

Java 9 Programming Blueprints

Implement new features such as modules, the process
handling API, REPL, and many more to build end-to-end
applications in Java 9

Jason Lee

BIRMINGHAM - MUMBAI

Java 9 Programming Blueprints

Copyright © 2017 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or
transmitted in any form or by any means, without the prior written permission of the
publisher, except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the
information presented. However, the information contained in this book is sold without
warranty, either express or implied. Neither the author, nor Packt Publishing, and its
dealers and distributors will be held liable for any damages caused or alleged to be caused
directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: July 2017

Production reference: 1250717

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham
B3 2PB, UK.

ISBN 978-1-78646-019-6

www.packtpub.com

http://www.packtpub.com

Credits

Author
Jason Lee

Copy Editor
Zainab Bootwala

Reviewer
Dionisios Petrakopoulos

Project Coordinator
Prajakta Naik

Commissioning Editor
Kunal Parikh

Proofreader
Safis Editing

Acquisition Editor
Chaitanya Nair

Indexer
Rekha Nair

Content Development Editor
Lawrence Veigas

Graphics
Abhinash Sahu

Technical Editor
Abhishek Sharma

Production Coordinator
Nilesh Mohite

About the Author
Jason Lee has been writing software professionally for over 20 years, but his love for
computers started over a decade earlier, in the fourth grade, when his dad brought home a
Commodore 64. He has been working with Java for almost his entire career, with the last
12+ years focused primarily on Enterprise Java. He has written in-house web applications
and libraries, and also worked on large, more public projects, such as the JavaServer Faces
reference implementation Mojarra, GlassFish, and WebLogic Server.

Jason is currently the President of the Oklahoma City Java Users Group, and is an
occasional speaker at conferences. Ever the technology enthusiast, his current interests
include cloud computing, mobile development, and emerging JVM languages.

Apart from work, Jason enjoys spending time with his wife, Angela, and his two sons,
Andrew and Noah. He is active in the music ministry of his local church, and enjoys
reading, running, martial arts, and playing his bass guitar.

Everyone told me that writing a book is hard, and they weren't kidding! There's no way I
could have done this without the love and support of my beautiful wife, Angela, who was
patient and supportive during all of my late nights and long weekends, and was kind
enough to read through every last page, helping me clean things up.

My two awesome sons, Andrew and Noah, also deserve huge thanks. There were certainly
many nights when I was locked away in my office instead of spending time with you. I
appreciate your understanding and patience during this project, and I hope this is
something we can all be proud of together.

Angela, Andrew, and Noah, this is for you. I love you all!

About the Reviewer
Dionisios Petrakopoulos has worked in several companies using different technologies and
programming languages, such as C, C++, Java SE, Java EE, and Scala, as a senior software
engineer for the past 15 years. His main interest is the Java ecosystem and the various facets
of it. His other area of interest is information security, especially cryptography. He holds a
BSc degree in computer science and an MSc degree in information security, both from Royal
Holloway, University of London. He is also the technical reviewer of the book Learning
Modular Java Programming by Packt.

I would like to thank my wife Anna for her support and love.

www.PacktPub.com
For support files and downloads related to your book, please visit www.PacktPub.com.

Did you know that Packt offers eBook versions of every book published, with PDF and
ePub files available? You can upgrade to the eBook version at www.PacktPub.com and as a
print book customer, you are entitled to a discount on the eBook copy. Get in touch with us
at service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up for a
range of free newsletters and receive exclusive discounts and offers on Packt books and
eBooks.

h t t p s ://w w w . p a c k t p u b . c o m /m a p t

Get the most in-demand software skills with Mapt. Mapt gives you full access to all Packt
books and video courses, as well as industry-leading tools to help you plan your personal
development and advance your career.

Why subscribe?
Fully searchable across every book published by Packt
Copy and paste, print, and bookmark content
On demand and accessible via a web browser

http://www.PacktPub.com
http://www.PacktPub.com
http://www.PacktPub.com
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt

Customer Feedback
Thanks for purchasing this Packt book. At Packt, quality is at the heart of our editorial
process. To help us improve, please leave us an honest review on this book's Amazon page
at h t t p s ://w w w . a m a z o n . c o m /d p /178646019X .

If you'd like to join our team of regular reviewers, you can e-mail us at
customerreviews@packtpub.com. We award our regular reviewers with free eBooks and
videos in exchange for their valuable feedback. Help us be relentless in improving our
products!

https://www.amazon.com/dp/178646019X
https://www.amazon.com/dp/178646019X
https://www.amazon.com/dp/178646019X
https://www.amazon.com/dp/178646019X
https://www.amazon.com/dp/178646019X
https://www.amazon.com/dp/178646019X
https://www.amazon.com/dp/178646019X
https://www.amazon.com/dp/178646019X
https://www.amazon.com/dp/178646019X
https://www.amazon.com/dp/178646019X
https://www.amazon.com/dp/178646019X
https://www.amazon.com/dp/178646019X
https://www.amazon.com/dp/178646019X
https://www.amazon.com/dp/178646019X
https://www.amazon.com/dp/178646019X
https://www.amazon.com/dp/178646019X
https://www.amazon.com/dp/178646019X
https://www.amazon.com/dp/178646019X
https://www.amazon.com/dp/178646019X
https://www.amazon.com/dp/178646019X
https://www.amazon.com/dp/178646019X
https://www.amazon.com/dp/178646019X
https://www.amazon.com/dp/178646019X
https://www.amazon.com/dp/178646019X
https://www.amazon.com/dp/178646019X
https://www.amazon.com/dp/178646019X
https://www.amazon.com/dp/178646019X
https://www.amazon.com/dp/178646019X
https://www.amazon.com/dp/178646019X
https://www.amazon.com/dp/178646019X
https://www.amazon.com/dp/178646019X
https://www.amazon.com/dp/178646019X
https://www.amazon.com/dp/178646019X
https://www.amazon.com/dp/178646019X
https://www.amazon.com/dp/178646019X
https://www.amazon.com/dp/178646019X
https://www.amazon.com/dp/178646019X
https://www.amazon.com/dp/178646019X
https://www.amazon.com/dp/178646019X
https://www.amazon.com/dp/178646019X
https://www.amazon.com/dp/178646019X
https://www.amazon.com/dp/178646019X
https://www.amazon.com/dp/178646019X
https://www.amazon.com/dp/178646019X

Table of Contents
Preface 1

Chapter 1: Introduction 7

New features in Java 8 8
Lambdas 8

Streams 11
The new java.time package 12
Default methods 12

New features in Java 9 14
Java Platform Module System/Project Jigsaw 14
Process handling API 15
Concurrency changes 16
REPL 16

Projects 17
Process Viewer/Manager 17
Duplicate File Finder 17
Date Calculator 18
Social Media Aggregator 18
Email filter 19
JavaFX photo management 20
A client/server note application 20
Serverless Java 21
Android desktop synchronization client 21

Getting started 22
Summary 28

Chapter 2: Managing Processes in Java 29

Creating a project 30
Bootstrapping the application 33
Defining the user interface 34
Initializing the user interface 37
Adding menus 45
Updating the process list 49
Summary 51

Chapter 3: Duplicate File Finder 52

[ii]

Getting started 53
Building the library 54

Concurrent Java with a Future interface 56
Modern database access with JPA 63

Building the command-line interface 70
Building the graphical user interface 81
Summary 94

