

Notice: Finished catalog run in 0.03 seconds

Lambda functions
Lambda functions are iterators applied to arrays or hashes. You iterate through the array or
hash and apply an iterator function such as each, map, filter, reduce, or slice to each
element of the array or key of the hash. Some of the lambda functions return a calculated
array or value; others such as each only return the input array or hash.

Lambda functions such as map and reduce use temporary variables that are thrown away
after the lambda has finished. Use of lambda functions is something best shown by example.
In the next few sections, we will show an example usage of each of the lambda functions.

Puppet Language and Style

40

Reduce
Reduce is used to reduce the array to a single value. This can be used to calculate the
maximum or minimum of the array, or in this case, the sum of the elements of the array:

$count = [1,2,3,4,5]
$sum = reduce($count) | $total, $i | { $total + $i }
notice("Sum is $sum")

This preceding code will compute the sum of the $count array and store it in the $sum
variable, as follows:

t@cookbook:~/.puppet/manifests$ puppet apply --parser future lambda.pp

Notice: Sum is 15

Notice: Compiled catalog for cookbook.example.com in environment
production in 0.36 seconds

Notice: Finished catalog run in 0.03 seconds

Filter
Filter is used to filter the array or hash based upon a test within the lambda function. For
instance to filter our $count array as follows:

$filter = filter ($count) | $i | { $i > 3 }
notice("Filtered array is $filter")

When we apply this manifest, we see that only elements 4 and 5 are in the result:

Notice: Filtered array is [4, 5]

Map
Map is used to apply a function to each element of the array. For instance, if we wanted
(for some unknown reason) to compute the square of all the elements of the array,
we would use map as follows:

$map = map ($count) | $i | { $i * $i }
notice("Square of array is $map")

The result of applying this manifest is a new array with every element of the original array
squared (multiplied by itself), as shown in the following command line output:

Notice: Square of array is [1, 4, 9, 16, 25]

Slice
Slice is useful when you have related values stored in the same array in a sequential order.
For instance, if we had the destination and port information for a firewall in an array, we could
split them up into pairs and perform operations on those pairs:

Chapter 1

41

$firewall_rules = ['192.168.0.1','80','192.168.0.10','443']
slice ($firewall_rules,2) |$ip, $port| { notice("Allow $ip on
 $port") }

When applied, this manifest will produce the following notices:

Notice: Allow 192.168.0.1 on 80

Notice: Allow 192.168.0.10 on 443

To make this a useful example, create a new firewall resource within the block of the slice
instead of notice:

slice ($firewall_rules,2) |$ip, $port| {
 firewall {"$port from $ip":
 dport => $port,
 source => "$ip",
 action => 'accept',
 }
}

Each
Each is used to iterate over the elements of the array but lacks the ability to capture the
results like the other functions. Each is the simplest case where you simply wish to do
something with each element of the array, as shown in the following code snippet:

each ($count) |$c| { notice($c) }

As expected, this executes the notice for each element of the $count array, as follows:

Notice: 1

Notice: 2

Notice: 3

Notice: 4

Notice: 5

Other features
There are other new features of Puppet language available when using the future parser.
Some increase readability or compactness of code. For more information, refer to the
documentation on puppetlabs website at http://docs.puppetlabs.com/puppet/
latest/reference/experiments_future.html.

http://docs.puppetlabs.com/puppet/latest/reference/experiments_future.html
http://docs.puppetlabs.com/puppet/latest/reference/experiments_future.html

2
Puppet Infrastructure

"Computers in the future may have as few as 1,000 vacuum tubes and weigh
only 1.5 tons."

— Popular Mechanics, 1949

In this chapter, we will cover:

 f Installing Puppet
 f Managing your manifests with Git
 f Creating a decentralized Puppet architecture
 f Writing a papply script
 f Running Puppet from cron
 f Bootstrapping Puppet with bash
 f Creating a centralized Puppet infrastructure
 f Creating certificates with multiple DNS names
 f Running Puppet from passenger
 f Setting up the environment
 f Configuring PuppetDB
 f Configuring Hiera
 f Setting-node specific data with Hiera
 f Storing secret data with hiera-gpg
 f Using MessagePack serialization
 f Automatic syntax checking with Git hooks
 f Pushing code around with Git
 f Managing environments with Git

Puppet Infrastructure

44

Introduction
In this chapter, we will cover how to deploy Puppet in a centralized and decentralized manner.
With each approach, we'll see a combination of best practices, my personal experience, and
community solutions.

We'll configure and use both PuppetDB and Hiera. PuppetDB is used with exported resources,
which we will cover in Chapter 5, Users and Virtual Resources. Hiera is used to separate
variable data from Puppet code.

Finally, I'll introduce Git and see how to use Git to organize our code and our infrastructure.

Because Linux distributions, such as Ubuntu, Red Hat, and CentOS, differ in the specific
details of package names, configuration file paths, and many other things, I have decided
that for reasons of space and clarity the best approach for this book is to pick one distribution
(Debian 7 named as Wheezy) and stick to that. However, Puppet runs on most popular
operating systems, so you should have very little trouble adapting the recipes to your own
favorite OS and distribution.

At the time of writing, Puppet 3.7.2 is the latest stable version available, this is the version
of Puppet used in the book. The syntax of Puppet commands changes often, so be aware
that while older versions of Puppet are still perfectly usable, they may not support all of the
features and syntax described in this book. As we saw in Chapter 1, Puppet Language and
Style, the future parser showcases features of the language scheduled to become default in
Version 4 of Puppet.

Installing Puppet
In Chapter 1, Puppet Language and Style, we installed Puppet as a rubygem using the gem
install. When deploying to several nodes, this may not be the best approach. Using the
package manager of your chosen distribution is the best way to keep your Puppet versions
similar on all of the nodes in your deployment. Puppet labs maintain repositories for
APT-based and YUM-based distributions.

Getting ready
If your Linux distribution uses APT for package management, go to http://apt.
puppetlabs.com/ and download the appropriate Puppet labs release package for your
distribution. For our wheezy cookbook node, we will use http://apt.puppetlabs.com/
puppetlabs-release-wheezy.deb.

If you are using a Linux distribution that uses YUM for package management, go to
http://yum.puppetlabs.com/ and download the appropriate Puppet labs release
package for your distribution.

http://apt.puppetlabs.com/
http://apt.puppetlabs.com/
http://apt.puppetlabs.com/puppetlabs-release-wheezy.deb
http://apt.puppetlabs.com/puppetlabs-release-wheezy.deb
http://yum.puppetlabs.com/

Chapter 2

45

How to do it...
1. Once you have found the appropriate Puppet labs release package for your

distribution, the steps to install Puppet are the same for either APT or YUM:

 � Install Puppet labs release package

 � Install Puppet package

2. Once you have installed Puppet, verify the version of Puppet as shown in the
following example:

t@ckbk:~ puppet --version 3.7.2

Now that we have a method to install Puppet on our nodes, we need to turn our attention to
keeping our Puppet manifests organized. In the next section, we will see how to use Git to
keep our code organized and consistent.

