

React and React Native

Use React and React Native to build applications for desktop
browsers, mobile browsers, and even as native mobile apps

Adam Boduch

 BIRMINGHAM - MUMBAI

React and React Native

Copyright © 2017 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or
transmitted in any form or by any means, without the prior written permission of the
publisher, except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the
information presented. However, the information contained in this book is sold without
warranty, either express or implied. Neither the author, nor Packt Publishing, and its
dealers and distributors will be held liable for any damages caused or alleged to be caused
directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: March 2017

Production reference: 1280217

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham
B3 2PB, UK.
ISBN 978-1-78646-565-8

www.packtpub.com

http://www.packtpub.com

Credits

Author
Adam Boduch

Copy Editor
Charlotte Carneiro

Reviewer
August Marcello III

Project Coordinator
Sheejal Shah

Commissioning Editor
Edward Gordon

Proofreader
Safis Editing

Acquisition Editor
Nitin Dasan

Indexer
Aishwarya Gangawane

Content Development Editor
Onkar Wani

Graphics
Jason Monteiro

Technical Editor
Prashant Mishra

Production Coordinator
Shantanu Zagade

  

About the Author
Adam Boduch has been involved with large-scale JavaScript development for nearly 10
years. Before moving to the front end, he worked on several large-scale cloud computing
products, using Python and Linux. No stranger to complexity, Adam has practical
experience with real-world software systems, and the scaling challenges they pose.

He is the author of several JavaScript books, including Flux Architecture, and is passionate
about innovative user experiences and high performance.

Adam would like to acknowledge August Marcello III for all of his technical expertise and
hard work that went into reviewing this book. Thanks buddy.

About the Reviewer
August Marcello III is a highly passionate software engineer with nearly two decades of
experience in the design, implementation, and deployment of modern client-side web
application architectures in the enterprise. An exclusive focus on delivering compelling
SaaS-based user experiences throughout the Web ecosystem has proven both personally
and professionally rewarding. His passion for emerging technologies in general, combined
with a particular focus on forward-thinking JavaScript platforms, have been a primary
driver in his pursuit of technical excellence. When he's not coding, he could be found trail
running, mountain biking, and spending time with family and friends.

Many thanks to Chuck, Mark, Eric, and Adam, who I have had the privilege to work with
and learn from. I'm grateful to my family, friends, and the experiences I have been blessed
to be a part of.

www.PacktPub.com
For support files and downloads related to your book, please visit www.PacktPub.com.

Did you know that Packt offers eBook versions of every book published, with PDF and
ePub files available? You can upgrade to the eBook version at www.PacktPub.com and as a
print book customer, you are entitled to a discount on the eBook copy. Get in touch with us
at service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up for a
range of free newsletters and receive exclusive discounts and offers on Packt books and
eBooks.

h t t p s ://w w w . p a c k t p u b . c o m /m a p t

Get the most in-demand software skills with Mapt. Mapt gives you full access to all Packt
books and video courses, as well as industry-leading tools to help you plan your personal
development and advance your career.

Why subscribe?
Fully searchable across every book published by Packt
Copy and paste, print, and bookmark content
On demand and accessible via a web browser

http://www.PacktPub.com
http://www.PacktPub.com
http://www.PacktPub.com
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt

Customer Feedback
Thanks for purchasing this Packt book. At Packt, quality is at the heart of our editorial
process. To help us improve, please leave us an honest review on this book's Amazon page
at h t t p s ://w w w . a m a z o n . c o m /d p /1786465655.

If you'd like to join our team of regular reviewers, you can email us at
customerreviews@packtpub.com. We award our regular reviewers with free eBooks and
videos in exchange for their valuable feedback. Help us be relentless in improving our
products!

https://www.amazon.com/dp/1786465655
https://www.amazon.com/dp/1786465655
https://www.amazon.com/dp/1786465655
https://www.amazon.com/dp/1786465655
https://www.amazon.com/dp/1786465655
https://www.amazon.com/dp/1786465655
https://www.amazon.com/dp/1786465655
https://www.amazon.com/dp/1786465655
https://www.amazon.com/dp/1786465655
https://www.amazon.com/dp/1786465655
https://www.amazon.com/dp/1786465655
https://www.amazon.com/dp/1786465655
https://www.amazon.com/dp/1786465655
https://www.amazon.com/dp/1786465655
https://www.amazon.com/dp/1786465655
https://www.amazon.com/dp/1786465655
https://www.amazon.com/dp/1786465655
https://www.amazon.com/dp/1786465655
https://www.amazon.com/dp/1786465655
https://www.amazon.com/dp/1786465655
https://www.amazon.com/dp/1786465655
https://www.amazon.com/dp/1786465655
https://www.amazon.com/dp/1786465655
https://www.amazon.com/dp/1786465655
https://www.amazon.com/dp/1786465655
https://www.amazon.com/dp/1786465655
https://www.amazon.com/dp/1786465655
https://www.amazon.com/dp/1786465655
https://www.amazon.com/dp/1786465655
https://www.amazon.com/dp/1786465655
https://www.amazon.com/dp/1786465655
https://www.amazon.com/dp/1786465655
https://www.amazon.com/dp/1786465655
https://www.amazon.com/dp/1786465655
https://www.amazon.com/dp/1786465655
https://www.amazon.com/dp/1786465655
https://www.amazon.com/dp/1786465655
https://www.amazon.com/dp/1786465655
https://www.amazon.com/dp/1786465655
https://www.amazon.com/dp/1786465655
https://www.amazon.com/dp/1786465655
https://www.amazon.com/dp/1786465655
https://www.amazon.com/dp/1786465655

For Melissa, Jason, Simon, and Kevin

Table of Contents
Preface 1

Chapter 1: Why React? 9

What is React? 9
React is just the view 10

Simplicity is good 11
Declarative UI structure 12
Time and data 13
Performance matters 14
The right level of abstraction 15
Summary 17

Chapter 2: Rendering with JSX 18

What is JSX? 18
Hello JSX 18
Declarative UI structure 19

Just like HTML 20
Built-in HTML tags 20
HTML tag conventions 21

Describing UI structures 22
Creating your own JSX elements 23

Encapsulating HTML 23
Nested elements 25
Namespaced components 26

Using JavaScript expressions 29
Dynamic property values and text 29
Mapping collections to elements 30

Summary 32

Chapter 3: Understanding Properties and State 33

What is component state? 33
What are component properties? 34
Setting component state 35

Initial component state 35
Setting component state 37
Merging component state 39

[ii]

Passing property values 41
Default property values 41
Setting property values 42

Stateless components 45
Pure functional components 45
Defaults in functional components 47

Container components 48
Summary 50

Chapter 4: Event Handling – The React Way 51

Declaring event handlers 51
Declaring handler functions 52
Multiple event handlers 52
Importing generic handlers 53

Event handler context and parameters 56
Auto-binding context 56
Getting component data 57

Inline event handlers 59
Binding handlers to elements 60
Synthetic event objects 61
Event pooling 62
Summary 64