Chapter 4: Date Calculator 95

Getting started 95
Building the library 96

A timely interlude 98
Duration 98
Period 99
Clock 100

Instant 100
LocalDate 100
LocalTime 101
LocalDateTime 101
ZonedDateTime 101

Back to our code 101
A brief interlude on testing 113

Building the command-line interface 116
Summary 118

Chapter 5: Sunago - A Social Media Aggregator 119

Getting started 120
Setting up the user interface 125
Setting up the controller 127
Writing the model class 127
Finishing up the controller 129
Adding an image for the item 131
Building the preferences user interface 132
Saving user preferences 136
Plugins and extensions with the Service Provider Interface 138
Resource handling with try-with-resources 139

Adding a network - Twitter 143
Registering as a Twitter developer 144
Adding Twitter preferences to Sunago 147
OAuth and logging on to Twitter 150
Adding a model for Twitter 155
Implementing a Twitter client 157

[iii]

A brief look at internationalization and localization 158
Making our JAR file fat 160
Adding a refresh button 163

Adding another network - Instagram 165
Registering as an Instagram developer 166
Implementing the Instagram client 167
Loading our plugins in Sunago 170

Summary 174

Chapter 6: Sunago - An Android Port 175

Getting started 176
Building the user interface 187

Android data access 195
Android services 203
Android tabs and fragments 209

Summary 217

Chapter 7: Email and Spam Management with MailFilter 218

Getting started 219
A brief look at the history of email protocols 219

JavaMail, the Standard Java API for Email 223
Building the CLI 227
Building the GUI 245
Building the service 252

Summary 256

Chapter 8: Photo Management with PhotoBeans 258

Getting started 259
Bootstrapping the project 259

Branding your application 262
NetBeans modules 265
TopComponent - the class for tabs and windows 267
Nodes, a NetBeans presentation object 275
Lookup, a NetBeans fundamental 276
Writing our own nodes 277
Performing Actions 281
Services - exposing decoupled functionality 282

PhotoViewerTopComponent 286
Integrating JavaFX with the NetBeans RCP 289
NetBeans preferences and the Options panel 291

Adding a primary panel 293

[iv]

Adding a secondary panel 295
Loading and saving preferences 299
Reacting to changes in preferences 300

Summary 301

Chapter 9: Taking Notes with Monumentum 303

Getting started 304
Microservice frameworks on the JVM 305
Creating the application 307
Creating REST Services 313
Adding MongoDB 315
Dependency injection with CDI 320
Finish the notes resource 322
Adding authentication 325
Building the user interface 336

Summary 346

Chapter 10: Serverless Java 347

Getting started 348
Planning the application 350
Building your first function 350

DynamoDB 354
Simple Email Service 359
Simple Notification Service 361
Deploying the function 362

Creating a role 363
Creating a topic 364
Deploying the function 365
Testing the function 367
Configuring your AWS credentials 372

Summary 375

Chapter 11: DeskDroid - A Desktop Client for Your Android Phone 376

Getting started 376
Creating the Android project 377

Requesting permissions 379
Creating the service 381

Server-sent events 383
Controlling the service state 384
Adding endpoints to the server 385

Getting conversations 386
Sending an SMS message 390

Creating the desktop application 393

[v]

Defining the user interface 394
Defining user interface behavior 397
Sending messages 408
Getting updates 412
Security 417

Securing the endpoints 417
Handling authorization requests 419
Authorizing the client 422

Summary 424

Chapter 12: What's Next? 426

Looking back 426
Looking forward 428

Project Valhalla 428
Value types 428
Generic specialization 430
Reified generics 430

Project Panama 430
Project Amber 431

Local-Variable Type Inference 431
Enhanced enums 432
Lambda leftovers 433

Looking around 434
Ceylon 434
Kotlin 437

Summary 440

Index 441

Preface
The world has been waiting for Java 9 for a long time. More specifically, we've been waiting
for the Java Platform Module System, and Java 9 is finally going to deliver it. If all goes as
planned, we'll finally have true isolation, giving us, potentially, smaller JDKs and more
stable applications. That's not all that Java 9 is offering of course; there is a plethora of great
changes in the release, but that's certainly the most exciting. That said, this book is not a
book about the module system. There are plenty of excellent resources that can give you a
deep dive into the Java Platform Module System and its many implications. This book,
though, is a much more practical look at Java 9. Rather than discussing the minutiae of the
release, as satisfying as that can be, what we'll do over the next few hundred pages is look
at different ways all of the great changes in recent JDK releases--especially Java 9--can be
applied in practical ways.

When we're done, you'll have ten different projects that cover a myriad of problem areas,
from which you can draw usable examples as you work to solve your own unique
challenges.

What this book covers
Chapter 1, Introduction, gives a quick overview of the new features in Java 9, and also
covers some of the major features of Java 7 and 8 as well, setting the stage for what we'll be
using in later chapters.

Chapter 2, Managing Process in Java, builds a simple process management application (akin
to Unix's top command), as we explore the new OS process management API changes in
Java 9.

Chapter 3, Duplicate File Finder, demonstrates the use of the New File I/O APIs in an
application, both command line and GUI, that will search for and identify duplicate files.
Technologies such as file hashing, streams, and JavaFX are heavily used.

Chapter 4, Date Calculator, shows a library and command-line tool to perform date
calculations. We will see Java 8's Date/Time API exercised heavily.

Chapter 5, Sunago - A Social Media Aggregator, shows how one can integrate with third-
party systems to build an aggregator. We'll work with REST APIs, JavaFX, and pluggable
application architectures.

Preface

[2]

Chapter 6, Sunago - An Android Port, sees us return to our application from Chapter 5,
Sunago - A Social Media Aggregator.

Chapter 7, Email and Spam Management with MailFilter, builds a mail filtering application,
explaining how the various email protocols work, then demonstrates how to interact with
emails using the standard Java email API--JavaMail.

Chapter 8, Photo Management with PhotoBeans, takes us in a completely different direction
when we build a photo management application using the NetBeans Rich Client Platform.

Chapter 9, Taking Notes with Monumentum, holds yet another new direction. In this chapter,
we build an application--and microservice--that offers web-based note-taking similar to
several popular commercial offerings.

Chapter 10, Serverless Java, moves us into the cloud as we build a Function as a Service
system in Java to send email and SMS-based notifications.

Chapter 11, DeskDroid - A Desktop Client for Your Android Phone, demonstrates a simple
approach for a desktop client to interact with an Android device as we build an application
to view and send text messages from our desktop.

Chapter 12, What's Next?, discusses what the future might hold for Java, and also touches
upon two recent challengers to Java's preeminence on the JVM--Ceylon and Kotlin.

What you need for this book
You need the Java Development Kit (JDK) 9, NetBeans 8.2 or newer, and Maven 3.0 or
newer. Some chapters will require additional software, including Scene Builder from Gluon
and Android Studio.

Who this book is for
This book is for beginner to intermediate developers who are interested in seeing new and
varied APIs and programming techniques applied in practical examples. Deep
understanding of Java is not required, but a basic familiarity with the language and its
ecosystem, build tools, and so on is assumed.