Managing your manifests with Git
It's a great idea to put your Puppet manifests in a version control system such as Git or
Subversion (Git is the de facto standard for Puppet). This gives you several advantages:

 f You can undo changes and revert to any previous version of your manifest

 f You can experiment with new features using a branch

 f If several people need to make changes to the manifests, they can make them
independently, in their own working copies, and then merge their changes later

 f You can use the git log feature to see what was changed, and when (and by whom)

Getting ready
In this section, we'll import your existing manifest files into Git. If you have created a Puppet
directory in a previous section use that, otherwise, use your existing manifest directory.

In this example, we'll create a new Git repository on a server accessible from all our nodes.
There are several steps we need to take to have our code held in a Git repository:

1. Install Git on a central server.

2. Create a user to run Git and own the repository.

3. Create a repository to hold the code.

4. Create SSH keys to allow key-based access to the repository.

5. Install Git on a node and download the latest version from our Git repository.

Puppet Infrastructure

46

How to do it...
Follow these steps:

1. First, install Git on your Git server (git.example.com in our example). The easiest
way to do this is using Puppet. Create the following manifest, call it git.pp:
 package {'git':
 ensure => installed
 }

2. Apply this manifest using puppet apply git.pp, this will install Git.

3. Next, create a Git user that the nodes will use to log in and retrieve the latest code.
Again, we'll do this with puppet. We'll also create a directory to hold our repository
(/home/git/repos) as shown in the following code snippet:
group { 'git':
 gid => 1111,
}
user {'git':
 uid => 1111,
 gid => 1111,
 comment => 'Git User',
 home => '/home/git',
 require => Group['git'],
}
file {'/home/git':
 ensure => 'directory',
 owner => 1111,
 group => 1111,
 require => User['git'],
}
file {'/home/git/repos':
 ensure => 'directory',
 owner => 1111,
 group => 1111,
 require => File['/home/git']
}

4. After applying that manifest, log in as the Git user and create an empty Git repository
using the following command:
sudo -iu git
git@git $ cd repos
git@git $ git init --bare puppet.git
Initialized empty Git repository in /home/git/repos/puppet.git/

Chapter 2

47

5. Set a password for the Git user, we'll need to log in remotely after the next step:
[root@git ~]# passwd git

Changing password for user git.

New password:

Retype new password:

passwd: all authentication tokens updated successfully.

6. Now back on your local machine, create an ssh key for our nodes to use to update
the repository:
t@mylaptop ~ $ cd .ssh
t@mylaptop ~/.ssh $ ssh-keygen -b 4096 -f git_rsa
Generating public/private rsa key pair.
Enter passphrase (empty for no passphrase):
Enter same passphrase again:
Your identification has been saved in git_rsa.
Your public key has been saved in git_rsa.pub.
The key fingerprint is:
87:35:0e:4e:d2:96:5f:e4:ce:64:4a:d5:76:c8:2b:e4 thomas@mylaptop

7. Now copy the newly created public key to the authorized_keys file. This will allow
us to connect to the Git server using this new key:
t@mylaptop ~/.ssh $ ssh-copy-id -i git_rsa git@git.example.com
git@git.example.com's password:
Number of key(s) added: 1

8. Now try logging into the machine, with: "ssh 'git@git.example.com'" and check to
make sure that only the key(s) you wanted were added.

9. Next, configure ssh to use your key when accessing the Git server and add the
following to your ~/.ssh/config file:
Host git git.example.com

 User git

 IdentityFile /home/thomas/.ssh/git_rsa

10. Clone the repo onto your machine into a directory named Puppet (substitute your
server name if you didn't use git.example.com):

t@mylaptop ~$ git clone git@git.example.com:repos/puppet.git
Cloning into 'puppet'...
warning: You appear to have cloned an empty repository.
Checking connectivity... done.

We've created a Git repository; before we commit any changes to the repository, it's a
good idea to set your name and e-mail in Git. Your name and e-mail will be appended
to each commit you make.

Puppet Infrastructure

48

11. When you are working in a large team, knowing who made a change is very
important; for this, use the following code snippet:
t@mylaptop puppet$ git config --global user.email
"thomas@narrabilis.com"

t@mylaptop puppet$ git config --global user.name "Thomas
Uphill"

12. You can verify your Git settings using the following snippet:
t@mylaptop ~$ git config --global --list

user.name=Thomas Uphill

user.email=thomas@narrabilis.com

core.editor=vim

merge.tool=vimdiff

color.ui=true

push.default=simple

13. Now that we have Git configured properly, change directory to your repository
directory and create a new site manifest as shown in the following snippet:
t@mylaptop ~$ cd puppet

t@mylaptop puppet$ mkdir manifests

t@mylaptop puppet$ vim manifests/site.pp

node default {

 include base

}

14. This site manifest will install our base class on every node; we will create the base
class using the Puppet module as we did in Chapter 1, Puppet Language and Style:
t@mylaptop puppet$ mkdir modules

t@mylaptop puppet$ cd modules

t@mylaptop modules$ puppet module generate thomas-base

Notice: Generating module at /home/tuphill/puppet/modules/thomas-
base

thomas-base

thomas-base/Modulefile

thomas-base/README

thomas-base/manifests

thomas-base/manifests/init.pp

thomas-base/spec

thomas-base/spec/spec_helper.rb

Chapter 2

49

thomas-base/tests

thomas-base/tests/init.pp

t@mylaptop modules$ ln -s thomas-base base

15. As a last step, we create a symbolic link between the thomas-base directory and
base. Now to make sure our module does something useful, add the following to the
body of the base class defined in thomas-base/manifests/init.pp:
class base {

 file {'/etc/motd':

 content => "${::fqdn}\nManaged by puppet ${::puppetversion}\n"

 }

}

16. Now add the new base module and site manifest to Git using git add and git
commit as follows:
t@mylaptop modules$ cd ..

t@mylaptop puppet$ git add modules manifests

t@mylaptop puppet$ git status

On branch master

Initial commit

Changes to be committed:

 (use "git rm --cached <file>..." to unstage)

new file: manifests/site.pp

new file: modules/base

new file: modules/thomas-base/Modulefile

new file: modules/thomas-base/README

new file: modules/thomas-base/manifests/init.pp

new file: modules/thomas-base/spec/spec_helper.rb

new file: modules/thomas-base/tests/init.pp

t@mylaptop puppet$ git commit -m "Initial commit with simple base
module"

[master (root-commit) 3e1f837] Initial commit with simple base
module

 7 files changed, 102 insertions(+)

 create mode 100644 manifests/site.pp

 create mode 120000 modules/base

 create mode 100644 modules/thomas-base/Modulefile

 create mode 100644 modules/thomas-base/README

Puppet Infrastructure

50

 create mode 100644 modules/thomas-base/manifests/init.pp

 create mode 100644 modules/thomas-base/spec/spec_helper.rb

 create mode 100644 modules/thomas-base/tests/init.pp

17. At this point your changes to the Git repository have been committed locally; you now
need to push those changes back to git.example.com so that other nodes can
retrieve the updated files:

t@mylaptop puppet$ git push origin master

Counting objects: 15, done.