Chapter 5: Crafting Reusable Components 65

Reusable HTML elements 65
The difficulty with monolithic components 66

The JSX markup 67
Initial state and state helpers 68
Event handler implementation 70

Refactoring component structures 73
Start with the JSX 73
Implementing an article list component 74
Implementing an article item component 76
Implementing an add article component 78
Making components functional 80

Rendering component trees 82
Feature components and utility components 83
Summary 84

Chapter 6: The React Component Lifecycle 85

Why components need a lifecycle 85

[iii]

Initializing properties and state 86
Fetching component data 87
Initializing state with properties 91
Updating state with properties 94

Optimize rendering efficiency 98
To render or not to render 98
Using metadata to optimize rendering 101

Rendering imperative components 103
Rendering jQuery UI widgets 103

Cleaning up after components 107
Cleaning up asynchronous calls 107

Summary 111

Chapter 7: Validating Component Properties 112

Knowing what to expect 112
Promoting portable components 113
Simple property validators 114

Basic type validation 114
Requiring values 117
Any property value 120

Type and value validators 122
Things that can be rendered 122
Requiring specific types 125
Requiring specific values 127

Writing custom property validators 130
Summary 132

Chapter 8: Extending Components 133

Component inheritance 133
Inheriting state 134
Inheriting properties 136
Inheriting JSX and event handlers 139

Composition with higher-order components 142
Conditional component rendering 143
Providing data sources 145

Summary 149

Chapter 9: Handling Navigation with Routes 150

Declaring routes 150
Hello route 150
Decoupling route declarations 152

[iv]

Parent and child routes 154
Handling route parameters 156

Resource IDs in routes 156
Optional parameters 161

Using link components 164
Basic linking 164
URL and query parameters 165

Lazy routing 167
Summary 172

Chapter 10: Server-Side React Components 173

What is isomorphic JavaScript? 173
The server is a render target 173
Initial load performance 174
Sharing code between the backend and frontend 175

Rendering to strings 176
Backend routing 178
Frontend reconciliation 182
Fetching data 183
Summary 189

Chapter 11: Mobile-First React Components 190

The rationale behind mobile-first design 190
Using react-bootstrap components 192

Implementing navigation 193
Lists 197
Forms 202

Summary 209

Chapter 12: Why React Native? 210

What is React Native? 210
React and JSX are familiar 211
The mobile browser experience 212
Android and iOS, different yet the same 213
The case for mobile web apps 213
Summary 214

Chapter 13: Kickstarting React Native Projects 215

Using the React Native command-line tool 215
iOS and Android simulators 219

Xcode 219

[v]

Genymotion 220
Running the project 221

Running iOS apps 222
Running Android apps 224

Summary 227

Chapter 14: Building Responsive Layouts with Flexbox 228

Flexbox is the new layout standard 228
Introducing React Native styles 229
Building flexbox layouts 232

Simple three column layout 232
Improved three column layout 235
Flexible rows 239
Flexible grids 241
Flexible rows and columns 244

Summary 248

Chapter 15: Navigating Between Screens 249

Screen organization 249
Navigators, scenes, routes, and stacks 250
Responding to routes 250
Navigation bar 255
Dynamic scenes 258
Jumping back and forth 263
Summary 268

Chapter 16: Rendering Item Lists 269

Rendering data collections 269
Sorting and filtering lists 273
Fetching list data 282
Lazy list loading 285
Summary 288

Chapter 17: Showing Progress 289

Progress and usability 289
Indicating progress 289
Measuring progress 293
Navigation indicators 298
Step progress 302
Summary 306

Chapter 18: Geolocation and Maps 307

[vi]

Where am I? 307
What's around me? 312
Annotating points of interest 313

Plotting points 314
Plotting overlays 315

Summary 320

Chapter 19: Collecting User Input 321

Collecting text input 321
Selecting from a list of options 326
Toggling between off and on 332
Collecting date/time input 336
Summary 342

Chapter 20: Alerts, Notifications, and Confirmation 343

Important information 343
Getting user confirmation 344

Success confirmation 344
Error confirmation 354

Passive notifications 359
Activity modals 366
Summary 369

Chapter 21: Responding to User Gestures 371

Scrolling with our fingers 371
Giving touch feedback 374
Swipeable and cancellable 379
Summary 386

Chapter 22: Controlling Image Display 387

Loading images 387
Resizing images 390
Lazy image loading 395
Rendering icons 400
Summary 404

Chapter 23: Going Offline 405

Detecting the state of the network 405
Storing application data 409
Synchronizing application data 414
Summary 422

Chapter 24: Handling Application State 423

[vii]

Information architecture and Flux 423
Unidirectionality 423
Synchronous update rounds 424
Predictable state transformations 424

Unified information architecture 425
Implementing Redux 426

Initial application state 427
Creating the store 428
Store provider and routes 429
The App component 430
The Home component 434
State in mobile apps 438

Scaling the architecture 439
Summary 440

Chapter 25: Why Relay and GraphQL? 441

Yet another approach? 441
Verbose vernacular 442
Declarative data dependencies 443
Mutating application state 444
The GraphQL backend and microservices 446
Summary 446

Chapter 26: Building a Relay React App 447

TodoMVC and Relay 447
The GraphQL schema 448
Bootstrapping Relay 453
Adding todo items 455
Rendering todo items 458
Completing todo items 460
Summary 463

Index 464

Preface
About the book
I never had any interest in developing mobile apps. I used to believe strongly that it was the
Web, or nothing, that there was no need for more yet more applications to install on devices
that are already overflowing with apps. Then React Native happened. I was already writing
React code for web applications and loving it. It turns out that I wasn’t the only developer
that balked at the idea of maintaining several versions of the same app using different
tooling, environments, and programming languages. React Native was created out of a
natural desire to take what works well from a web development experience standpoint
(React), and apply it to native app development. Native mobile apps offer better user
experiences than web browsers. It turns out I was wrong, we do need mobile apps for the
time being. But that’s okay, because React Native is a fantastic tool. This book is essentially
my experience as a React developer for the Web and as a less experienced mobile app
developer. React native is meant to be an easy transition for developers who already
understand React for the Web. With this book, you’ll learn the subtleties of doing React
development in both environments. You’ll also learn the conceptual theme of React, a
simple rendering abstraction that can target anything. Today, it’s web browsers and mobile
devices. Tomorrow, it could be anything.

What this book covers
This book covers the following three parts:

React: Chapter 1 to 11
React Native: Chapter 12 to 23
React Architecture: Chapter 23 to 26

Part I: React
Chapter 1, Why React?, covers the basics of what React really is, and why you want to use
it.

Chapter 2, Rendering with JSX, explains that JSX is the syntax used by React to render
content. HTML is the most common output, but JSX can be used to render many things,
such as native UI components.

Preface

[2]

Chapter 3, Understanding Properties and State, shows how properties are passed to
components, and how state re-renders components when it changes.

Chapter 4, Event Handling—The React Way, explains that events in React are specified in
JSX. There are subtleties with how React processes events, and how your code should
respond to them.