Preface

[3]

Conventions
In this book, you will find a number of text styles that distinguish between different kinds
of information. Here are some examples of these styles and an explanation of their meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows: "The Java
architects have introduced a new file, module-info.java, similar to the existing
package-info.java file, found at the root of the module, for example at
src/main/java/module-info.java."

A block of code is set as follows:

 module com.steeplesoft.foo.intro {
 requires com.steeplesoft.bar;
 exports com.steeplesoft.foo.intro.model;
 exports com.steeplesoft.foo.intro.api;
 }

Any command-line input or output is written as follows:

$ mvn -Puber install

New terms and important words are shown in bold. Words that you see on the screen, for
example, in menus or dialog boxes, appear in the text like this: "In the New Project
window, we select Maven then NetBeans Application."

Warnings or important notes appear like this.

Tips and tricks appear like this.

Preface

[4]

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about this
book-what you liked or disliked. Reader feedback is important for us as it helps us develop
titles that you will really get the most out of.
To send us general feedback, simply e-mail feedback@packtpub.com, and mention the
book's title in the subject of your message.
If there is a topic that you have expertise in and you are interested in either writing or
contributing to a book, see our author guide at www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to help you
to get the most from your purchase.

Downloading the example code
You can download the example code files for this book from your account at h t t p ://w w w . p

a c k t p u b . c o m . If you purchased this book elsewhere, you can visit h t t p ://w w w . p a c k t p u b . c

o m /s u p p o r t and register to have the files e-mailed directly to you.

You can download the code files by following these steps:

Log in or register to our website using your e-mail address and password.1.
Hover the mouse pointer on the SUPPORT tab at the top.2.
Click on Code Downloads & Errata.3.
Enter the name of the book in the Search box.4.
Select the book for which you're looking to download the code files.5.
Choose from the drop-down menu where you purchased this book from.6.
Click on Code Download.7.

Once the file is downloaded, please make sure that you unzip or extract the folder using the
latest version of:

WinRAR / 7-Zip for Windows
Zipeg / iZip / UnRarX for Mac
7-Zip / PeaZip for Linux

http://www.packtpub.com/authors
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support

Preface

[5]

The code bundle for the book is also hosted on GitHub at h t t p s ://g i t h u b . c o m /P a c k t P u b l

i s h i n g /J a v a - 9- P r o g r a m m i n g - B l u e p r i n t s . We also have other code bundles from our rich
catalog of books and videos available at h t t p s ://g i t h u b . c o m /P a c k t P u b l i s h i n g /. Check
them out!

aownloading the color images of this book
We also provide you with a PDF file that has color images of the screenshots/diagrams used
in this book. The color images will help you better understand the changes in the output.
You can download this file from h t t p s ://w w w . p a c k t p u b . c o m /s i t e s /d e f a u l t /f i l e s /d o w n

l o a d s /J a v a 9P r o g r a m m i n g B l u e p r i n t s _ C o l o r I m a g es.pdf .

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes do
happen. If you find a mistake in one of our books-maybe a mistake in the text or the code-
we would be grateful if you could report this to us. By doing so, you can save other readers
from frustration and help us improve subsequent versions of this book. If you find any
errata, please report them by visiting http://www.packtpub.com/submit-errata, selecting
your book, clicking on the Errata Submission Form link, and entering the details of your
errata. Once your errata are verified, your submission will be accepted and the errata will
be uploaded to our website or added to any list of existing errata under the Errata section of
that title.

To view the previously submitted errata, go to
https://www.packtpub.com/books/content/support and enter the name of the book in the
search field. The required information will appear under the Errata section.

Piracy
Piracy of copyrighted material on the Internet is an ongoing problem across all media. At
Packt, we take the protection of our copyright and licenses very seriously. If you come
across any illegal copies of our works in any form on the Internet, please provide us with
the location address or website name immediately so that we can pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected pirated
material.

We appreciate your help in protecting our authors and our ability to bring you valuable
content.