Delta compression using up to 4 threads.

Compressing objects: 100% (9/9), done.

Writing objects: 100% (15/15), 2.15 KiB | 0 bytes/s, done.

Total 15 (delta 0), reused 0 (delta 0)

To git@git.example.com:repos/puppet.git

 * [new branch] master -> master

How it works...
Git tracks changes to files, and stores a complete history of all changes. The history of the
repo is made up of commits. A commit represents the state of the repo at a particular point
in time, which you create with the git commit command and annotate with a message.

You've now added your Puppet manifest files to the repo and created your first commit.
This updates the history of the repo, but only in your local working copy. To synchronize the
changes with the git.example.com copy, the git push command pushes all changes
made since the last sync.

There's more...
Now that you have a central Git repository for your Puppet manifests, you can check out
multiple copies of it in different places and work on them before committing your changes.
For example, if you're working in a team, each member can have their own local copy of the
repo and synchronize changes with the others via the central server. You may also choose
to use GitHub as your central Git repository server. GitHub offers free Git repository hosting
for public repositories, and you can pay for GitHub's premium service if you don't want your
Puppet code to be publicly available.

In the next section, we will use our Git repository for both centralized and decentralized
Puppet configurations.

Chapter 2

51

Creating a decentralized Puppet architecture
Puppet is a configuration management tool. You can use Puppet to configure and prevent
configuration drift in a large number of client computers. If all your client computers are easily
reached via a central location, you may choose to have a central Puppet server control all the
client computers. In the centralized model, the Puppet server is known as the Puppet master.
We will cover how to configure a central Puppet master in a few sections.

If your client computers are widely distributed or you cannot guarantee communication
between the client computers and a central location, then a decentralized architecture may
be a good fit for your deployment. In the next few sections, we will see how to configure a
decentralized Puppet architecture.

As we have seen, we can run the puppet apply command directly on a manifest file to have
Puppet apply it. The problem with this arrangement is that we need to have the manifests
transferred to the client computers.

We can use the Git repository we created in the previous section to transfer our manifests to
each new node we create.

Getting ready
Create a new test node, call this new node whatever you wish, I'll use testnode for mine.
Install Puppet on the machine as we have previously done.

How to do it...
Create a bootstrap.pp manifest that will perform the following configuration steps on our
new node:

1. Install Git:
package {'git':
 ensure => 'installed'
}

2. Install the ssh key to access git.example.com in the Puppet user's home directory
(/var/lib/puppet/.ssh/id_rsa):
File {
 owner => 'puppet',
 group => 'puppet',
}
file {'/var/lib/puppet/.ssh':
 ensure => 'directory',
}
file {'/var/lib/puppet/.ssh/id_rsa':

Puppet Infrastructure

52

 content => "
-----BEGIN RSA PRIVATE KEY-----
…
NIjTXmZUlOKefh4MBilqUU3KQG8GBHjzYl2TkFVGLNYGNA0U8VG8SUJq
-----END RSA PRIVATE KEY-----
",
 mode => 0600,
 require => File['/var/lib/puppet/.ssh']
}

3. Download the ssh host key from git.example.com (/var/lib/puppet/.ssh/
known_hosts):
exec {'download git.example.com host key':
 command => 'sudo -u puppet ssh-keyscan git.example.com >> /var/
lib/puppet/.ssh/known_hosts',
 path => '/usr/bin:/usr/sbin:/bin:/sbin',
 unless => 'grep git.example.com /var/lib/puppet/.ssh/known_
hosts',
 require => File['/var/lib/puppet/.ssh'],
}

4. Create a directory to contain the Git repository (/etc/puppet/cookbook):
file {'/etc/puppet/cookbook':
 ensure => 'directory',
}

5. Clone the Puppet repository onto the new machine:
exec {'create cookbook':
 command => 'sudo -u puppet git clone git@git.example.com:repos/
puppet.git /etc/puppet/cookbook',
 path => '/usr/bin:/usr/sbin:/bin:/sbin',
 require => [Package['git'],File['/var/lib/puppet/.ssh/id_
rsa'],Exec['download git.example.com host key']],
 unless => 'test -f /etc/puppet/cookbook/.git/config',
}

6. Now when we run Puppet apply on the new machine, the ssh key will be installed
for the Puppet user. The Puppet user will then clone the Git repository into /etc/
puppet/cookbook:
root@testnode /tmp# puppet apply bootstrap.pp
Notice: Compiled catalog for testnode.example.com in environment
production in 0.40 seconds
Notice: /Stage[main]/Main/File[/etc/puppet/cookbook]/ensure:
created
Notice: /Stage[main]/Main/File[/var/lib/puppet/.ssh]/ensure:
created

Chapter 2

53

Notice: /Stage[main]/Main/Exec[download git.example.com host key]/
returns: executed successfully

Notice: /Stage[main]/Main/File[/var/lib/puppet/.ssh/id_rsa]/
ensure: defined content as '{md5}da61ce6ccc79bc6937bd98c798bc9fd3'

Notice: /Stage[main]/Main/Exec[create cookbook]/returns: executed
successfully

Notice: Finished catalog run in 0.82 seconds

You may have to disable the tty requirement of sudo. Comment out the
line Defaults requiretty at /etc/sudoers if you have this line.
Alternatively, you can set user => Puppet within the 'create
cookbook' exec type. Beware that using the user attribute will cause
any error messages from the command to be lost.

7. Now that your Puppet code is available on the new node, you can apply it using
puppet apply, specifying that /etc/puppet/cookbook/modules will contain
the modules:

root@testnode ~# puppet apply --modulepath=/etc/puppet/cookbook/
modules /etc/puppet/cookbook/manifests/site.pp
Notice: Compiled catalog for testnode.example.com in environment
production in 0.12 seconds
Notice: /Stage[main]/Base/File[/etc/motd]/content: content changed
'{md5}86d28ff83a8d49d349ba56b5c64b79ee' to '{md5}4c4c3ab7591d94031
8279d78b9c51d4f'
Notice: Finished catalog run in 0.11 seconds
root@testnode /tmp# cat /etc/motd
testnode.example.com
Managed by puppet 3.6.2

How it works...
First, our bootstrap.pp manifest ensures that Git is installed. The manifest then goes on
to ensure that the ssh key for the Git user on git.example.com is installed into the Puppet
user's home directory (/var/lib/puppet by default). The manifest then ensures that the
host key for git.example.com is trusted by the Puppet user. With ssh configured, the
bootstrap ensures that /etc/puppet/cookbook exists and is a directory.