Chapter 5, Crafting Reusable Components, shows that components are often composed using
smaller components. This means that you have to properly pass data and behaviour to child
components.

Chapter 6, The React Component Lifecycle, explains how React components are created and
destroyed all the time. There are several other lifecycle events that take place in between
where you do things such as fetch data from the network.

Chapter 7, Validating Component Properties, shows that React has a mechanism that allows
you to validate the types of properties that are passed to components. This ensures that
there are no unexpected values passed to your component.

Chapter 8, Extending Components, provides an introduction to the mechanisms used to
extend React components. These include inheritance and higher order components.

Chapter 9, Handling Navigation with Routes, navigation is an essential part of any web
application. React handles routes declaratively using the react-router package.

Chapter 10, Server-Side React Components, discusses how React renders components to the
DOM when rendered in the browser. It can also render components to strings, which is
useful for rendering pages on the server and sending static content to the browser.

Chapter 11 Mobile-First React Components, explains that mobile web applications are
fundamentally different from web applications designed for desktop screen resolutions.
The react-bootstrap package can be used to build UIs in a mobilefirst fashion.

Part II: React Native
Chapter 12, Why React Native?, shows that React Native is React for mobile apps. If you’ve
already invested in React for web applications, then why not leverage the same technology
to provide a better mobile experience?

Chapter 13, Kickstarting React Native Projects, discusses that nobody likes writing boilerplate
code or setting up project directories. React Native has tools to automate these mundane
tasks.

Preface

[3]

Chapter 14, Building Responsive Layouts with Flexbox, explains why the Flexbox layout
model is popular with web UI layouts using CSS. React Native uses the same mechanism to
layout screens.

Chapter 15, Navigating Between Screens, discusses the fact that while navigation is an
important part of web applications, mobile applications also need tools to handle how a
user moves from screen to screen.

Chapter 16, Rendering Item Lists, shows that React Native has a list view component that’s
perfect for rendering lists of items. You simply provide it with a data source, and it handles
the rest.

Chapter 17, Showing Progress, explains that progress bars are great for showing a
determinate amount of progress. When you don’t know how long something will take, you
use a progress indicator. React Native has both of these components.

Chapter 18, Geolocation and Maps, shows that the react-native-maps package provides
React Native with mapping capabilities. The Geolocation API that’s used in web
applications is provided directly by React Native.

Chapter 19, Collecting User Input, shows that most applications need to collect input from
the user. Mobile applications are no different, and React Native provides a variety of
controls that are not unlike HTML form elements.

Chapter 20, Alerts, Notifications, and Confirmation, explains that alerts are for interrupting the
user to let them know something important has happened, notifications are unobtrusive
updates, and confirmation is used for getting an immediate answer.

Chapter 21, Responding to User Gestures, discusses how gestures on mobile devices are
something that’s difficult to get right in the browser. Native apps, on the other hand,
provide a much better experience for swiping, touching, and so on. React Native handles a
lot of the details for you.

Chapter 22, Controlling Image Display, shows how images play a big role in most
applications, either as icons, logos, or photographs of things. React Native has tools for
loading images, scaling them, and placing them appropriately.

Chapter 23, Going Offline, explains that mobile devices tend to have volatile network
connectivity. Therefore, mobile apps need to be able to handle temporary offline conditions.
For this, React Native has local storage APIs.

Preface

[4]

Part III: React Architecture
Chapter 24, Handling Application State, discusses how application state is important for any
React application, web or mobile. This is why understanding libraries such as Redux and
Immutable.js is important.

Chapter 25, Why Relay and GraphQL?, explains that Relay and GraphQL, used together, is a
novel approach to handling state at scale. It’s a query and mutation language, plus a library
for wrapping React components.

Chapter 26, Building a Relay React App, shows that the real advantage of Relay and
GraphQL is that your state schema is shared between web and native versions of your
application.

What you need for this book
A code editor
A modern web browser
NodeJS

Who this book is for
This book is written for any JavaScript developer—beginner or expert—who wants to start
learning how to put both of Facebook’s UI libraries to work. No knowledge of React is
needed, though a working knowledge of ES2015 will help you follow along better.

Conventions
In this book, you will find a number of text styles that distinguish between different kinds
of information. Here are some examples of these styles and an explanation of their meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows: "Instead
of setting the actual Modal component to be transparent, we set the transparency in the
backgroundColor, which gives the look of an overlay."

Preface

[5]

A block of code is set as follows:

import React, { Component } from 'react';
import {
 AppRegistry,
 View,
} from 'react-native';

import styles from './styles';

// Imports our own platform-independent "DatePicker"
// and "TimePicker" components.
import DatePicker from './DatePicker';
import TimePicker from './TimePicker';

Any command-line input or output is written as follows:

 npm install react-native-vector-icons --save
 react-native link

New terms and important words are shown in bold. Words that you see on the screen, for
example, in menus or dialog boxes, appear in the text like this: "Again, the same principle
with the ToastAndroid API applies here. You might have noticed that there's another
button in addition to the Show Notification button. "

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Preface

[6]

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about this
book—what you liked or disliked. Reader feedback is important for us as it helps us
develop titles that you will really get the most out of.

To send us general feedback, simply e-mail feedback@packtpub.com, and mention the
book's title in the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing or
contributing to a book, see our author guide at www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to help you
to get the most from your purchase.

Downloading the example code
You can download the example code files from your account at h t t p ://w w w . p a c k t p u b . c o m

for all the Packt Publishing books you have purchased. If you purchased this book
elsewhere, you can visit h t t p ://w w w . p a c k t p u b . c o m /s u p p o r t and register to have the files
e-mailed directly to you.

You can download the code files by following these steps:

Log in or register to our website using your e-mail address and password.1.
Hover the mouse pointer on the SUPPORT tab at the top.2.
Click on Code Downloads & Errata.3.
Enter the name of the book in the Search box.4.
Select the book for which you're looking to download the code files.5.
Choose from the drop-down menu where you purchased this book from.6.
Click on Code Download.7.

mailto:feedback@packtpub.com
http://www.packtpub.com/authors
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support

Preface

[7]

You can also download the code files by clicking on the Code Files button on the book's
webpage at the Packt Publishing website. This page can be accessed by entering the book's
name in the Search box. Please note that you need to be logged in to your Packt account.

Once the file is downloaded, please make sure that you unzip or extract the folder using the
latest version of:

WinRAR / 7-Zip for Windows
Zipeg / iZip / UnRarX for Mac
7-Zip / PeaZip for Linux

The code bundle for the book is also hosted on GitHub at
https://github.com/PacktPublishing/React-and-React-Native. We also have other code
bundles from our rich catalog of books and videos available at h t t p s ://g i t h u b . c o m /P a c k t

P u b l i s h i n g /. Check them out!