https://github.com/PacktPublishing/Java-9-Programming-Blueprints
https://github.com/PacktPublishing/Java-9-Programming-Blueprints
https://github.com/PacktPublishing/Java-9-Programming-Blueprints
https://github.com/PacktPublishing/Java-9-Programming-Blueprints
https://github.com/PacktPublishing/Java-9-Programming-Blueprints
https://github.com/PacktPublishing/Java-9-Programming-Blueprints
https://github.com/PacktPublishing/Java-9-Programming-Blueprints
https://github.com/PacktPublishing/Java-9-Programming-Blueprints
https://github.com/PacktPublishing/Java-9-Programming-Blueprints
https://github.com/PacktPublishing/Java-9-Programming-Blueprints
https://github.com/PacktPublishing/Java-9-Programming-Blueprints
https://github.com/PacktPublishing/Java-9-Programming-Blueprints
https://github.com/PacktPublishing/Java-9-Programming-Blueprints
https://github.com/PacktPublishing/Java-9-Programming-Blueprints
https://github.com/PacktPublishing/Java-9-Programming-Blueprints
https://github.com/PacktPublishing/Java-9-Programming-Blueprints
https://github.com/PacktPublishing/Java-9-Programming-Blueprints
https://github.com/PacktPublishing/Java-9-Programming-Blueprints
https://github.com/PacktPublishing/Java-9-Programming-Blueprints
https://github.com/PacktPublishing/Java-9-Programming-Blueprints
https://github.com/PacktPublishing/Java-9-Programming-Blueprints
https://github.com/PacktPublishing/Java-9-Programming-Blueprints
https://github.com/PacktPublishing/Java-9-Programming-Blueprints
https://github.com/PacktPublishing/Java-9-Programming-Blueprints
https://github.com/PacktPublishing/Java-9-Programming-Blueprints
https://github.com/PacktPublishing/Java-9-Programming-Blueprints
https://github.com/PacktPublishing/Java-9-Programming-Blueprints
https://github.com/PacktPublishing/Java-9-Programming-Blueprints
https://github.com/PacktPublishing/Java-9-Programming-Blueprints
https://github.com/PacktPublishing/Java-9-Programming-Blueprints
https://github.com/PacktPublishing/Java-9-Programming-Blueprints
https://github.com/PacktPublishing/Java-9-Programming-Blueprints
https://github.com/PacktPublishing/Java-9-Programming-Blueprints
https://github.com/PacktPublishing/Java-9-Programming-Blueprints
https://github.com/PacktPublishing/Java-9-Programming-Blueprints
https://github.com/PacktPublishing/Java-9-Programming-Blueprints
https://github.com/PacktPublishing/Java-9-Programming-Blueprints
https://github.com/PacktPublishing/Java-9-Programming-Blueprints
https://github.com/PacktPublishing/Java-9-Programming-Blueprints
https://github.com/PacktPublishing/Java-9-Programming-Blueprints
https://github.com/PacktPublishing/Java-9-Programming-Blueprints
https://github.com/PacktPublishing/Java-9-Programming-Blueprints
https://github.com/PacktPublishing/Java-9-Programming-Blueprints
https://github.com/PacktPublishing/Java-9-Programming-Blueprints
https://github.com/PacktPublishing/Java-9-Programming-Blueprints
https://github.com/PacktPublishing/Java-9-Programming-Blueprints
https://github.com/PacktPublishing/Java-9-Programming-Blueprints
https://github.com/PacktPublishing/Java-9-Programming-Blueprints
https://github.com/PacktPublishing/Java-9-Programming-Blueprints
https://github.com/PacktPublishing/Java-9-Programming-Blueprints
https://github.com/PacktPublishing/Java-9-Programming-Blueprints
https://github.com/PacktPublishing/Java-9-Programming-Blueprints
https://github.com/PacktPublishing/Java-9-Programming-Blueprints
https://github.com/PacktPublishing/Java-9-Programming-Blueprints
https://github.com/PacktPublishing/Java-9-Programming-Blueprints
https://github.com/PacktPublishing/Java-9-Programming-Blueprints
https://github.com/PacktPublishing/Java-9-Programming-Blueprints
https://github.com/PacktPublishing/Java-9-Programming-Blueprints
https://github.com/PacktPublishing/Java-9-Programming-Blueprints
https://github.com/PacktPublishing/Java-9-Programming-Blueprints
https://github.com/PacktPublishing/Java-9-Programming-Blueprints
https://github.com/PacktPublishing/Java-9-Programming-Blueprints
https://github.com/PacktPublishing/Java-9-Programming-Blueprints
https://github.com/PacktPublishing/Java-9-Programming-Blueprints
https://github.com/PacktPublishing/Java-9-Programming-Blueprints
https://github.com/PacktPublishing/Java-9-Programming-Blueprints
https://github.com/PacktPublishing/Java-9-Programming-Blueprints
https://github.com/PacktPublishing/Java-9-Programming-Blueprints
https://github.com/PacktPublishing/Java-9-Programming-Blueprints
https://github.com/PacktPublishing/Java-9-Programming-Blueprints
https://github.com/PacktPublishing/Java-9-Programming-Blueprints
https://github.com/PacktPublishing/Java-9-Programming-Blueprints
https://github.com/PacktPublishing/Java-9-Programming-Blueprints
https://github.com/PacktPublishing/Java-9-Programming-Blueprints
https://github.com/PacktPublishing/Java-9-Programming-Blueprints
https://github.com/PacktPublishing/Java-9-Programming-Blueprints
https://github.com/PacktPublishing/Java-9-Programming-Blueprints
https://github.com/PacktPublishing/Java-9-Programming-Blueprints
https://github.com/PacktPublishing/Java-9-Programming-Blueprints
https://github.com/PacktPublishing/Java-9-Programming-Blueprints
https://github.com/PacktPublishing/Java-9-Programming-Blueprints
https://github.com/PacktPublishing/Java-9-Programming-Blueprints
https://github.com/PacktPublishing/Java-9-Programming-Blueprints
https://github.com/PacktPublishing/Java-9-Programming-Blueprints
https://github.com/PacktPublishing/Java-9-Programming-Blueprints
https://github.com/PacktPublishing/Java-9-Programming-Blueprints
https://github.com/PacktPublishing/Java-9-Programming-Blueprints
https://github.com/PacktPublishing/Java-9-Programming-Blueprints
https://github.com/PacktPublishing/Java-9-Programming-Blueprints
https://github.com/PacktPublishing/Java-9-Programming-Blueprints
https://github.com/PacktPublishing/Java-9-Programming-Blueprints
https://github.com/PacktPublishing/Java-9-Programming-Blueprints
https://github.com/PacktPublishing/Java-9-Programming-Blueprints
https://github.com/PacktPublishing/Java-9-Programming-Blueprints
https://github.com/PacktPublishing/Java-9-Programming-Blueprints
https://github.com/PacktPublishing/Java-9-Programming-Blueprints
https://github.com/PacktPublishing/Java-9-Programming-Blueprints
https://github.com/PacktPublishing/Java-9-Programming-Blueprints
https://github.com/PacktPublishing/Java-9-Programming-Blueprints
https://github.com/PacktPublishing/Java-9-Programming-Blueprints
https://github.com/PacktPublishing/Java-9-Programming-Blueprints
https://github.com/PacktPublishing/Java-9-Programming-Blueprints
https://github.com/PacktPublishing/Java-9-Programming-Blueprints
https://github.com/PacktPublishing/Java-9-Programming-Blueprints
https://github.com/PacktPublishing/Java-9-Programming-Blueprints
https://github.com/PacktPublishing/Java-9-Programming-Blueprints
https://github.com/PacktPublishing/Java-9-Programming-Blueprints
https://github.com/PacktPublishing/Java-9-Programming-Blueprints
https://github.com/PacktPublishing/Java-9-Programming-Blueprints
https://github.com/PacktPublishing/Java-9-Programming-Blueprints
https://github.com/PacktPublishing/Java-9-Programming-Blueprints
https://github.com/PacktPublishing/Java-9-Programming-Blueprints
https://github.com/PacktPublishing/Java-9-Programming-Blueprints
https://github.com/PacktPublishing/Java-9-Programming-Blueprints
https://github.com/PacktPublishing/Java-9-Programming-Blueprints
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://www.packtpub.com/sites/default/files/downloads/Java9ProgrammingBlueprints_ColorImages
https://www.packtpub.com/sites/default/files/downloads/Java9ProgrammingBlueprints_ColorImages
https://www.packtpub.com/sites/default/files/downloads/Java9ProgrammingBlueprints_ColorImages
https://www.packtpub.com/sites/default/files/downloads/Java9ProgrammingBlueprints_ColorImages
http://www.packtpub.com/submit-errata
https://www.packtpub.com/books/content/support
https://www.packtpub.com/sites/default/files/downloads/Java9ProgrammingBlueprints_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/Java9ProgrammingBlueprints_ColorImages.pdf

Preface

[6]

Questions
If you have a problem with any aspect of this book, you can contact us at
questions@packtpub.com, and we will do our best to address the problem.

1
Introduction

In the process of erecting a new building, a set of blueprints helps all related parties
communicate--the architect, electricians, carpenters, plumbers, and so on. It details things
such as shapes, sizes, and materials. Without them, each of the subcontractors would be left
guessing as to what to do, where to do it, and how. Without these blueprints, modern
architecture would be almost impossible.

What is in your hands--or on the screen in front of you--is a set of blueprints of a different
sort. Rather than detailing exactly how to build your specific software system, as each
project and environment has unique constraints and requirements, these blueprints offer
examples of how to build a variety of Java-based systems, providing examples of how to
use specific features in the Java Development Kit, or JDK, with a special focus on the new
features of Java 9 that you can then apply to your specific problem.

Since it would be impossible to build an application using only the new Java 9 features, we
will also be using and highlighting many of the newest features in the JDK. Before we get
too far into what that entails, then, let's take a brief moment to discuss some of these great
new features from recent major JDK releases. Hopefully, most Java shops are already on
Java 7, so we'll focus on version 8 and, of course, version 9.

In this chapter, we will cover the following topics:

New features in Java 8
New features in Java 9
Projects

Introduction

[8]

New features in Java 8
Java 8, released on March 8, 2014, brought arguably two of the most significant features
since Java 5, released in 2004--lambdas and streams. With functional programming gaining
popularity in the JVM world, especially with the help of languages such as Scala, Java
adherents had been clamoring for more functional-style language features for several years.
Originally slated for release in Java 7, the feature was dropped from that release, finally
seeing a stable release with Java 8.

While it can be hoped that everyone is familiar with Java's lambda support, experience has
shown that many shops, for a variety of reasons, are slow to adopt new language versions
and features, so a quick introduction might be helpful.

