

Docker and Kubernetes for
Java Developers

Scale, deploy, and monitor multi-container applications

Jaroslaw Krochmalski

BIRMINGHAM - MUMBAI

Docker and Kubernetes for Java Developers

Copyright © 2017 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or
transmitted in any form or by any means, without the prior written permission of the
publisher, except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the
information presented. However, the information contained in this book is sold without
warranty, either express or implied. Neither the author(s), nor Packt Publishing, and its
dealers and distributors will be held liable for any damages caused or alleged to be caused
directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: August 2017

Production reference: 1240817

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham
B3 2PB, UK.

ISBN 978-1-78646-839-0

www.packtpub.com

http://www.packtpub.com

Credits

Author
Jaroslaw Krochmalski

Copy Editor
Safis Editing

Reviewer
Pierre Mavro

Project Coordinator
Kinjal Bari

Commissioning Editor
Vijin Boricha

Proofreader
Safis Editing

Acquisition Editor
Prachi Bisht

Indexer
Mariammal Chettiyar

Content Development Editor
Trusha Shriyan

Graphics
Kirk D'Penha

Technical Editor
Varsha Shivhare

Production Coordinator
Shantanu Zagade

About the Author
Jaroslaw Krochmalski is a passionate software designer and developer who specializes in
the financial domain. He has over 12 years of experience in software development. He is a
clean-code and software craftsmanship enthusiast. He is a certified scrum master and a fan
of Agile. His professional interests include new technologies in web application
development, design patterns, enterprise architectures, and integration patterns.

He has been designing and developing software professionally since 2000 and has been
using Java as his primary programming language since 2002. In the past, he has worked for
companies such as Kredyt Bank (KBC) and Bank BPS on many large-scale projects, such as
international money orders, express payments, and collection systems. He currently works
as a consultant at Danish company 7N as an infrastructure architect for the Nykredit bank.
You can reach him via Twitter at @jkroch or by email at jarek@finsys.pl.

About the Reviewer
Pierre Mavro lives in a suburb of Paris. He's an open source software lover and has been
working with Linux for more than 10 years now. Currently, he is working as a lead SRE at
Criteo, where he manages distributed systems and NoSQL technologies. During the last few
years, he has been designing high-availability infrastructures, public and private cloud
infrastructures, and worked for a high-frequency trading company. He also wrote a book
on MariaDB named MariaDB High Performance. He’s also one of the co-founders of
Nousmotards, an application for riders.

www.PacktPub.com
For support files and downloads related to your book, please visit www.PacktPub.com. Did
you know that Packt offers eBook versions of every book published, with PDF and ePub
files available? You can upgrade to the eBook version at www.PacktPub.com and as a print
book customer, you are entitled to a discount on the eBook copy. Get in touch with us
at service@packtpub.com for more details. At www.PacktPub.com, you can also read a
collection of free technical articles, sign up for a range of free newsletters and receive
exclusive discounts and offers on Packt books and eBooks.

https://www.packtpub.com/mapt

Get the most in-demand software skills with Mapt. Mapt gives you full access to all Packt
books and video courses, as well as industry-leading tools to help you plan your personal
development and advance your career.

Why subscribe?
Fully searchable across every book published by Packt
Copy and paste, print, and bookmark content
On demand and accessible via a web browser

http://www.PacktPub.com
http://www.PacktPub.com
http://www.PacktPub.com
https://www.packtpub.com/mapt

Customer Feedback
Thanks for purchasing this Packt book. At Packt, quality is at the heart of our editorial
process. To help us improve, please leave us an honest review on this book's Amazon page
at https://www.amazon.com/dp/1786468395.

If you'd like to join our team of regular reviewers, you can e-mail us at
customerreviews@packtpub.com. We award our regular reviewers with free eBooks and
videos in exchange for their valuable feedback. Help us be relentless in improving our
products!

https://www.amazon.com/dp/1786468395

Table of Contents
Preface 1

Chapter 1: Introduction to Docker 7

The idea behind Docker 8
Virtualization and containerization compared 8

Benefits from using Docker 10
Docker concepts - images and containers 11

Images 11
Layers 12
Containers 15
Docker registry, repository, and index 18

Additional tools 21
Installing Docker 22

Installing on macOS 22
Installing on Linux 33
Installing on Windows 37

Summary 46

Chapter 2: Networking and Persistent Storage 47

Networking 48
Docker network types 48

Bridge 48
Host 49
None 50

Networking commands 50
Creating and inspecting a network 51
Connecting a container to the network 53
Exposing ports and mapping ports 54
Persistent storage 60
Volume-related commands 61
Creating a volume 62
Removing a volume 67
Volume drivers 68
Summary 69

Chapter 3: Working with Microservices 71

An introduction to microservices 71

[]

Monolithic versus microservices 72
The monolithic architecture 73
The microservices architecture 76