Downloading the color images of this book
We also provide you with a PDF file that has color images of the screenshots/diagrams used
in this book. The color images will help you better understand the changes in the output.
You can download this file from:
https://www.packtpub.com/sites/default/files/downloads/ReactandReactNative_Colo

rImages.pdf.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes do
happen. If you find a mistake in one of our books—maybe a mistake in the text or the
code—we would be grateful if you could report this to us. By doing so, you can save other
readers from frustration and help us improve subsequent versions of this book. If you find
any errata, please report them by visiting h t t p ://w w w . p a c k t p u b . c o m /s u b m i t - e r r a t a ,
selecting your book, clicking on the Errata Submission Form link, and entering the details of
your errata. Once your errata are verified, your submission will be accepted and the errata
will be uploaded to our website or added to any list of existing errata under the Errata
section of that title.

To view the previously submitted errata, go to h t t p s ://w w w . p a c k t p u b . c o m /b o o k s /c o n t e n

t /s u p p o r t and enter the name of the book in the search field. The required information will
appear under the Errata section.

https://github.com/PacktPublishing/React-and-React-Native
https://github.com/PacktPublishing/React-and-React-Native
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://www.packtpub.com/sites/default/files/downloads/ReactandReactNative_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/ReactandReactNative_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/ReactandReactNative_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/ReactandReactNative_ColorImages.pdf
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support

Preface

[8]

Piracy
Piracy of copyrighted material on the Internet is an ongoing problem across all media. At
Packt, we take the protection of our copyright and licenses very seriously. If you come
across any illegal copies of our works in any form on the Internet, please provide us with
the location address or website name immediately so that we can pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected pirated material.

We appreciate your help in protecting our authors and our ability to bring you valuable
content.

Questions
If you have a problem with any aspect of this book, you can contact us at
questions@packtpub.com, and we will do our best to address the problem.

mailto:copyright@packtpub.com
mailto:questions@packtpub.com

1
Why React?

If you're reading this book, you might already have some idea of what React is. You also
might have heard a React success story or two. If not, don't worry. I'll do my best to spare
you from additional marketing literature in this opening chapter. However, this is a large
book, with a lot of content, so I feel that setting the tone is an appropriate first step. Yes, the
goal is to learn React and React Native. But, it's also to put together a lasting architecture
that can handle everything we want to build with React today, and in the future.

This chapter starts with brief explanation of why React exists. Then, we'll talk about the
simplicity that makes React an appealing technology and how React is able to handle many
of the typical performance issues faced by web developers. Lastly, we'll go over the
declarative philosophy of React and the level of abstraction that React programmers can
expect to work with.

Let's go!

What is React?
I think the one-line description of React on its homepage
(https://facebook.github.io/react) is brilliant:

A JavaScript library for building user interfaces.

It's a library for building user interfaces. This is perfect, because as it turns out, this is all we
want most of the time. I think the best part about this description is everything that it leaves
out. It's not a mega framework. It's not a full-stack solution that's going to handle
everything from the database to real-time updates over web socket connections. We don't
actually want most of these pre-packaged solutions, because in the end, they usually cause
more problems than they solve. Facebook sure did listen to what we want.

https://facebook.github.io/react)
https://facebook.github.io/react)

Why React?

[10]

React is just the view
React is generally thought of as the view layer in an application. You might have used a
library such as Handlebars or jQuery in the past. Just like jQuery manipulates UI elements,
or Handlebars templates are inserted onto the page, React components change what the
user sees. The following diagram illustrates where React fits in our frontend code:

This is literally all there is to React—the core concept. Of course there will be subtle
variations to this theme as we make our way through the book, but the flow is more or less
the same. We have some application logic that generates some data. We want to render this
data to the UI, so we pass it to a React component, which handles the job of getting the
HTML into the page.

You may wonder what the big deal is, especially since at the surface, React appears to be yet
another rendering technology. We'll touch on some of the key areas where React can
simplify application development in the remaining sections of the chapter.

Don't worry; we're almost through the introductory stuff. Awesome code
examples are on the horizon!

Why React?

[11]

Simplicity is good
React doesn't have many moving parts to learn about and understand. Internally, there's a
lot going on, and we'll touch on these things here and there throughout the book. The
advantage to having a small API to work with is that you can spend more time
familiarizing yourself with it, experimenting with it, and so on. The opposite is true of large
frameworks, where all your time is devoted to figuring out how everything works. The
following diagram gives a rough idea of the APIs that we have to think about when
programming with React:

React is divided into two major APIs. First, there's the React DOM. This is the API that's
used to perform the actual rendering on a web page. Second, there's the React component
API. These are the parts of the page that are actually rendered by React DOM. Within a
React component, we have the following areas to think about:

Data: This is data that comes from somewhere (the component doesn't care
where), and is rendered by the component
Lifecycle: These are methods that we implement that respond to changes in the
lifecycle of the component. For example, the component is about to be rendered
Events: This is code that we write for responding to user interactions
JSX: This is the syntax of React components used to describe UI structures

Don't fixate on what these different areas of the React API represent just yet. The takeaway
here is that React, by nature, is simple. Just look at how little there is to figure out! This
means that we don't have to spend a ton of time going through API details here. Instead,
once you pick up on the basics, we can spend more time on nuanced React usage patterns.

Why React?

[12]

Declarative UI structure
React newcomers have a hard time coming to grips with the idea that components mix
markup in with their JavaScript. If you've looked at React examples and had the same
adverse reaction, don't worry. Initially, we're all skeptical of this approach, and I think the
reason is that we've been conditioned for decades by the separation of concerns principle.
Now, whenever we see things mixed together, we automatically assume that this is bad and
shouldn't happen.

The syntax used by React components is called JSX (JavaScript XML). The idea is actually
quite simple. A component renders content by returning some JSX. The JSX itself is usually
HTML markup, mixed with custom tags for the React components. The specifics don't
matter at this point; we'll get into details in the coming chapters. What's absolutely
groundbreaking here is that we don't have to perform little micro-operations to change the
content of a component.

For example, think about using something like jQuery to build your application. You have a
page with some content on it, and you want to add a class to a paragraph when a button is
clicked. Performing these steps is easy enough, but the challenge is that there are steps to
perform at all. This is called imperative programming, and it's problematic for UI
development. While this example of changing the class of an element in response to an
event is simple, real applications tend to involve more than three or four steps to make
something happen.

React components don't require executing steps in an imperative way to render content.
This is why JSX is so central to React components. The XML-style syntax makes it easy to
describe what the UI should look like. That is, what are the HTML elements that this
component is going to render? This is called declarative programming, and is very well
suited for UI development.

Why React?

[13]

Time and data
Another area that's difficult for React newcomers to grasp is the idea that JSX is like a static
string, representing a chunk of rendered output. Are we just supposed to keep rendering
this same view? This is where time and data come into play. React components rely on data
being passed into them. This data represents the dynamic aspects of the UI. For example, a
UI element that's rendered based on a Boolean value could change the next time the
component is rendered. Here's an illustration of the idea:

Each time the React component is rendered, it's like taking a snapshot of the JSX at that
exact moment in time. As our application moves forward through time, we have an ordered
collection of rendered user interface components. In addition to declaratively describing
what a UI should be, re-rendering the same JSX content makes things much easier for
developers. The challenge is making sure that React can handle the performance demands
of this approach.