Lambdas
The term lambda, which has its roots in lambda calculus, developed by Alonzo Church in
1936, simply refers to an anonymous function. Typically, a function (or method, in more
proper Java parlance), is a statically-named artifact in the Java source:

 public int add(int x, int y) {
 return x + y;
 }

This simple method is one named add that takes two int parameters as well as returning
an int parameter. With the introduction of lambdas, this can now be written as follows:

 (int x, int y) → x + y

Or, more simply as this:

 (x, y) → x + y

This abbreviated syntax indicates that we have a function that takes two parameters and
returns their sum. Depending on where this lambda is used, the types of the parameters can
be inferred by the compiler, making the second, even more concise format possible. Most
importantly, though, note that this method is no longer named. Unless it is assigned to a
variable or passed as a parameter (more on this later), it can not be referenced--or used--
anywhere in the system.

Introduction

[9]

This example, of course, is absurdly simple. A better example of this might be in one of the
many APIs where the method's parameter is an implementation of what is known as a
Single Abstract Method (SAM) interface, which is, at least until Java 8, an interface with a
single method. One of the canonical examples of a SAM is Runnable. Here is an example of
the pre-lambda Runnable usage:

 Runnable r = new Runnable() {
 public void run() {
 System.out.println("Do some work");
 }
 };
 Thread t = new Thread(r);
 t.start();

With Java 8 lambdas, this code can be vastly simplified to this:

 Thread t = new Thread(() ->
 System.out.println("Do some work"));
 t.start();

The body of the Runnable method is still pretty trivial, but the gains in clarity and
conciseness should be pretty obvious.

While lambdas are anonymous functions (that is, they have no names), Java lambdas, as is
the case in many other languages, can also be assigned to variables and passed as
parameters (indeed, the functionality would be almost worthless without this capability).
Revisiting the Runnable method in the preceding code, we can separate the declaration and
the use of Runnable as follows:

 Runnable r = () {
 // Acquire database connection
 // Do something really expensive
 };
 Thread t = new Thread(r);
 t.start();

This is intentionally more verbose than the preceding example. The stubbed out body of the
Runnable method is intended to mimic, after a fashion, how a real-world Runnable may
look and why one may want to assign the newly-defined Runnable method to a variable in
spite of the conciseness that lambdas offer. This new lambda syntax allows us to declare the
body of the Runnable method without having to worry about method names, signatures,
and so on. It is true that any decent IDE would help with this kind of boilerplate, but this
new syntax gives you, and the countless developers who will maintain your code, much
less noise to have to parse when debugging the code.

Introduction

[10]

Any SAM interface can be written as a lambda. Do you have a comparator that you really
only need to use once?

 List<Student> students = getStudents();
 students.sort((one, two) -> one.getGrade() - two.getGrade());

How about ActionListener?

 saveButton.setOnAction((event) -> saveAndClose());

Additionally, you can use your own SAM interfaces in lambdas as follows:

 public <T> interface Validator<T> {
 boolean isValid(T value);
 }
 cardProcessor.setValidator((card)
 card.getNumber().startsWith("1234"));

One of the advantages of this approach is that it not only makes the consuming code more
concise, but it also reduces the level of effort, such as it is, in creating some of these concrete
SAM instances. That is to say, rather than having to decide between an anonymous class
and a concrete, named class, the developer can declare it inline, cleanly and concisely.

In addition to the SAMs Java developers have been using for years, Java 8 introduced a
number of functional interfaces to help facilitate more functional style programming. The
Java 8 Javadoc lists 43 different interfaces. Of these, there are a handful of basic function
shapes that you should know of, some of which are as follows:

BiConsumer<T,U> This represents an operation that accepts two input arguments and
returns no result

BiFunction<T,U,R> This represents a function that accepts two arguments and
produces a result

BinaryOperator<T> This represents an operation upon two operands of the same type,
producing a result of the same type as the operands

BiPredicate<T,U> This represents a predicate (Boolean-valued function) of two
arguments

Consumer<T> This represents an operation that accepts a single input argument
and returns no result

Function<T,R> This represents a function that accepts one argument and produces
a result

Introduction

[11]

Predicate<T> This represents a predicate (Boolean-valued function) of one
argument

Supplier<T> This represents a supplier of results

There are a myriad of uses for these interfaces, but perhaps the best way to demonstrate
some of them is to turn our attention to the next big feature in Java 8--Streams.

Streams
The other major addition to Java 8, and, perhaps where lambdas shine the brightest, is the
new Streams API. If you were to search for a definition of Java streams, you would get
answers that range from the somewhat circular a stream of data elements to the more
technical Java streams are monads, and they're probably both right. The Streams API
allows the Java developer to interact with a stream of data elements via a sequence of steps.
Even putting it that way isn't as clear as it could be, so let's see what it means by looking at
some sample code.

Let's say you have a list of grades for a particular class. You would like to know what the
average grade is for the girls in the class. Prior to Java 8, you might have written something
like this:

 double sum = 0.0;
 int count = 0;
 for (Map.Entry<Student, Integer> g : grades.entrySet()) {
 if ("F".equals(g.getKey().getGender())) {
 count++;
 sum += g.getValue();
 }
 }
 double avg = sum / count;

We initialize two variables, one to store the sums and one to count the number of hits. Next,
we loop through the grades. If the student's gender is female, we increment our counter and
update the sum. When the loop terminates, we then have the information we need to
calculate the average. This works, but it's a bit verbose. The new Streams API can help with
that:

 double avg = grades.entrySet().stream()
 .filter(e -> "F".equals(e.getKey().getGender())) // 1
 .mapToInt(e -> e.getValue()) // 2
 .average() // 3
 .getAsDouble(); //4

Introduction

[12]

This new version is not significantly smaller, but the purpose of the code is much clearer. In
the preceding pre-stream code, we have to play computer, parsing the code and teasing out
its intended purpose. With streams, we have a clear, declarative means to express
application logic. For each entry in the map do the following:

Filter out each entry whose gender is not F.1.
Map each value to the primitive int.2.
Average the grades.3.
Return the value as a double.4.

With the stream-based and lamba-based approach, we don't need to declare temporary,
intermediate variables (grade count and total), and we don't need to worry about
calculating the admittedly simple average. The JDK does all of the heavy-lifting for us.

The new java.time package
While lambdas and streams are extremely important game-changing updates, with Java 8,
we were given another long-awaited change that was, at least in some circles, just as
exciting: a new date/time API. Anyone who has worked with dates and times in Java knows
the pain of java.util.Calendar and company. Clearly, you can get your work done, but
it's not always pretty. Many developers found the API too painful to use, so they integrated
the extremely popular Joda Time library into their projects. The Java architects agreed, and
engaged Joda Time's author, Stephen Colebourne, to lead JSR 310, which brought a version
of Joda Time (fixing various design flaws) to the platform. We'll take a detailed look at how
to use some of these new APIs in our date/time calculator later in the book.

Default methods
Before turning our attention to Java 9, let's take a look at one more significant language
feature: default methods. Since the beginning of Java, an interface was used to define how a
class looks, implying a certain type of behavior, but was unable to implement that behavior.
This made polymorphism much simpler in a lot of cases, as any number of classes could
implement a given interface, and the consuming code treats them as that interface, rather
than whatever concrete class they actually are.