We then use an exec to have Git clone the repository into /etc/puppet/cookbook. With
all the code in place, we then call puppet apply a final time to deploy the code from the
repository. In a production setting, you would distribute the bootstrap.pp manifest to all
your nodes, possibly via an internal web server, using a method similar to curl http://
puppet/bootstrap.pp >bootstrap.pp && puppet apply bootstrap.pp

http://puppet/bootstrap.pp >bootstrap.pp && puppet apply bootstrap.pp
http://puppet/bootstrap.pp >bootstrap.pp && puppet apply bootstrap.pp

Puppet Infrastructure

54

Writing a papply script
We'd like to make it as quick and easy as possible to apply Puppet on a machine; for this we'll
write a little script that wraps the puppet apply command with the parameters it needs.
We'll deploy the script where it's needed with Puppet itself.

How to do it...
Follow these steps:

1. In your Puppet repo, create the directories needed for a Puppet module:
t@mylaptop ~$ cd puppet/modules

t@mylaptop modules$ mkdir -p puppet/{manifests,files}

2. Create the modules/puppet/files/papply.sh file with the following contents:
#!/bin/sh
sudo puppet apply /etc/puppet/cookbook/manifests/site.pp \
 --modulepath=/etc/puppet/cookbook/modules $*

3. Create the modules/puppet/manifests/init.pp file with the following contents:
class puppet {
 file { '/usr/local/bin/papply':
 source => 'puppet:///modules/puppet/papply.sh',
 mode => '0755',
 }
}

4. Modify your manifests/site.pp file as follows:
node default {
 include base
 include puppet
}

5. Add the Puppet module to the Git repository and commit the change as follows:
t@mylaptop puppet$ git add manifests/site.pp modules/puppet

t@mylaptop puppet$ git status

On branch master

Your branch is up-to-date with 'origin/master'.

Changes to be committed:

 (use "git reset HEAD <file>..." to unstage)

modified: manifests/site.pp

Chapter 2

55

new file: modules/puppet/files/papply.sh

new file: modules/puppet/manifests/init.pp

t@mylaptop puppet$ git commit -m "adding puppet module to include
papply"

[master 7c2e3d5] adding puppet module to include papply

 3 files changed, 11 insertions(+)

 create mode 100644 modules/puppet/files/papply.sh

 create mode 100644 modules/puppet/manifests/init.pp

6. Now remember to push the changes to the Git repository on git.example.com:
t@mylaptop puppet$ git push origin master
Counting objects: 14, done.
Delta compression using up to 4 threads.
Compressing objects: 100% (7/7), done.
Writing objects: 100% (10/10), 894 bytes | 0 bytes/s, done.
Total 10 (delta 0), reused 0 (delta 0)
To git@git.example.com:repos/puppet.git
 23e887c..7c2e3d5 master -> master

7. Pull the latest version of the Git repository to your new node (testnode for me) as
shown in the following command line:
root@testnode ~# sudo -iu puppet

puppet@testnode ~$ cd /etc/puppet/cookbook/
puppet@testnode /etc/puppet/cookbook$ git pull origin master
remote: Counting objects: 14, done.
remote: Compressing objects: 100% (7/7), done.
remote: Total 10 (delta 0), reused 0 (delta 0)
Unpacking objects: 100% (10/10), done.
From git.example.com:repos/puppet
 * branch master -> FETCH_HEAD
Updating 23e887c..7c2e3d5
Fast-forward
 manifests/site.pp | 1 +
 modules/puppet/files/papply.sh | 4 ++++
 modules/puppet/manifests/init.pp | 6 ++++++
 3 files changed, 11 insertions(+), 0 deletions(-)
 create mode 100644 modules/puppet/files/papply.sh
 create mode 100644 modules/puppet/manifests/init.pp

8. Apply the manifest manually once to install the papply script:
root@testnode ~# puppet apply /etc/puppet/cookbook/manifests/site.
pp --modulepath /etc/puppet/cookbook/modules

Notice: Compiled catalog for testnode.example.com in environment
production in 0.13 seconds

Puppet Infrastructure

56

Notice: /Stage[main]/Puppet/File[/usr/local/bin/papply]/ensure:
defined content as '{md5}d5c2cdd359306dd6e6441e6fb96e5ef7'

Notice: Finished catalog run in 0.13 seconds

9. Finally, test the script:

root@testnode ~# papply

Notice: Compiled catalog for testnode.example.com in environment
production in 0.13 seconds

Notice: Finished catalog run in 0.09 seconds

Now, whenever you need to run Puppet, you can simply run papply. In future, when we apply
Puppet changes, I'll ask you to run papply instead of the full puppet apply command.

How it works...
As you've seen, to run Puppet on a machine and apply a specified manifest file, we use the
puppet apply command:

puppet apply manifests/site.pp

When you're using modules (such as the Puppet module we just created), you also need to tell
Puppet where to search for modules, using the modulepath argument:

puppet apply manifests/nodes.pp \
 --modulepath=/home/ubuntu/puppet/modules

In order to run Puppet with the root privileges it needs, we have to put sudo before everything:

sudo puppet apply manifests/nodes.pp \
 --modulepath=/home/ubuntu/puppet/modules

Finally, any additional arguments passed to papply will be passed through to Puppet itself,
by adding the $* parameter:

sudo puppet apply manifests/nodes.pp \
 --modulepath=/home/ubuntu/puppet/modules $*

That's a lot of typing, so putting this in a script makes sense. We've added a Puppet file
resource that will deploy the script to /usr/local/bin and make it executable:

file { '/usr/local/bin/papply':
 source => 'puppet:///modules/puppet/papply.sh',
 mode => '0755',
}

Finally, we include the Puppet module in our default node declaration:

node default {

Chapter 2

57

 include base
 include puppet
}

You can do the same for any other nodes managed by Puppet.

Running Puppet from cron
You can do a lot with the setup you already have: work on your Puppet manifests as a team,
communicate changes via a central Git repository, and manually apply them on a machine
using the papply script.

However, you still have to log into each machine to update the Git repo and rerun Puppet. It
would be helpful to have each machine update itself and apply any changes automatically.
Then all you need to do is to push a change to the repo, and it will go out to all your machines
within a certain time.

The simplest way to do this is with a cron job that pulls updates from the repo at regular
intervals and then runs Puppet if anything has changed.

Getting ready
You'll need the Git repo we set up in the Managing your manifests with Git and Creating a
decentralized Puppet architecture recipes, and the papply script from the Writing a papply
script recipe. You'll need to apply the bootstrap.pp manifest we created to install ssh keys
to download the latest repository.

How to do it...
Follow these steps:

1. Copy the bootstrap.pp script to any node you wish to enroll. The bootstrap.
pp manifest includes the private key used to access the Git repository, it should be
protected in a production environment.