Why React?

[14]

Performance matters
Using React to build user interfaces means that we can declare the structure of the UI with
JSX. This is less error-prone than the imperative approach to assembling the UI piece by
piece. However, the declarative approach does present us with one challenge: performance.

For example, having a declarative UI structure is fine for the initial rendering, because
there's nothing on the page yet. So, the React renderer can look at the structure declared in
JSX, and render it into the browser DOM. This is illustrated in the following diagram:

On the initial render, React components and their JSX are no different from other template
libraries. For instance, Handlebars will render a template to HTML markup as a string,
which is then inserted into the browser DOM. Where React is different from libraries such
as Handlebars, is when data changes and we need to re-render the component. Handlebars
will just rebuild the entire HTML string, the same way it did on the initial render. Since this
is problematic for performance, we often end up implementing imperative workarounds
that manually update tiny bits of the DOM. What we end up with is a tangled mess of
declarative templates and imperative code to handle the dynamic aspects of the UI.

We don't do this in React. This is what sets React apart from other view libraries.
Components are declarative for the initial render, and they stay this way even as they're re-
rendered. It's what React does under the hood that makes re-rendering declarative UI
structures possible.

Why React?

[15]

React has something called the virtual DOM, which is used to keep a representation of the
real DOM elements in memory. It does this so that each time we re-render a component, it
can compare the new content, to the content that's already displayed on the page. Based on
the difference, the virtual DOM can execute the imperative steps necessary to make the
changes. So not only do we get to keep our declarative code when we need to update the
UI, React will also make sure that it's done in a performant way. Here's what this process
looks like:

When you read about React, you'll often see words like diffing and
patching. Diffing means comparing old content with new content to figure
out what's changed. Patching means executing the necessary DOM
operations to render the new content.

The right level of abstraction
The final topic I want to cover at a high level before we dive into React code is abstraction.
React doesn't have a lot of it, and yet the abstractions that React implements are crucial to
its success.

In the preceding section, you saw how JSX syntax translates to low-level operations that we
have no interest in maintaining. The more important way to look at how React translates
our declarative UI components is the fact that we don't necessarily care what the render
target is. The render target happens to be the browser DOM with React. But, this is
changing.

Why React?

[16]

The theme of this book is that React has the potential to be used for any user interface we
want to create, on any conceivable device. We're only just starting to see this with React
Native, but the possibilities are endless. I personally will not be surprised when React Toast
becomes a thing, targeting toasters that can singe the rendered output of JSX on to bread.
The abstraction level with React is at the right level, and it's in the right place.

The following diagram gives you an idea of how React can target more than just the
browser:

From left to right, we have React Web (just plain React), React Native, React Desktop, and
React Toast. As you can see, to target something new, the same pattern applies:

Implement components specific to the target
Implement a React renderer that can perform the platform-specific operations
under the hood
Profit

This is obviously an oversimplification of what's actually implemented for any given React
environment. But the details aren't so important to us. What's important is that we can use
our React knowledge to focus on describing the structure of our user interface on any
platform.

React Toast will probably never be a thing, unfortunately.

Why React?

[17]

Summary
In this chapter, you were introduced to React at a high level. React is a library, with a small
API, used to build user interfaces. Next, you were introduced to some of the key concepts of
React. First, we discussed the fact that React is simple, because it doesn't have a lot of
moving parts. Next, we looked at the declarative nature of React components and JSX.
Then, you learned that React takes performance seriously, and that this is how we're able to
write declarative code that can be re-rendered over and over. Finally, we thought about the
idea of render targets and how React can easily become the UI tool of choice for all of them.

That's enough introductory and conceptual stuff for my taste. As we make our way toward
the end of the book, we'll revisit these ideas, as they're important strategy-wise. For now,
let's take a step back and nail down the basics, starting with JSX.

2
Rendering with JSX

This chapter will introduce you to JSX. We'll start by covering the basics: what is JSX? Then,
you'll see that JSX has built-in support for HTML tags, as you would expect; so we'll run
through a few examples here. After having looked at some JSX code, we'll discuss how it
makes describing the structure of UIs easy for us. Then, we'll jump into building our own
JSX elements, and using JavaScript expressions for dynamic content.

Ready?

What is JSX?
In this section, we'll implement the obligatory hello world JSX application. At this point,
we're just dipping our toes into the water; more in-depth examples will follow. We'll also
discuss what makes this syntax work well for declarative UI structures.

Hello JSX
Without further ado, here's your first JSX application:

// The "render()" function will render JSX markup and
// place the resulting content into a DOM node. The "React"
// object isn't explicitly used here, but it's used
// by the transpiled JSX source.
import React from 'react';
import { render } from 'react-dom';

// Renders the JSX markup. Notice the XML syntax
// mixed with JavaScript? This is replaced by the
// transpiler before it reaches the browser.
render(

Rendering with JSX

[19]

 (<p>Hello, JSX</p>),
 document.getElementById('app')
);

Pretty simple, right? Let's walk through what's happening here. First, we need to import the
relevant bits. The render() function is what really matters in this example, as it takes JSX
as the first argument and renders it to the DOM node passed as the second argument.

The parentheses surrounding the JSX markup aren't strictly necessary.
However, this is a React convention, and it helps us to avoid confusing
markup constructs with JavaScript constructs.

The actual JSX content in this example fits on one line, and it simply renders a paragraph
with some bold text inside. There's nothing fancy going on here, so we could have just
inserted this markup into the DOM directly as a plain string. However, there's a lot more to
JSX than what's shown here. The aim of this example was to show the basic steps involved
in getting JSX rendered onto the page. Now, let's talk a little bit about declarative UI
structure.

JSX is transpiled into JavaScript statements; browsers have no idea what
JSX is. I would highly recommend downloading the companion code for
this book from h t t p s ://g i t h u b . c o m /P a c k t P u b l i s h i n g /R e a c t - a n d - R e a c

t - N a t i v e , and running it as you read along. Everything transpiles
automatically for you; you just need to follow the simple installation steps.

Declarative UI structure
Before we continue to plow forward with our code examples, let's take a moment to reflect
on our hello world example. The JSX content was short and simple. It was also declarative,
because it described what to render, not how to render it. Specifically, by looking at the JSX,
you can see that this component will render a paragraph, and some bold text within it. If
this were done imperatively, there would probably be some more steps involved, and they
would probably need to be performed in a specific order.