Introduction

[13]

One of the problems that have confronted API developers over the years, though, was how
to evolve an API and its interfaces without breaking existing code. For example, take the
ActionSource interface from the JavaServer Faces 1.1 specification. When the JSF 1.2
expert group was working on the next revision of the specification, they identified the need
to add a new property to the interface, which would result in two new methods--the getters
and setters. They could not simply add the methods to the interface, as that would break
every implementation of the specification, requiring the maintainers of the implementation
to update their classes. Obviously, this sort of breakage is unacceptable, so JSF 1.2
introduced ActionSource2, which extends ActionSource and adds the new methods.
While this approach is considered ugly by many, the 1.2 expert group had a few choices,
and none of them were very good.

With Java 8, though, interfaces can now specify a default method on the interface definition,
which the compiler will use for the method implementation if the extending class does not
provide one. Let's take the following piece of code as an example:

 public interface Speaker {
 void saySomething(String message);
 }
 public class SpeakerImpl implements Speaker {
 public void saySomething(String message) {
 System.out.println(message);
 }
 }

We've developed our API and made it available to the public, and it's proved to be really
popular. Over time, though, we've identified an improvement we'd like to make: we'd like
to add some convenience methods, such as sayHello() and sayGoodbye(), to save our
users a little time. However, as discussed earlier, if we just add these new methods to the
interface, we'll break our users' code as soon as they update to the new version of the
library. Default methods allow us to extend the interface and avoid the breakage by
defining an implementation:

 public interface Speaker {
 void saySomething(String message);
 default public void sayHello() {
 System.out.println("Hello");
 }
 default public void sayGoodbye() {
 System.out.println("Good bye");
 }
 }

Introduction

[14]

Now, when users update their library JARs, they immediately gain these new methods and
their behavior, without making any changes. Of course, to use these methods, the users will
need to modify their code, but they need not do so until--and if--they want to.

New features in Java 9
As with any new version of the JDK, this release was packed with a lot of great new
features. Of course, what is most appealing will vary based on your needs, but we'll focus
specifically on a handful of these new features that are most relevant to the projects we'll
build together. First up is the most significant, the Java Module System.

Java Platform Module System/Project Jigsaw
Despite being a solid, feature-packed release, Java 8 was considered by a fair number to be a
bit disappointing. It lacked the much anticipated Java Platform Module System (JPMS),
also known more colloquially, though not quite accurately, as Project Jigsaw. The Java
Platform Module System was originally slated to ship with Java 7 in 2011, but it was
deferred to Java 8 due to some lingering technical concerns. Project Jigsaw was started not
only to finish the module system, but also to modularize the JDK itself, which would help
Java SE scale down to smaller devices, such as mobile phones and embedded systems.
Jigsaw was scheduled to ship with Java 8, which was released in 2014, but it was deferred
yet again, as the Java architects felt they still needed more time to implement the system
correctly. At long last, though, Java 9 will finally deliver this long-promised project.

That said, what exactly is it? One problem that has long haunted API developers, including
the JDK architects, is the inability to hide implementation details of public APIs. A good
example from the JDK of private classes that developers should not be using directly is the
com.sun.*/sun.* packages and classes. A perfect example of this--of private APIs finding
widespread public use--is the sun.misc.Unsafe class. Other than a strongly worded
warning in Javadoc about not using these internal classes, there's little that could be done to
prevent their use. Until now.

With the JPMS, developers will be able to make implementation classes public so that they
may be easily used inside their projects, but not expose them outside the module, meaning
they are not exposed to consumers of the API or library. To do this, the Java architects have
introduced a new file, module-info.java, similar to the existing package-info.java
file, found at the root of the module, for example, at src/main/java/module-info.java.
It is compiled to module-info.class, and is available at runtime via reflection and the
new java.lang.Module class.

Introduction

[15]

So what does this file do, and what does it look like? Java developers can use this file to
name the module, list its dependencies, and express to the system, both compile and
runtime, which packages are exported to the world. For example, suppose, in our preceding
stream example, we have three packages: model, api, and impl. We want to expose the
models and the API classes, but not any of the implementation classes. Our module-
info.java file may look something like this:

 module com.packt.j9blueprints.intro {
 requires com.foo;
 exports com.packt.j9blueprints.intro.model;
 exports com.packt.j9blueprints.intro.api;
 }

This definition exposes the two packages we want to export, and also declares a
dependency on the com.foo module. If this module is not available at compile-time, the
project will not build, and if it is not available at runtime, the system will throw an
exception and exit. Note that the requires statement does not specify a version. This is
intentional, as it was decided not to tackle the version-selection issue as part of the module
system, leaving that to more appropriate systems, such as build tools and containers.

Much more could be said about the module system, of course, but an exhaustive discussion
of all of its features and limitations is beyond the scope of this book. We will be
implementing our applications as modules, though, so we'll see the system used--and
perhaps explained in a bit more detail--throughout the book.

Those wanting a more in-depth discussion of the Java Platform Module
System can search for the article, The State of the Module System, by Mark
Reinhold.

Process handling API
In prior versions of Java, developers interacting with native operating system processes had
to use a fairly limited API, with some operations requiring resorting to native code. As part
of Java Enhancement Proposal (JEP) 102, the Java process API was extended with the
following features (quoting from the JEP text):

The ability to get the pid (or equivalent) of the current Java virtual machine and
the pid of processes created with the existing API.
The ability to enumerate processes on the system. Information on each process
may include its pid, name, state, and perhaps resource usage.

Introduction

[16]

The ability to deal with process trees; in particular, some means to destroy a
process tree.
The ability to deal with hundreds of subprocesses, perhaps multiplexing the
output or error streams to avoid creating a thread per subprocess.

We will explore these API changes in our first project, the Process Viewer/Manager (see the
following sections for details).

Concurrency changes
As was done in Java 7, the Java architects revisited the concurrency libraries, making some
much needed changes, this time in order to support the reactive-streams specification.
These changes include a new class, java.util.concurrent.Flow, with several nested
interfaces: Flow.Processor, Flow.Publisher, Flow.Subscriber, and
Flow.Subscription.

REPL
One change that seems to excite a lot of people isn't a language change at all. It's the
addition of a REPL (Read-Eval-Print-Loop), a fancy term for a language shell. In fact, the
command for this new tool is jshell. This tool allows us to type or paste in Java code and
get immediate feedback. For example, if we wanted to experiment with the Streams API
discussed in the preceding section, we could do something like this:

$ jshell
| Welcome to JShell -- Version 9-ea
| For an introduction type: /help intro

jshell> List<String> names = Arrays.asList(new String[]{"Tom", "Bill",
"Xavier", "Sarah", "Adam"});
names ==> [Tom, Bill, Xavier, Sarah, Adam]

jshell> names.stream().sorted().forEach(System.out::println);
Adam
Bill
Sarah
Tom
Xavier

Introduction

[17]

This is a very welcome addition that should help Java developers rapidly prototype and test
their ideas.

Projects
With that brief and high-level overview of what new features are available to use, what do
these blueprints we'll cover look like? We'll build ten different applications, varying in
complexity and kind, and covering a wide range of concerns. With each project, we'll pay
special attention to the new features we're highlighting, but we'll also see some older, tried
and true language features and libraries used extensively, with any interesting or novel
usages flagged. Here, then, is our project lineup.