2. Create the modules/puppet/files/pull-updates.sh file with the
following contents:
#!/bin/sh
cd /etc/puppet/cookbook
sudo –u puppet git pull && /usr/local/bin/papply

3. Modify the modules/puppet/manifests/init.pp file and add the following
snippet after the papply file definition:
file { '/usr/local/bin/pull-updates':
 source => 'puppet:///modules/puppet/pull-updates.sh',

Puppet Infrastructure

58

 mode => '0755',
}
cron { 'run-puppet':
 ensure => 'present',
 user => 'puppet',
 command => '/usr/local/bin/pull-updates',
 minute => '*/10',
 hour => '*',
}

4. Commit the changes as before and push to the Git server as shown in the following
command line:
t@mylaptop puppet$ git add modules/puppet
t@mylaptop puppet$ git commit -m "adding pull-updates"
[master 7e9bac3] adding pull-updates
 2 files changed, 14 insertions(+)
 create mode 100644 modules/puppet/files/pull-updates.sh
t@mylaptop puppet$ git push
Counting objects: 14, done.
Delta compression using up to 4 threads.
Compressing objects: 100% (7/7), done.
Writing objects: 100% (8/8), 839 bytes | 0 bytes/s, done.
Total 8 (delta 0), reused 0 (delta 0)
To git@git.example.com:repos/puppet.git
 7c2e3d5..7e9bac3 master -> master

5. Issue a Git pull on the test node:
root@testnode ~# cd /etc/puppet/cookbook/

root@testnode /etc/puppet/cookbook# sudo –u puppet git pull

remote: Counting objects: 14, done.

remote: Compressing objects: 100% (7/7), done.

remote: Total 8 (delta 0), reused 0 (delta 0)

Unpacking objects: 100% (8/8), done.

From git.example.com:repos/puppet

 23e887c..7e9bac3 master -> origin/master

Updating 7c2e3d5..7e9bac3

Fast-forward

 modules/puppet/files/pull-updates.sh | 3 +++

 modules/puppet/manifests/init.pp | 11 +++++++++++

 2 files changed, 14 insertions(+), 0 deletions(-)

 create mode 100644 modules/puppet/files/pull-updates.sh

Chapter 2

59

6. Run Puppet on the test node:
root@testnode /etc/puppet/cookbook# papply

Notice: Compiled catalog for testnode.example.com in environment
production in 0.17 seconds

Notice: /Stage[main]/Puppet/Cron[run-puppet]/ensure: created

Notice: /Stage[main]/Puppet/File[/usr/local/bin/pull-updates]/
ensure: defined content as '{md5}04c023feb5d566a417b519ea51586398'

Notice: Finished catalog run in 0.16 seconds

7. Check that the pull-updates script works properly:
root@testnode /etc/puppet/cookbook# pull-updates

Already up-to-date.

Notice: Compiled catalog for testnode.example.com in environment
production in 0.15 seconds

Notice: Finished catalog run in 0.14 seconds

8. Verify the cron job was created successfully:

root@testnode /etc/puppet/cookbook# crontab -l -u puppet

HEADER: This file was autogenerated at Tue Sep 09 02:31:00 -0400
2014 by puppet.

HEADER: While it can still be managed manually, it is definitely
not recommended.

HEADER: Note particularly that the comments starting with
'Puppet Name' should

HEADER: not be deleted, as doing so could cause duplicate cron
jobs.

Puppet Name: run-puppet

*/10 * * * * /usr/local/bin/pull-updates

How it works...
When we created the bootstrap.pp manifest, we made sure that the Puppet user can
checkout the Git repository using an ssh key. This enables the Puppet user to run the Git pull
in the cookbook directory unattended. We've also added the pull-updates script, which
does this and runs Puppet if any changes are pulled:

#!/bin/sh
cd /etc/puppet/cookbook
sudo –u puppet git pull && papply

Puppet Infrastructure

60

We deploy this script to the node with Puppet:

file { '/usr/local/bin/pull-updates':
 source => 'puppet:///modules/puppet/pull-updates.sh',
 mode => '0755',
}

Finally, we've created a cron job that runs pull-updates at regular intervals (every 10
minutes, but feel free to change this if you need to):

cron { 'run-puppet':
 ensure => 'present',
 command => '/usr/local/bin/pull-updates',
 minute => '*/10',
 hour => '*',
}

There's more...
Congratulations, you now have a fully-automated Puppet infrastructure! Once you have
applied the bootstrap.pp manifest, run Puppet on the repository; the machine will be
set up to pull any new changes and apply them automatically.

So, for example, if you wanted to add a new user account to all your machines, all you have to
do is add the account in your working copy of the manifest, and commit and push the changes
to the central Git repository. Within 10 minutes, it will automatically be applied to every
machine that's running Puppet.

Bootstrapping Puppet with bash
Previous versions of this book used Rakefiles to bootstrap Puppet. The problem with using
Rake to configure a node is that you are running the commands from your laptop; you assume
you already have ssh access to the machine. Most bootstrap processes work by issuing an
easy to remember command from a node once it has been provisioned. In this section, we'll
show how to use bash to bootstrap Puppet with a web server and a bootstrap script.

Getting ready
Install httpd on a centrally accessible server and create a password protected area to store
the bootstrap script. In my example, I'll use the Git server I set up previously, git.example.
com. Start by creating a directory in the root of your web server:

cd /var/www/html

mkdir bootstrap

Chapter 2

61

Now perform the following steps:

1. Add the following location definition to your apache configuration:
<Location /bootstrap>
AuthType basic
AuthName "Bootstrap"
AuthBasicProvider file
AuthUserFile /var/www/puppet.passwd
Require valid-user
</Location>

2. Reload your web server to ensure the location configuration is operating. Verify with
curl that you cannot download from the bootstrap directory without authentication:
[root@bootstrap-test tmp]# curl http://git.example.com/bootstrap/

<!DOCTYPE HTML PUBLIC "-//IETF//DTD HTML 2.0//EN">

<html><head>

<title>401 Authorization Required</title>

</head><body>

<h1>Authorization Required</h1>

3. Create the password file you referenced in the apache configuration (/var/www/
puppet.passwd):
root@git# cd /var/www
root@git# htpasswd –cb puppet.passwd bootstrap cookbook
Adding password for user bootstrap

4. Verify that the username and password permit access to the bootstrap directory
as follows:

[root@node1 tmp]# curl --user bootstrap:cookbook http://git.
example.com/bootstrap/

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 3.2 Final//EN">

<html>

 <head>

 <title>Index of /bootstrap</title>

How to do it...
Now that you have a safe location to store the bootstrap script, create a bootstrap script for
each OS you support in the bootstrap directory. In this example, I'll show you how to do this
for a Red Hat Enterprise Linux 6-based distribution.