So, the example we just implemented should give you a feel for what declarative React is all
about. As we move forward in this chapter and throughout the book, the JSX markup will
grow more elaborate. However, it's always going to describe what is in the user interface.
Let's move on.

https://github.com/PacktPublishing/React-and-React-Native
https://github.com/PacktPublishing/React-and-React-Native
https://github.com/PacktPublishing/React-and-React-Native
https://github.com/PacktPublishing/React-and-React-Native
https://github.com/PacktPublishing/React-and-React-Native
https://github.com/PacktPublishing/React-and-React-Native
https://github.com/PacktPublishing/React-and-React-Native
https://github.com/PacktPublishing/React-and-React-Native
https://github.com/PacktPublishing/React-and-React-Native
https://github.com/PacktPublishing/React-and-React-Native
https://github.com/PacktPublishing/React-and-React-Native
https://github.com/PacktPublishing/React-and-React-Native
https://github.com/PacktPublishing/React-and-React-Native
https://github.com/PacktPublishing/React-and-React-Native
https://github.com/PacktPublishing/React-and-React-Native
https://github.com/PacktPublishing/React-and-React-Native
https://github.com/PacktPublishing/React-and-React-Native
https://github.com/PacktPublishing/React-and-React-Native
https://github.com/PacktPublishing/React-and-React-Native
https://github.com/PacktPublishing/React-and-React-Native
https://github.com/PacktPublishing/React-and-React-Native
https://github.com/PacktPublishing/React-and-React-Native
https://github.com/PacktPublishing/React-and-React-Native
https://github.com/PacktPublishing/React-and-React-Native
https://github.com/PacktPublishing/React-and-React-Native
https://github.com/PacktPublishing/React-and-React-Native
https://github.com/PacktPublishing/React-and-React-Native
https://github.com/PacktPublishing/React-and-React-Native
https://github.com/PacktPublishing/React-and-React-Native
https://github.com/PacktPublishing/React-and-React-Native
https://github.com/PacktPublishing/React-and-React-Native
https://github.com/PacktPublishing/React-and-React-Native
https://github.com/PacktPublishing/React-and-React-Native
https://github.com/PacktPublishing/React-and-React-Native
https://github.com/PacktPublishing/React-and-React-Native
https://github.com/PacktPublishing/React-and-React-Native
https://github.com/PacktPublishing/React-and-React-Native
https://github.com/PacktPublishing/React-and-React-Native
https://github.com/PacktPublishing/React-and-React-Native
https://github.com/PacktPublishing/React-and-React-Native
https://github.com/PacktPublishing/React-and-React-Native
https://github.com/PacktPublishing/React-and-React-Native
https://github.com/PacktPublishing/React-and-React-Native
https://github.com/PacktPublishing/React-and-React-Native
https://github.com/PacktPublishing/React-and-React-Native
https://github.com/PacktPublishing/React-and-React-Native
https://github.com/PacktPublishing/React-and-React-Native
https://github.com/PacktPublishing/React-and-React-Native
https://github.com/PacktPublishing/React-and-React-Native
https://github.com/PacktPublishing/React-and-React-Native
https://github.com/PacktPublishing/React-and-React-Native
https://github.com/PacktPublishing/React-and-React-Native
https://github.com/PacktPublishing/React-and-React-Native
https://github.com/PacktPublishing/React-and-React-Native
https://github.com/PacktPublishing/React-and-React-Native
https://github.com/PacktPublishing/React-and-React-Native
https://github.com/PacktPublishing/React-and-React-Native
https://github.com/PacktPublishing/React-and-React-Native
https://github.com/PacktPublishing/React-and-React-Native
https://github.com/PacktPublishing/React-and-React-Native
https://github.com/PacktPublishing/React-and-React-Native
https://github.com/PacktPublishing/React-and-React-Native
https://github.com/PacktPublishing/React-and-React-Native
https://github.com/PacktPublishing/React-and-React-Native
https://github.com/PacktPublishing/React-and-React-Native
https://github.com/PacktPublishing/React-and-React-Native
https://github.com/PacktPublishing/React-and-React-Native
https://github.com/PacktPublishing/React-and-React-Native
https://github.com/PacktPublishing/React-and-React-Native
https://github.com/PacktPublishing/React-and-React-Native
https://github.com/PacktPublishing/React-and-React-Native
https://github.com/PacktPublishing/React-and-React-Native
https://github.com/PacktPublishing/React-and-React-Native
https://github.com/PacktPublishing/React-and-React-Native
https://github.com/PacktPublishing/React-and-React-Native
https://github.com/PacktPublishing/React-and-React-Native
https://github.com/PacktPublishing/React-and-React-Native
https://github.com/PacktPublishing/React-and-React-Native
https://github.com/PacktPublishing/React-and-React-Native
https://github.com/PacktPublishing/React-and-React-Native
https://github.com/PacktPublishing/React-and-React-Native
https://github.com/PacktPublishing/React-and-React-Native
https://github.com/PacktPublishing/React-and-React-Native
https://github.com/PacktPublishing/React-and-React-Native
https://github.com/PacktPublishing/React-and-React-Native
https://github.com/PacktPublishing/React-and-React-Native
https://github.com/PacktPublishing/React-and-React-Native
https://github.com/PacktPublishing/React-and-React-Native
https://github.com/PacktPublishing/React-and-React-Native
https://github.com/PacktPublishing/React-and-React-Native
https://github.com/PacktPublishing/React-and-React-Native
https://github.com/PacktPublishing/React-and-React-Native
https://github.com/PacktPublishing/React-and-React-Native
https://github.com/PacktPublishing/React-and-React-Native
https://github.com/PacktPublishing/React-and-React-Native
https://github.com/PacktPublishing/React-and-React-Native
https://github.com/PacktPublishing/React-and-React-Native
https://github.com/PacktPublishing/React-and-React-Native
https://github.com/PacktPublishing/React-and-React-Native
https://github.com/PacktPublishing/React-and-React-Native
https://github.com/PacktPublishing/React-and-React-Native
https://github.com/PacktPublishing/React-and-React-Native
https://github.com/PacktPublishing/React-and-React-Native

Rendering with JSX

[20]

Just like HTML
At the end of the day, the job of a React component is to render HTML into the browser
DOM. This is why JSX has support for HTML tags, out of the box. In this section, we'll look
at some code that renders some of the available HTML tags. Then, we'll cover some of the
conventions that are typically followed in React projects when HTML tags are used.

Built-in HTML tags
When we render JSX, element tags are referencing React components. Since it would be
tedious to have to create components for HTML elements, React comes with HTML
components. We can render any HTML tag in our JSX, and the output will be just as we'd
expect. If you're not sure, you can always run the following code to see which HTML
element tags React has:

// Prints a list of the global HTML tags
// that React knows about.
console.log(
 'available tags',
 Object.keys(React.DOM).sort()
);

You can see that React.DOM has all the built-in HTML elements that we need, implemented
as React components. Now let's try rendering some of these:

import React from 'react';
import { render } from 'react-dom';

// React internal defines all the standard HTML tags
// that we use on a daily basis. Think of them being
// the same as any other react component.
render((
 <div>
 <button />
 <code />
 <input />
 <label />
 <p />
 <pre />
 <select />
 <table />

 </div>
),
 document.getElementById('app')

Rendering with JSX

[21]

);

Don't worry about the rendered output for this example; it doesn't make sense. All we're
doing here is making sure that we can render arbitrary HTML tags, and they render as
expected.

You may have noticed the surrounding <div> tag, grouping together all
of the other tags as its children. This is because React needs a root
component to render; you can't render adjacent elements, like
(<p><p><p>) for instance.