Process Viewer/Manager
We will explore some of the improvements to the process handling APIs as we implement a
Java version of the age old Unix tool--top. Combining this API with JavaFX, we'll build a
graphical tool that allows the user to view and manage processes running on the system.

This project will cover the following:

Java 9 Process API enhancements
JavaFX

Duplicate File Finder
As a system ages, the chances of clutter in the filesystem, especially duplicated files,
increases exponentially, it seems. Leveraging some of the new File I/O libraries, we'll build a
tool to scan a set of user-specified directories to identify duplicates. Pulling JavaFX back out
of the toolbox, we'll add a graphical user interface that will provide a more user-friendly
means to interactively process the duplicates.

This project will cover the following:

Java File I/O
Hashing libraries
JavaFX

Introduction

[18]

Date Calculator
With the release of Java 8, Oracle integrated a new library based on a redesign of Joda Time,
more or less, into the JDK. Officially known as JSR 310, this new library fixed a
longstanding complaint with the JDK--the official date libraries were inadequate and hard
to use. In this project, we'll build a simple command-line date calculator that will take a
date and, for example, add an arbitrary amount of time to it. Consider the following piece of
code for example:

$ datecalc "2016-07-04 + 2 weeks"
2016-07-18
$ datecalc "2016-07-04 + 35 days"
2016-08-08
$ datecalc "12:00CST to PST"
10:00PST

This project will cover the following:

Java 8 Date/Time APIs
Regular expressions
Java command-line libraries

Social Media Aggregator
One of the problems with having accounts on so many social media networks is keeping
tabs on what's happening on each of them. With accounts on Twitter, Facebook, Google+,
Instagram, and so on, active users can spend a significant amount of time jumping from site
to site, or app to app, reading the latest updates. In this chapter, we'll build a simple
aggregator app that will pull the latest updates from each of the user's social media
accounts and display them in one place. The features will include the following:

Multiple accounts for a variety of social media networks:
Twitter
Pinterest
Instagram

Read-only, rich listings of social media posts
Links to the appropriate site or app for a quick and easy follow-up
Desktop and mobile versions

Introduction

[19]

This project will cover the following:

REST/HTTP clients
JSON processing
JavaFX and Android development

Given the size and scope of this effort, we'll actually do this in two chapters: JavaFX in the
first, and Android in the second.

Email filter
Managing email can be tricky, especially if you have more than one account. If you access
your mail from more than one location (that is, from more than one desktop or mobile app),
managing your email rules can be trickier still. If your mail system doesn't support rules
stored on the server, you're left deciding where to put the rules so that they'll run most
often. With this project, we'll develop an application that will allow us to author a variety of
rules and then run them via an optional background process to keep your mail properly
curated at all times.

A sample rules file may look something like this:

 [
 {
 "serverName": "mail.server.com",
 "serverPort": "993",
 "useSsl": true,
 "userName": "me@example.com",
 "password": "password",
 "rules": [
 {"type": "move",
 "sourceFolder": "Inbox",
 "destFolder": "Folder1",
 "matchingText": "someone@example.com"},
 {"type": "delete",
 "sourceFolder": "Ads",
 "olderThan": 180}
]
 }
]

Introduction

[20]

This project will cover the following:

JavaMail
JavaFX
JSON Processing
Operating System integration
File I/O

JavaFX photo management
The Java Development Kit has a very robust assortment of image handling APIs. In Java 9,
these were augmented with improved support for the TIFF specification. In this chapter,
we'll exercise this API in creating an image/photo management application. We'll add
support for importing images from user-specified locations into the configured official
directory. We'll also revisit the duplicate file finder and reuse some of the code developed
as a part of the project to help us identify duplicate images.

This project will cover the following:

The new javax.imageio package
JavaFX
NetBeans Rich Client Platform
Java file I/O

A client/server note application
Have you ever used a cloud-based note-taking application? Have you wondered what it
would take to make your own? In this chapter, we'll create such an application, with
complete front and backends. On the server side, we'll store our data in the ever popular
document database, MongoDB, and we'll expose the appropriate parts of the business logic
for the application via REST interfaces. On the client side, we'll develop a very basic user
interface in JavaScript that will let us experiment with, and demonstrate how to use,
JavaScript in our Java project.

Introduction

[21]

This project will cover the following:

Document databases (MongoDB)
JAX-RS and RESTful interfaces
JavaFX
JavaScript and Vue 2

Serverless Java
Serverless, also known as function as a service (FaaS), is one of the hottest trends these
days. It is an application/deployment model where a small function is deployed to a service
that manages almost every aspect of the function--startup, shutdown, memory, and so on,
freeing the developer from worrying about such details. In this chapter, we'll write a simple
serverless Java application to see how it might be done, and how you might use this new
technique for your own applications.

This project will cover the following:

Creating an Amazon Web Services account
Configuring AWS Lambda, Simple Notification Service, Simple Email Service,
and DynamoDB
Writing and deploying a Java function

Android desktop synchronization client
With this project, we'll change gears a little bit and focus specifically on a different part of
the Java ecosystem: Android. To do this, we'll focus on a problem that still plagues some
Android users--the synchronization of an Android device and a desktop (or laptop) system.
While various cloud providers are pushing us to store more and more in the cloud and
streaming that to devices, some people still prefer to store, for example, photos and music
directly on the device for a variety of reasons, ranging from cost for cloud resources to
unreliable wireless connectivity and privacy concerns.

Introduction

[22]

In this chapter, we'll build a system that will allow users to synchronize music and photos
between their devices and their desktop or laptop. We'll build an Android application that
provides the user interface to configure and monitor synchronization from the mobile
device side as well as the Android Service that will perform the synchronization in the
background, if desired. We will also build the related components on the desktop--a
graphical application to configure and monitor the process from the desktop as well as a
background process to handle the synchronization from the desktop side.

This project will cover the following:

Android
User interfaces
Services
JavaFX
REST

Getting started
We have taken a quick look at some of the new language features we will be using. We have
also seen a quick overview of the projects we will be building. One final question remains:
what tools will we be using to do our work?

The Java ecosystem suffers from an embarrassment of riches when it comes to development
tools, so we have much to choose from. The most fundamental choice facing us is the build
tool. For our work here, we will be using Maven. While there is a strong and vocal
community that would advocate Gradle, Maven seems to be the most common build tool at
the moment, and seems to have more robust, mature, and native support from the major
IDEs. If you do not have Maven already installed, you can visit http://maven.apache.org
and download the distribution for your operating system, or use whatever package
management system is supported by your OS.

For the IDE, all screenshots, directions, and so forth will be using NetBeans--the free and
open source IDE from Oracle. There are, of course, proponents of both IntelliJ IDEA and
Eclipse, and they're both fine choices, but NetBeans offers a complete and robust
development out-of-the-box, and it's fast, stable, and free. To download NetBeans, visit
http://netbeans.org and download the appropriate installer for your operating system.
Since we are using Maven, which IDEA and Eclipse both support, you should be able to
open the projects presented here in the IDE of your choice. Where steps are shown in the
GUI, though, you will need to adjust for the IDE you've chosen.

http://maven.apache.org/
http://netbeans.org/

Introduction

[23]

At the time of writing, the latest version of NetBeans is 8.2, and the best approach for using
it to do Java 9 development is to run the IDE on Java 8, and to add Java 9 as an SDK. There
is a development version of NetBeans that runs on Java 9, but, as it is a development
version, it can be unstable from time to time. A stable NetBeans 9 should ship at roughly the
same time as Java 9 itself. In the meantime, we'll push forward with 8.2:

To add Java 9 support, we will need to add a new Java platform, and we will do1.
that by clicking on Tools | Platforms.
This will bring up the Java Platform Manager screen:2.