Maintaining data consistency 79
The Docker role 81
Kubernetes' role 83
When to use the microservice architecture 84
Summary 86

Chapter 4: Creating Java Microservices 87

Introduction to REST 88
HTTP methods 89

REST in Java 91
Java EE7 - JAX-RS with Jersey 91

JAX-RS annotations 92
Spring Boot 97

Coding the Spring Boot microservice 100
Maven build file 101

Application entry point 103
Domain model and a repository 104
REST controller 109
Documenting the API 111

Running the application 115
Making calls 117

Spring RestTemplate 117
HTTPie 118
Postman 118
Paw for Mac 120

Spring Initializr 120
Summary 123

Chapter 5: Creating Images with Java Applications 125

Dockerfile 125
Dockerfile instructions 126

FROM 127
MAINTAINER 129
WORKDIR 129
ADD 129
COPY 131
RUN 132
CMD 134

[]

The ENTRYPOINT 139
EXPOSE 143
VOLUME 144
LABEL 145
ENV 146
USER 147
ARG 148
ONBUILD 148
STOPSIGNAL 150
HEALTHCHECK 150
Creating an image using Maven 151
Building the image 158
Creating and removing volumes 159

Summary 160

Chapter 6: Running Containers with Java Applications 161

Starting and stopping containers 161
Starting 161
Stopping 163
Listing the running containers 163
Removing the containers 164

Container running modes 165
Foreground 165
Detached 165
Attaching to running containers 166

Monitoring containers 167
Viewing logs 167
Inspecting a container 170
Statistics 172
Container events 173

Restart policies 175
no 175
always 176
on-failure 176
unless-stopped 177
Updating a restart policy on a running container 178

Runtime constraints on resources 179
Memory 179
Processors 181
Updating constraints on a running container 183

[]

Running with Maven 184
Plugin configuration 185
Starting and stopping containers 186

Summary 189

Chapter 7: Introduction to Kubernetes 191

Why do we need Kubernetes? 191
Basic Kubernetes concepts 193

Pods 194
ReplicaSets 197
Deployment 198
Services 200
kube-dns 201
Namespace 201
Nodes 202

Kubelet 203
Proxy 203
Docker 203

The Master node 204
etcd 204
The API server 205
The scheduler 205

Available tools 205
kubectl 206
Dashboard 206
Minikube 206

Summary 207

Chapter 8: Using Kubernetes with Java 209

Installing Minikube 210
Installing on Mac 210
Installing on Windows 210
Installing on Linux 211
Starting up the local Kubernetes cluster 211

Installing kubectl 213
Installing on Mac 213
Installing on Windows 213
Installing on Linux 213

Deploying on the Kubernetes cluster 215
Creating a service 215
Creating a deployment 218
Interacting with containers and viewing logs 224

[]

Scaling manually 227
Autoscaling 228
Viewing cluster events 229
Using the Kubernetes dashboard 229

Minikube addons 235
Cleaning up 236
Summary 237

Chapter 9: Working with the Kubernetes API 239

API versioning 240
Alpha 240
Beta 241
Stable 241

Authentication 242
HTTP basic auth 243
Static token file 244
Client certificates 245
OpenID 245

Authorization 246
Attribute-based access control 247
Role-based access control (RBAC) 248
WebHook 250
AlwaysDeny 251
AlwaysAllow 251

Admission control 252
Using the API 252

API operations 252
Example calls 253

Creating a service using the API 254
Creating a deployment using the API 255
Deleting a service and deployment 259

Swagger docs 260
Summary 261

Chapter 10: Deploying Java on Kubernetes in the Cloud 263

Benefits of using the cloud, Docker, and Kubernetes 264
Installing the tools 265

Python and PIP 265
AWS command-line tools 266
Kops 268
jq 269

[]

Configuring Amazon AWS 269
Creating an administrative user 269

Creating a user for kops 273
Creating the cluster 276

DNS settings 277
Root domain on AWS hosted domain 277
The subdomain of the domain hosted on AWS 277
Route 53 for a domain purchased with another registrar 279
Subdomain for cluster in AWS Route 53, the domain elsewhere 280

Checking the zones' availability 280
Creating the storage 281
Creating a cluster 282
Starting up clusters 286
Updating a cluster 288
Installing the dashboard 289

Summary 290

Chapter 11: More Resources 291

Docker 291
Awesome Docker 291
Blogs 292
Interactive tutorials 292

Kubernetes 293
Awesome Kubernetes 293
Tutorials 293
Blogs 293
Extensions 294
Tools 294

Rancher 294
Helm and charts 294
Kompose 295
Kubetop 295
Kube-applier 295

Index 297

Preface
Imagine creating and testing Java EE applications on Apache Tomcat or Wildfly in minutes,
along with deploying and managing Java applications swiftly. Sounds too good to be true?
You have a reason to cheer, because such scenarios are possible by leveraging Docker and
Kubernetes.