HTML tag conventions
When we render HTML tags in JSX markup, the expectation is that we'll use lowercase for
the tag name. In fact, capitalizing the name of an HTML tag will straight up fail. Tag names
are case sensitive and non-HTML elements are capitalized. This way, it's easy to scan the
markup and spot the built-in HTML elements versus everything else.

We can also pass HTML elements any of their standard properties. When we pass them
something unexpected, a warning about the unknown property is logged. Here's an
example that illustrates these ideas.

import React from 'react';
import { render } from 'react-dom';

// This renders as expected, except for the "foo"
// property, since this is not a recognized button
// property. This will log a warning in the console.
render((
 <button foo="bar">
 My Button
 </button>
),
 document.getElementById('app')
);

// This fails with a "ReferenceError", because
// tag names are case-sensitive. This goes against
// the convention of using lower-case for HTML tag names.
render(
 <Button />,
 document.getElementById('app')
);

Rendering with JSX

[22]

Later on in the book, we'll cover property validation for the components
that we make. This avoids silent misbehavior as seen with the foo
property in this example.

Describing UI structures
JSX is the best way to describe complex UI structures. Let's look at some JSX markup that
declares a more elaborate structure than a single paragraph:

import React from 'react';
import { render } from 'react-dom';

// This JSX markup describes some fairly-sophisticated
// markup. Yet, it's easy to read, because it's XML and
// XML is good for concisely-expressing hierarchical
// structure. This is how we want to think of our UI,
// when it needs to change, not as an individual element
// or property.
render((
 <section>
 <header>
 <h1>A Header</h1>
 </header>
 <nav>
 Nav Item
 </nav>
 <main>
 <p>The main content...</p>
 </main>
 <footer>
 <small>© 2016</small>
 </footer>
 </section>
),
 document.getElementById('app')
);

As you can see, there's a lot of semantic elements in this markup, describing the structure of
the UI. The key is that this type of complex structure is easy to reason about, and we don't
need to think about rendering specific parts of it. But before we start implementing
dynamic JSX markup, let's create some of our own JSX components.

Rendering with JSX

[23]

Here is what the rendered content looks like:

Creating your own JSX elements
Components are the fundamental building blocks of React. In fact, components are the
vocabulary of JSX markup. In this section, we'll see how to encapsulate HTML markup
within a component. We'll build examples that show you how to nest custom JSX elements
and how to namespace your components.

Encapsulating HTML
The reason that we want to create new JSX elements is so that we can encapsulate larger
structures. This means that instead of having to type out complex markup, we just use our
custom tag. The React component returns the JSX that replaces the element. Let's look at an
example now:

// We also need "Component" so that we can
// extend it and make a new JSX tag.
import React, { Component } from 'react';
import { render } from 'react-dom';

// "MyComponent" extends "Component", which means that
// we can now use it in JSX markup.
class MyComponent extends Component {
 render() {
 // All components have a "render()" method, which
 // returns some JSX markup. In this case, "MyComponent"
 // encapsulates a larger HTML structure.
 return (
 <section>
 <h1>My Component</h1>
 <p>Content in my component...</p>
 </section>
);

Rendering with JSX

[24]

 }
}

// Now when we render "<MyComponent>" tags, the encapsulated
// HTML structure is actually rendered. These are the
// building blocks of our UI.
render(
 <MyComponent />,
 document.getElementById('app')
);

Here's what the rendered output looks like:

This is the first React component that we've implemented in this book, so let's take a
moment to dissect what's going on here. We've created a class called MyComponent that
extends the Component class from React. This is how we create a new JSX element. As you
can see in the call to render(), we're rendering a <MyComponent> element.

The HTML that this component encapsulates is returned by the render() method. In this
case, when the JSX <MyComponent> is rendered by react-dom, it's replaced by a
<section> element, and everything within it.

When we render JSX, any custom elements we use must have their
corresponding React component within the same scope. In the preceding
example, the class MyComponent was declared in the same scope as the
call to render(), so everything worked as expected. Usually, we'll import
components, adding them to the appropriate scope. We'll see more of this
as we progress through the book.

Rendering with JSX

[25]

Nested elements
Using JSX markup is useful for describing UI structures that have parent-child
relationships. For example, a tag is only useful as the child of a or tag.
Therefore, we're probably going to make similar nested structures with our own React
components. For this, you need to use the children property. Let's see how this works;
here's the JSX markup that we want to render:

import React from 'react';
import { render } from 'react-dom';

// Imports our two components that render children...
import MySection from './MySection';
import MyButton from './MyButton';

// Renders the "MySection" element, which has a child
// component of "MyButton", which in turn has child text.
render((
 <MySection>
 <MyButton>My Button Text</MyButton>
 </MySection>
),
 document.getElementById('app')
);

Here, you can see that we're importing two of our own React components: MySection and
MyButton. Now, if you look at the JSX that we're rendering, you'll notice that <MyButton>
is a child of <MySection>. You'll also notice that the MyButton component accepts text as
its child, instead of more JSX elements. Let's see how these components work, starting with
MySection:

import React, { Component } from 'react';

// Renders a "<section>" element. The section has
// a heading element and this is followed by
// "this.props.children".
export default class MySection extends Component {
 render() {
 return (
 <section>
 <h2>My Section</h2>
 {this.props.children}
 </section>
);
 }
}

Rendering with JSX

[26]

This component renders a standard <section> HTML element, a heading, and then
{this.props.children}. It's this last construct that allows components to access nested
elements or text, and to render it.

The two braces used in the preceding example are used for JavaScript
expressions. We'll touch on more details of the JavaScript expression
syntax found in JSX markup in the following section.

Now, let's look at the MyButton component:

import React, { Component } from 'react';

// Renders a "<button>" element, using
// "this.props.children" as the text.
export default class MyButton extends Component {
 render() {
 return (
 <button>{this.props.children}</button>
);
 }
}

This component is using the exact same pattern as MySection; take the
{this.props.children} value, and surround it with meaningful markup. React handles
a lot of messy details for us. In this example, the button text is a child of MyButton, which is
in turn a child of MySection. However, the button text is transparently passed through
MySection. In other words, we didn't have to write any code in MySection to make sure
that MyButton got it's text. Pretty cool, right? Here's what the rendered output looks like:

Namespaced components
The custom elements we've created so far have used simple names. Sometimes, we might
want to give a component a namespace. Instead of writing <MyComponent> in our JSX
markup, we would write <MyNamespace.MyComponent>. This makes it clear to anyone
reading the JSX that MyComponent is part of MyNamespace.

Rendering with JSX

[27]

Typically, MyNamespace would also be a component. The idea with namespacing is to have
a namespace component render its child components using the namespace syntax. Let's
take a look at an example:

import React from 'react';
import { render } from 'react-dom';

// We only need to import "MyComponent" since
// the "First" and "Second" components are part
// of this "namespace".
import MyComponent from './MyComponent';

// Now we can render "MyComponent" elements,
// and it's "namespaced" elements as children.
// We don't actually have to use the namespaced
// syntax here, we could import the "First" and
// "Second" components and render them without the
// "namespace" syntax. It's a matter of readability
// and personal taste.
render((
 <MyComponent>
 <MyComponent.First />
 <MyComponent.Second />
 </MyComponent>
),
 document.getElementById('app')
);

This markup renders a <MyComponent> element with two children. The key thing to notice
here is that instead of writing <First>, we write <MyComponent.First>. Same with
<MyComponent.Second>. The idea is that we want to explicitly show that First and
Second belong to MyComponent, within the markup.