Introduction

[24]

Click on Add Platform... on the lower left side of your screen.3.

Introduction

[25]

We want to add a Java Standard Edition platform, so we will accept the default4.
and click on Next.

Introduction

[26]

On the Add Java Platform screen, we will navigate to where we've installed Java5.
9, select the JDK directory, and click on Next.

We need to give the new Java Platform a name (NetBeans defaults to a very6.
reasonable JDK 9) so we will click on Finish and can now see our newly added
Java 9 option.

Introduction

[27]

With the project SDK set, we're ready to take these new Java 9 features for a spin, which
we'll start doing in Chapter 2, Managing Processes in Java.

If you do run NetBeans on Java 9, which should be possible by the time
this book is published, you will already have Java 9 configured. You can,
however, use the preceding steps to configure Java 8, should you need
that version specifically.

Introduction

[28]

Summary
In this chapter, we've taken a quick look at some of the great new features in Java 8,
including lambdas, streams, the new date/time package, and default methods. From Java 9,
we took a quick look at the Java Platform Module System and Project Jigsaw, the process
handling APIs, the new concurrency changes, and the new Java REPL. For each, we've
discussed the what and why, and looked at some examples of how these might affect the
systems we write. We've also taken a look at the types of project we'll be building
throughout the book and the tools we'll be using.

Before we move on, I'd like to restate an earlier point--every software project is different, so
it is not possible to write this book in such a way that you can simply copy and paste large
swathes of code into your project. Similarly, every developer writes code differently; the
way I structure my code may be vastly different from yours. It is important, then, that you
keep that in mind when reading this book and not get hung up on the details. The purpose
here is not to show you the one right way to use these APIs, but to give you an example that
you can look at to get a better sense of how they might be used. Learn what you can from
each example, modify things as you see fit, and go build something amazing.

With all of that said, let's turn our attention to our first project, the Process Manager, and
the new process handling APIs.

2
Managing Processes in Java

With a very quick tour through some of the big new features of Java 9, as well as those from
a couple of previous releases, let's turn our attention to applying some of these new APIs in
a practical manner. We'll start with a simple process manager.

While having your application or utility handle all of your user's concerns internally is
usually ideal, occasionally you need to run (or shell out to) an external program for a
variety of reasons. From the very first days of Java, this was supported by the JDK via the
Runtime class via a variety of APIs. Here is the simplest example:

 Process p = Runtime.getRuntime().exec("/path/to/program");

Once the process has been created, you can track its execution via the Process class, which
has methods such as getInputStream(), getOutputStream(), and getErrorStream().
We have also had rudimentary control over the process via destroy() and waitFor().
Java 8 moved things forward by adding destroyForcibly() and waitFor(long,
TimeUnit). Starting with Java 9, these capabilities will be expanded. Quoting from the Java
Enhancement Proposal (JEP), we see the following reasons for this new functionality:

Managing Processes in Java

[30]

Many enterprise applications and containers involve several Java virtual machines and processes and
have long-standing needs that include the following:

The ability to get the pid (or equivalent) of the current Java virtual machine and the pid of
processes created with the existing API.
The ability to enumerate processes on the system. Information on each process may
include its pid, name, state, and perhaps resource usage.
The ability to deal with process trees, in particular, some means to destroy a process tree.
The ability to deal with hundreds of sub-processes, perhaps multiplexing the output or
error streams to avoid creating a thread per sub-process.

In this chapter, we'll build a simple process manager application, akin to Windows Task
Manager or *nix's top. There is, of course, little need for a process manager written in Java,
but this will be an excellent avenue for us to explore these new process handling APIs.
Additionally, we'll spend some time with other language features and APIs, namely, JavaFX
and Optional.

The following topics are covered in this chapter:

Creating the project
Bootstrapping the application
Defining the user interface
Initializing the user interface
Adding menus
Updating the process list

With that said, let's get started.

Creating a project
Typically speaking, it is much better if a build can be reproduced without requiring the use
of a specific IDE or some other proprietary tool. Fortunately, NetBeans offers the ability to
create a Maven-based JavaFX project. Click on File | New Project and select Maven, then
JavaFX Application:

Managing Processes in Java

[31]

Next, perform the following steps:

Click on Next.1.
Enter Project Name as ProcessManager.2.
Enter Group ID as com.steeplesoft.3.
Enter Package as com.steeplesoft.processmanager.4.
Select Project Location.5.
Click on Finish.6.

Managing Processes in Java

[32]

Consider the following screenshot as an example:

Once the new project has been created, we need to update the Maven pom to use Java 9:

 <build>
 <plugins>
 <plugin>
 <groupId>org.apache.maven.plugins</groupId>
 <artifactId>maven-compiler-plugin</artifactId>
 <version>3.6.1</version>
 <configuration>
 <source>9</source>
 <target>9</target>
 </configuration>
 </plugin>
 </plugins>
 </build>

Now, with both NetBeans and Maven configured to use Java 9, we're ready to start coding.

Managing Processes in Java

[33]

Bootstrapping the application
As noted in the introduction, this will be a JavaFX-based application, so we'll start by
creating the skeleton for the application. This is a Java 9 application, and we intend to make
use of the Java Module System. To do that, we need to create the module definition file,
module-info.java, which resides in the root of our source tree. This being a Maven-based
project, that would be src/main/java:

 module procman.app {
 requires javafx.controls;
 requires javafx.fxml;
 }

This small file does a couple of different things. First, it defines a new procman.app
module. Next, it tells the system that this module requires two JDK modules:
javafx.controls and javafx.fxml. If we did not specify these two modules, then our
system, which we'll see below, would not compile, as the JDK would not make the required
classes and packages available to our application. These modules are part of the standard
JDK as of Java 9, so that shouldn't be an issue. However, that may change in future versions
of Java, and this module declaration will help prevent runtime failures in our application by
forcing the host JVM to provide the module or fail to start. It is also possible to build custom
Java runtimes via the J-Link tool, so missing these modules is still a possibility under Java 9.
With our module configured, let's turn to the application.

The emerging standard directory layout seems to be something like
src/main/java/<module1>, src/main/java/<module2>, and so on.
At the time of writing this book, while Maven can be coaxed into such a
layout, the plugins themselves, while they do run under Java 9, do not
appear to be module-aware enough to allow us to organize our code in
such a manner. For that reason, and for the sake of simplicity, we will treat
one Maven module as one Java module and maintain the standard source
layout for the projects.

The first class we will create is the Application descendant, which NetBeans created for
us. It created the Main class, which we renamed to ProcessManager:

 public class ProcessManager extends Application {
 @Override
 public void start(Stage stage) throws Exception {
 Parent root = FXMLLoader
 .load(getClass().getResource("/fxml/procman.fxml"));
 Scene scene = new Scene(root);
 scene.getStylesheets().add("/styles/Styles.css");
 stage.setTitle("Process Manager");