Puppet Infrastructure

62

Although the bootstrap location requires a password, there is no encryption
since we haven't configured SSL on our server. Without encryption, the
location is not very safe.

Create a script named el6.sh in the bootstrap directory with the following contents:

#!/bin/bash

bootstrap for EL6 distributions
SERVER=git.example.com
LOCATION=/bootstrap
BOOTSTRAP=bootstrap.pp
USER=bootstrap
PASS=cookbook

install puppet
curl http://yum.puppetlabs.com/RPM-GPG-KEY-puppetlabs >/etc/pki/rpm-
gpg/RPM-GPG-KEY-puppetlabs
rpm --import /etc/pki/rpm-gpg/RPM-GPG-KEY-puppetlabs
yum -y install http://yum.puppetlabs.com/puppetlabs-release-el-6.
noarch.rpm
yum -y install puppet
download bootstrap
curl --user $USER:$PASS http://$SERVER/$LOCATION/$BOOTSTRAP >/
tmp/$BOOTSTRAP
apply bootstrap
cd /tmp
puppet apply /tmp/$BOOTSTRAP
apply puppet
puppet apply --modulepath /etc/puppet/cookbook/modules /etc/puppet/
cookbook/manifests/site.pp

How it works...
The apache configuration only permits access to the bootstrap directory with a username and
password combination. We supply these with the --user argument to curl, thereby getting
access to the file. We use a pipe (|) to redirect the output of curl into bash. This causes
bash to execute the script. We write our bash script like we would any other bash script.
The bash script downloads our bootstrap.pp manifest and applies it. Finally, we apply the
Puppet manifest from the Git repository and the machine is configured as a member of our
decentralized infrastructure.

Chapter 2

63

There's more...
To support another operating system, we only need to create a new bash script. All Linux
distributions will support bash scripting, Mac OS X does as well. Since we placed much of our
logic into the bootstrap.pp manifest, the bootstrap script is quite minimal and easy to port
to new operating systems.

Creating a centralized Puppet infrastructure
A configuration management tool such as Puppet is best used when you have many machines
to manage. If all the machines can reach a central location, using a centralized Puppet
infrastructure might be a good solution. Unfortunately, Puppet doesn't scale well with a large
number of nodes. If your deployment has less than 800 servers, a single Puppet master
should be able to handle the load, assuming your catalogs are not complex (take less than
10 seconds to compile each catalog). If you have a larger number of nodes, I suggest a load
balancing configuration described in Mastering Puppet, Thomas Uphill, Packt Publishing.

A Puppet master is a Puppet server that acts as an X509 certificate authority for Puppet and
distributes catalogs (compiled manifests) to client nodes. Puppet ships with a built-in web
server called WEBrick, which can handle a very small number of nodes. In this section, we
will see how to use that built-in server to control a very small (less than 10) number of nodes.

Getting ready
The Puppet master process is started by running puppet master; most Linux distributions
have start and stop scripts for the Puppet master in a separate package. To get started, we'll
create a new debian server named puppet.example.com.

How to do it...
1. Install Puppet on the new server and then use Puppet to install the Puppet

master package:
puppet resource package puppetmaster ensure='installed'
Notice: /Package[puppetmaster]/ensure: created
package { 'puppetmaster':
 ensure => '3.7.0-1puppetlabs1',
}

2. Now start the Puppet master service and ensure it will start at boot:
puppet resource service puppetmaster ensure=true enable=true
service { 'puppetmaster':
 ensure => 'running',
 enable => 'true',
}

Puppet Infrastructure

64

How it works...
The Puppet master package includes the start and stop scripts for the Puppet master service.
We use Puppet to install the package and start the service. Once the service is started, we
can point another node at the Puppet master (you might need to disable the host-based
firewall on your machine).

1. From another node, run puppet agent to start a puppet agent, which will
contact the server and request a new certificate:
t@ckbk:~$ sudo puppet agent -t

Info: Creating a new SSL key for cookbook.example.com

Info: Caching certificate for ca

Info: Creating a new SSL certificate request for cookbook.example.
com

Info: Certificate Request fingerprint (SHA256): 06:C6:2B:C4:97:5D:
16:F2:73:82:C4:A9:A7:B1:D0:95:AC:69:7B:27:13:A9:1A:4C:98:20:21:C2:
50:48:66:A2

Info: Caching certificate for ca

Exiting; no certificate found and waitforcert is disabled

2. Now on the Puppet server, sign the new key:
root@puppet:~# puppet cert list

pu "cookbook.example.com" (SHA256) 06:C6:2B:C4:97:5D:16:F2:73:82:
C4:A9:A7:B1:D0:95:AC:69:7B:27:13:A9:1A:4C:98:20:21:C2:50:48:66:A2

root@puppet:~# puppet cert sign cookbook.example.com

Notice: Signed certificate request for cookbook.example.com

Notice: Removing file Puppet::SSL::CertificateRequest
cookbook.example.com at
'/var/lib/puppet/ssl/ca/requests/cookbook.example.com.pem'

3. Return to the cookbook node and run Puppet again:

t@ckbk:~$ sudo puppet agent –vt

Info: Caching certificate for cookbook.example.com

Info: Caching certificate_revocation_list for ca

Info: Caching certificate for cookbook.example.comInfo: Retrieving
pluginfacts
Info: Retrieving plugin
Info: Caching catalog for cookbook
Info: Applying configuration version '1410401823'
Notice: Finished catalog run in 0.04 seconds

Chapter 2

65

There's more...
When we ran puppet agent, Puppet looked for a host named puppet.example.com
(since our test node is in the example.com domain); if it couldn't find that host, it would then
look for a host named Puppet. We can specify the server to contact with the --server option
to puppet agent. When we installed the Puppet master package and started the Puppet
master service, Puppet created default SSL certificates based on our hostname. In the next
section, we'll see how to create an SSL certificate that has multiple DNS names for our
Puppet server.

Creating certificates with multiple DNS
names

By default, Puppet will create an SSL certificate for your Puppet master that contains the fully
qualified domain name of the server only. Depending on how your network is configured, it
can be useful for the server to be known by other names. In this recipe, we'll make a new
certificate for our Puppet master that has multiple DNS names.

Getting ready
Install the Puppet master package if you haven't already done so. You will then need to start
the Puppet master service at least once to create a certificate authority (CA).

How to do it...
The steps are as follows:

1. Stop the running Puppet master process with the following command:
service puppetmaster stop

[ok] Stopping puppet master.