I personally don't depend on namespaced components like these, because
I'd rather see which components are in use by looking at the import
statements at the top of the module. Others would rather import one
component and explicitly mark the relationship within the markup. There
is no correct way to do this; it's a matter of personal taste.

Now let's take a look at the MyComponent module:

import React, { Component } from 'react';

// The "First" component, renders some basic JSX...
class First extends Component {
 render() {

Rendering with JSX

[28]

 return (
 <p>First...</p>
);
 }
}

// The "Second" component, renders some basic JSX...
class Second extends Component {
 render() {
 return (
 <p>Second...</p>
);
 }
}

// The "MyComponent" component renders it's children
// in a "<section>" element.
class MyComponent extends Component {
 render() {
 return (
 <section>
 {this.props.children}
 </section>
);
 }
}

// Here is where we "namespace" the "First" and
// "Second" components, by assigning them to
// "MyComponent" as class properties. This is how
// other modules can render them as "<MyComponent.First>"
// elements.
MyComponent.First = First;
MyComponent.Second = Second;

export default MyComponent;

// This isn't actually necessary. If we want to be able
// to use the "First" and "Second" components independent
// of "MyComponent", we would leave this in. Otherwise,
// we would only export "MyComponent".
 export { First, Second };

Rendering with JSX

[29]

You can see that this module declares MyComponent as well as the other components that
fall under this namespace (First and Second). The idea is to assign the components to the
namespace component (MyComponent) as class properties. There are a number of things we
could change in this module. For example, we don't have to directly export First and
Second since they're accessible through MyComponent. We also don't need to define
everything in the same module; we could import First and Second and assign them as
class properties. Using namespaces is completely optional, and if you use them, you should
use them consistently.

Using JavaScript expressions
As we saw in the preceding section, JSX has special syntax that lets us embed JavaScript
expressions. Any time we render JSX content, expressions in the markup are evaluated. This
is the dynamic aspect of JSX content, and in this section, you'll learn how to use expressions
to set property values and element text content. You'll also learn how to map collections of
data to JSX elements.

Dynamic property values and text
Some HTML property or text values are static, meaning that they don't change as the JSX is
re-rendered. Other values, the values of properties or text, are based on data that's found
elsewhere in the application. Remember, React is just the view layer. Let's look at an
example so that you can get a feel for what the JavaScript expression syntax looks like in
JSX markup:

import React from 'react';
import { render } from 'react-dom';

// These constants are passed into the JSX
// markup using the JavaScript expression syntax.
const enabled = false;
const text = 'A Button';
const placeholder = 'input value...';
const size = 50;

// We're rendering a "<button>" and an "<input>"
// element, both of which use the "{}" JavaScript
// expression syntax to fill in property, and text
// values.
render((
 <section>

Rendering with JSX

[30]

 <button disabled={!enabled}>{text}</button>
 <input placeholder={placeholder} size={size} />
 </section>
),
 document.getElementById('app')
);

Anything that is a valid JavaScript expression can go in between the braces: {}. For
properties and text, this is often a variable name or object property. Notice in this example,
that the !enabled expression computes a boolean value. Here's what the rendered output
looks like:

If you're following along with the downloadable companion code, which I
strongly recommend doing, try playing with these values, and seeing how
the rendered HTML changes.

Mapping collections to elements
Sometimes we need to write JavaScript expressions that change the structure of our
markup. In the preceding section, we looked at using JavaScript expression syntax to
dynamically change the property values of JSX elements. What about when we need to add
or remove elements based on a JavaScript collection?

Throughout the book, when I refer to a JavaScript collection, I'm referring
to both plain objects and arrays. Or more generally, anything that's
iterable.

The best way to control JSX elements dynamically is to map them from a collection. Let's
look at an example of how this is done:

import React from 'react';
import { render } from 'react-dom';

// An array that we want to render as a list...
const array = [
 'First',
 'Second',
 'Third',

Rendering with JSX

[31]

];

// An object that we want to render as a list...
const object = {
 first: 1,
 second: 2,
 third: 3,
};

render((
 <section>
 <h1>Array</h1>

 { /* Maps "array" to an array of ""s.
 Note the "key" property on "".
 This is necessary for performance reasons,
 and React will warn us if it's missing. */ }

 {array.map(i => (
 <li key={i}>{i}
))}

 <h1>Object</h1>

 { /* Maps "object" to an array of ""s.
 Note that we have to use "Object.keys()"
 before calling "map()" and that we have
 to lookup the value using the key "i". */ }

 {Object.keys(object).map(i => (
 <li key={i}>
 {i}: {object[i]}

))}

 </section>
),
 document.getElementById('app')
);

The first collection is an array called array, populated with string items. Moving down to
the JSX markup, you can see that we're making a call to array.map(), which will return a
new array. The mapping function is actually returning a JSX element (), meaning that
each item in the array is now represented in the markup.

Rendering with JSX

[32]

The result of evaluating this expression is an array. Don't worry; JSX
knows how to render arrays of elements.

The object collection uses the same technique, except we have to call Object.keys() and
then map this array. What's nice about mapping collections to JSX elements on the page is
that we can drive the structure of React components based on collection data. This means
that we don't have to rely on imperative logic to control the UI.

Here's what the rendered output looks like:

Summary
In this chapter, you learned the basics about JSX, including its declarative structure and
why this is a good thing. Then, you wrote some code to render some basic HTML and
learned about describing complex structures using JSX.

Next, you spent some time learning about extending the vocabulary of JSX markup by
implementing your own React components, the fundamental building blocks of your UI.
Finally, you learned how to bring dynamic content into JSX element properties, and how to
map JavaScript collections to JSX elements, eliminating the need for imperative logic to
control UI display.

Now that you have a feel for what it's like to render UIs by embedding declarative XML in
your JavaScript modules, it's time to move on to the next chapter where we'll take a deeper
look at component properties and state.

3
Understanding Properties and

State
React components rely on JSX syntax, which is used to describe the structure of the UI. JSX
will only get us so far—we need data to fill in the structure of our React components. The
focus of this chapter is component data, which comes in two varieties: properties and state.

We'll start things off by defining what is meant by properties and state. Then, we'll walk
through some examples that show you the mechanics of setting component state, and
passing component properties. Toward the end of this chapter, we'll build on your new-
found knowledge of props and state and introduce functional components and the
container pattern.

What is component state?
React components declare the structure of a UI element using JSX. But this is only part of
the story. Components need data if they are to be useful. For example, your component JSX
might declare a that maps a JavaScript collection to elements. Where does this
collection come from?

State is the dynamic part of a React component. This means that you can declare the initial
state of a component, which changes over time.