2. Delete (clean) the current server certificate:
puppet cert clean puppet

Notice: Revoked certificate with serial 6

Notice: Removing file Puppet::SSL::Certificate puppet at '/var/
lib/puppet/ssl/ca/signed/puppet.pem'

Notice: Removing file Puppet::SSL::Certificate puppet at '/var/
lib/puppet/ssl/certs/puppet.pem'

Notice: Removing file Puppet::SSL::Key puppet at '/var/lib/puppet/
ssl/private_keys/puppet.pem'

Puppet Infrastructure

66

3. Create a new Puppet certificate using Puppet certificate generate with the --dns-
alt-names option:
root@puppet:~# puppet certificate generate puppet --dns-alt-names
puppet.example.com,puppet.example.org,puppet.example.net --ca-
location local

Notice: puppet has a waiting certificate request

true

4. Sign the new certificate:
root@puppet:~# puppet cert --allow-dns-alt-names sign puppet

Notice: Signed certificate request for puppet

Notice: Removing file Puppet::SSL::CertificateRequest puppet at '/
var/lib/puppet/ssl/ca/requests/puppet.pem'

5. Restart the Puppet master process:
root@puppet:~# service puppetmaster restart

[ok] Restarting puppet master.

How it works...
When your puppet agents connect to the Puppet server, they look for a host called Puppet,
they then look for a host called Puppet.[your domain]. If your clients are in different
domains, then you need your Puppet master to reply to all the names correctly. By removing
the existing certificate and generating a new one, you can have your Puppet master reply to
multiple DNS names.

Running Puppet from passenger
The WEBrick server we configured in the previous section is not capable of handling a large
number of nodes. To deal with a large number of nodes, a scalable web server is required.
Puppet is a ruby process, so we need a way to run a ruby process within a web server.
Passenger is the solution to this problem. It allows us to run the Puppet master process within
a web server (apache by default). Many distributions ship with a puppetmaster-passenger
package that configures this for you. In this section, we'll use the package to configure Puppet
to run within passenger.

Getting ready
Install the puppetmaster-passenger package:

puppet resource package puppetmaster-passenger ensure=installed

Notice: /Package[puppetmaster-passenger]/ensure: ensure changed 'purged'

Chapter 2

67

 to 'present'

package { 'puppetmaster-passenger':

 ensure => '3.7.0-1puppetlabs1',

}

Using puppet resource to install packages ensures the same
command will work on multiple distributions (provided the package
names are the same).

How to do it...
The steps are as follows:

1. Ensure the Puppet master site is enabled in your apache configuration. Depending on
your distribution this may be at /etc/httpd/conf.d or /etc/apache2/sites-
enabled. The configuration file should be created for you and contain the following
information:
PassengerHighPerformance on

PassengerMaxPoolSize 12

PassengerPoolIdleTime 1500

PassengerMaxRequests 1000

PassengerStatThrottleRate 120

RackAutoDetect Off

RailsAutoDetect Off

Listen 8140

2. These lines are tuning settings for passenger. The file then instructs apache to listen
on port 8140, the Puppet master port. Next a VirtualHost definition is created that
loads the Puppet CA certificates and the Puppet master's certificate:
<VirtualHost *:8140>

 SSLEngine on

 SSLProtocol ALL -SSLv2 -SSLv3

 SSLCertificateFile /var/lib/puppet/ssl/certs/puppet.
pem

 SSLCertificateKeyFile /var/lib/puppet/ssl/private_keys/
puppet.pem

 SSLCertificateChainFile /var/lib/puppet/ssl/certs/ca.pem

 SSLCACertificateFile /var/lib/puppet/ssl/certs/ca.pem

 SSLCARevocationFile /var/lib/puppet/ssl/ca/ca_crl.pem

Puppet Infrastructure

68

 SSLVerifyClient optional

 SSLVerifyDepth 1

 SSLOptions +StdEnvVars +ExportCertData

You may have more or less lines of SSL configuration here depending on
your version of the puppetmaster-passenger package.

3. Next, a few important headers are set so that the passenger process has access to
the SSL information sent by the client node:
RequestHeader unset X-Forwarded-For

RequestHeader set X-SSL-Subject %{SSL_CLIENT_S_DN}e

RequestHeader set X-Client-DN %{SSL_CLIENT_S_DN}e

RequestHeader set X-Client-Verify %{SSL_CLIENT_VERIFY}e

4. Finally, the location of the passenger configuration file config.ru is given with the
DocumentRoot location as follows:
 DocumentRoot /usr/share/puppet/rack/puppetmasterd/public/

 RackBaseURI /

5. The config.ru file should exist at /usr/share/puppet/rack/
puppetmasterd/ and should have the following content:
$0 = "master"

ARGV << "--rack"

ARGV << "--confdir" << "/etc/puppet"

ARGV << "--vardir" << "/var/lib/puppet"

require 'puppet/util/command_line'

run Puppet::Util::CommandLine.new.execute

6. With the passenger apache configuration file in place and the config.ru file
correctly configured, start the apache server and verify that apache is listening on
the Puppet master port (if you configured the standalone Puppet master previously,
you must stop that process now using service puppetmaster stop):

root@puppet:~ # service apache2 start

[ok] Starting web server: apache2

root@puppet:~ # lsof -i :8140

COMMAND PID USER FD TYPE DEVICE SIZE/OFF NODE NAME

apache2 9048 root 8u IPv6 16842 0t0 TCP *:8140
(LISTEN)

Chapter 2

69

apache2 9069 www-data 8u IPv6 16842 0t0 TCP *:8140
(LISTEN)

apache2 9070 www-data 8u IPv6 16842 0t0 TCP *:8140
(LISTEN)

How it works...
The passenger configuration file uses the existing Puppet master certificates to listen on port
8140 and handles all the SSL communication between the server and the client. Once the
certificate information has been dealt with, the connection is handed off to a ruby process
started from passenger using the command line arguments from the config.ru file.

In this case, the $0 variable is set to master and the arguments variable is set to --rack
--confdir /etc/puppet --vardir /var/lib/puppet; this is equivalent to running
the following from the command line:

puppet master --rack --confdir /etc/puppet --vardir /var/lib/puppet

There's more...
You can add additional configuration parameters to the config.ru file to further alter
how Puppet runs when it's running through passenger. For instance, to enable debugging
on the passenger Puppet master, add the following line to config.ru before the run
Puppet::Util::CommandLine.new.execute line:

ARGV << "--debug"

Setting up the environment
Environments in Puppet are directories holding different versions of your Puppet manifests.
Environments prior to Version 3.6 of Puppet were not a default configuration for Puppet.
In newer versions of Puppet, environments are configured by default.

Whenever a node connects to a Puppet master, it informs the Puppet master of its environment.
By default, all nodes report to the production environment. This causes the Puppet master
to look in the production environment for manifests. You may specify an alternate environment
with the --environment setting when running puppet agent or by setting environment
= newenvironment in /etc/puppet/puppet.conf in the [agent] section.

Puppet Infrastructure

70

Getting ready
Set the environmentpath function of your installation by adding a line to the [main]
section of /etc/puppet/puppet.conf as follows:

[main]
...
environmentpath=/etc/puppet/environments

How to do it...
The steps are as follows:

1. Create a production directory at /etc/puppet/environments that contains
both a modules and manifests directory. Then create a site.pp which creates
a file in /tmp as follows:
root@puppet:~# cd /etc/puppet/environments/

root@puppet:/etc/puppet/environments# mkdir -p production/
{manifests,modules}

root@puppet:/etc/puppet/environments# vim production/manifests/
site.pp

node default {

 file {'/tmp/production':

 content => "Hello World!\nThis is production\n",

 }

}

2. Run puppet agent on the master to connect to it and verify that the production code
was delivered:
root@puppet:~# puppet agent -vt

Info: Retrieving pluginfacts

Info: Retrieving plugin

Info: Caching catalog for puppet

Info: Applying configuration version '1410415538'

Notice: /Stage[main]/Main/Node[default]/File[/tmp/production]/
ensure: defined content as '{md5}f7ad9261670b9da33a67a5126933044c'

Notice: Finished catalog run in 0.04 seconds

cat /tmp/production

Hello World!

This is production

Chapter 2

71

3. Configure another environment devel. Create a new manifest in the devel
environment:
root@puppet:/etc/puppet/environments# mkdir -p devel/
{manifests,modules}

root@puppet:/etc/puppet/environments# vim devel/manifests/site.pp

node default {

 file {'/tmp/devel':

 content => "Good-bye! Development\n",

 }

}

4. Apply the new environment by running the --environment devel puppet agent
using the following command:

root@puppet:/etc/puppet/environments# puppet agent -vt
--environment devel

Info: Retrieving pluginfacts

Info: Retrieving plugin

Info: Caching catalog for puppet

Info: Applying configuration version '1410415890'

Notice: /Stage[main]/Main/Node[default]/File[/tmp/devel]/ensure:
defined content as '{md5}b6313bb89bc1b7d97eae5aa94588eb68'

Notice: Finished catalog run in 0.04 seconds

root@puppet:/etc/puppet/environments# cat /tmp/devel

Good-bye! Development

You may need to restart apache2 to enable your new environment, this
depends on your version of Puppet and the environment_timeout
parameter of puppet.conf.

There's more...
Each environment can have its own modulepath if you create an environment.conf file
within the environment directory. More information on environments can be found on the
Puppet labs website at https://docs.puppetlabs.com/puppet/latest/reference/
environments.html.

https://docs.puppetlabs.com/puppet/latest/reference/environments.html
https://docs.puppetlabs.com/puppet/latest/reference/environments.html

Puppet Infrastructure

72

Configuring PuppetDB
PuppetDB is a database for Puppet that is used to store information about nodes connected
to a Puppet master. PuppetDB is also a storage area for exported resources. Exported
resources are resources that are defined on nodes but applied to other nodes. The simplest
way to install PuppetDB is to use the PuppetDB module from Puppet labs. From this point on,
we'll assume you are using the puppet.example.com machine and have a passenger-based
configuration of Puppet.

Getting ready
Install the PuppetDB module in the production environment you created in the previous
recipe. If you didn't create directory environments, don't worry, using puppet module
install will install the module to the correct location for your installation with the
following command:

root@puppet:~# puppet module install puppetlabs-puppetdb

Notice: Preparing to install into /etc/puppet/environments/production/
modules ...

Notice: Downloading from https://forgeapi.puppetlabs.com ...

Notice: Installing -- do not interrupt ...

/etc/puppet/environments/production/modules

└─┬ puppetlabs-puppetdb (v3.0.1)

 ├── puppetlabs-firewall (v1.1.3)

 ├── puppetlabs-inifile (v1.1.3)

 └─┬ puppetlabs-postgresql (v3.4.2)

 ├─┬ puppetlabs-apt (v1.6.0)

 │ └── puppetlabs-stdlib (v4.3.2)

 └── puppetlabs-concat (v1.1.0)

How to do it...
Now that our Puppet master has the PuppetDB module installed, we need to apply the
PuppetDB module to our Puppet master, we can do this in the site manifest. Add the
following to your (production) site.pp:

node puppet {
 class { 'puppetdb': }
 class { 'puppetdb::master::config':
 puppet_service_name => 'apache2',
 }
}

Chapter 2

73

Run puppet agent to apply the puppetdb class and the puppetdb::master::config
class:

root@puppet:~# puppet agent -t

Info: Caching catalog for puppet

Info: Applying configuration version '1410416952'

...

Info: Class[Puppetdb::Server::Jetty_ini]: Scheduling refresh of
Service[puppetdb]

Notice: Finished catalog run in 160.78 seconds

How it works...
The PuppetDB module is a great example of how a complex configuration task can be
puppetized. Simply by adding the puppetdb class to our Puppet master node, Puppet
installed and configured postgresql and puppetdb.

When we called the puppetdb::master::config class, we set the puppet_service_
name variable to apache2, this is because we are running Puppet through passenger.
Without this line our agent would try to start the puppetmaster process instead of apache2.

The agent then set up the configuration files for PuppetDB and configured Puppet to use
PuppetDB. If you look at /etc/puppet/puppet.conf, you'll see the following two new lines:

storeconfigs = true
storeconfigs_backend = puppetdb

There's more...
Now that PuppetDB is configured and we've had a successful agent run, PuppetDB will have
data we can query:

root@puppet:~# puppet node status puppet

puppet

Currently active

Last catalog: 2014-09-11T06:45:25.267Z

Last facts: 2014-09-11T06:45:22.351Z

Configuring Hiera
Hiera is an information repository for Puppet. Using Hiera you can have a hierarchical
categorization of data about your nodes that is maintained outside of your manifests. This is very
useful for sharing code and dealing with exceptions that will creep into any Puppet deployment.

Puppet Infrastructure

74

Getting ready
Hiera should have already been installed as a dependency on your Puppet master. If it has not
already, install it using Puppet:

root@puppet:~# puppet resource package hiera ensure=installed

package { 'hiera':

 ensure => '1.3.4-1puppetlabs1',

}

How to do it...
1. Hiera is configured from a yaml file, /etc/puppet/hiera.yaml. Create the file and

add the following as a minimal configuration:

:hierarchy:

 - common

:backends:

 - yaml

:yaml:

 :datadir: '/etc/puppet/hieradata'

2. Create the common.yaml file referenced in the hierarchy:
root@puppet:/etc/puppet# mkdir hieradata

root@puppet:/etc/puppet# vim hieradata/common.yaml

message: 'Default Message'

3. Edit the site.pp file and add a notify resource based on the Hiera value:
node default {

 $message = hiera('message','unknown')

 notify {"Message is $message":}

}

4. Apply the manifest to a test node:
t@ckbk:~$ sudo puppet agent -t

Info: Retrieving pluginfacts

Info: Retrieving plugin

...

Info: Caching catalog for cookbook-test

Info: Applying configuration version '1410504848'

Notice: Message is Default Message