This book will start by introducing Docker and delve deep into its networking and
persistent storage concepts. You will be then introduced to the concept of microservices and
learn how to deploy and run Java microservices as Docker containers. Moving on, the book
will focus on Kubernetes and its features. You will start by running the local cluster using
Minikube. The next step will be to deploy your Java service in the real cloud, on Kubernetes
running on top of Amazon AWS. At the end of the book, you will get hands-on experience
of some more advanced topics to further extend your knowledge of Docker and Kubernetes.

What this book covers
Chapter 1, Introduction to Docker, introduces the reasoning behind Docker and presents the
differences between Docker and traditional virtualization. The chapter also explains basic
Docker concepts, such as images, containers, and Dockerfiles.

Chapter 2, Networking and Persistent Storage, explains how networking and persistent
storage work in Docker containers.

Chapter 3, Working with Microservices, presents an overview of what microservices are and
explains their advantages in comparison to monolithic architectures.

Chapter 4, Creating Java Microservices, explores a recipe for quickly constructing Java
microservice, by utilizing either Java EE7 or the Spring Boot.

Chapter 5, Creating Images with Java Applications, teaches how to package the Java
microservices into Docker images, either manually or from the Maven build file.

Chapter 6, Running Containers with Java Applications, shows how to run a containerized Java
application using Docker.

Chapter 7, Introduction to Kubernetes, introduces the core concepts of Kubernetes, such as
Pods, nodes, services, and deployments.

Preface

[2]

Chapter 8, Using Kubernetes with Java, shows how to deploy Java microservices, packaged
as a Docker image, on the local Kubernetes cluster.

Chapter 9, Working with Kubernetes API, shows how the Kubernetes API can be used to
automate the creation of Kubernetes objects such as services or deployments. This chapter
gives examples of how to use the API to get information about the cluster's state.

Chapter 10, Deploying Java on Kubernetes in the Cloud, shows the reader how to configure
Amazon AWS EC2 instances to make them suitable to run a Kubernetes cluster. This
chapter also gives precise instructions on how to create a Kubernetes cluster on the Amazon
AWS cloud.

Chapter 11, More Resources, explores how Java and Kubernetes point the reader to
additional resources available on the internet that are of high quality, to further extend
knowledge about Docker and Kubernetes.

What you need for this book
For this book, you will need any decent PC or Mac, capable of running a modern version of
Linux, Windows 10 64-bit, or macOS.

Who this book is for
This book is for Java developers, who would like to get into the world of containerization.
The reader will learn how Docker and Kubernetes can help with deployment and
management of Java applications on clusters, either on their own infrastructure or in the
cloud.

Conventions
In this book, you will find a number of text styles that distinguish between different kinds
of information. Here are some examples of these styles and an explanation of their meaning.
Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows: "The
Dockerfile is used to create the image when you run the docker build command." A block
of code is set as follows:

{
"apiVersion": "v1",
"kind": "Pod",
"metadata":{

Preface

[3]

"name": ”rest_service”,
"labels": {
"name": "rest_service"
}
},
"spec": {
"containers": [{
"name": "rest_service",
"image": "rest_service",
"ports": [{"containerPort": 8080}],
}]
}
}

Any command-line input or output is written as follows:

docker rm $(docker ps -a -q -f status=exited)

New terms and important words are shown in bold. Words that you see on the screen, for
example, in menus or dialog boxes, appear in the text like this: "Clicking the Skip For Now
will take you to the the images list without logging into the Docker Hub."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about this
book-what you liked or disliked. Reader feedback is important for us as it helps us develop
titles that you will really get the most out of. To send us general feedback, simply
email feedback@packtpub.com, and mention the book's title in the subject of your
message. If there is a topic that you have expertise in and you are interested in either
writing or contributing to a book, see our author guide at www.packtpub.com/authors.

http://www.packtpub.com/authors

Preface

[4]

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to help you
to get the most from your purchase.

Downloading the example code
You can download the example code files for this book from your account at
http://www.packtpub.com. If you purchased this book elsewhere, you can visit
http://www.packtpub.com/support and register to have the files emailed directly to you.
You can download the code files by following these steps:

Log in or register to our website using your email address and password.1.
Hover the mouse pointer on the SUPPORT tab at the top.2.
Click on Code Downloads & Errata.3.
Enter the name of the book in the Search box.4.
Select the book for which you're looking to download the code files.5.
Choose from the drop-down menu where you purchased this book from.6.
Click on Code Download.7.

Once the file is downloaded, please make sure that you unzip or extract the folder using the
latest version of:

WinRAR / 7-Zip for Windows
Zipeg / iZip / UnRarX for Mac
7-Zip / PeaZip for Linux

The code bundle for the book is also hosted on GitHub at
https://github.com/PacktPublishing/Docker-and-Kubernetes-for-Java-Developers.
We also have other code bundles from our rich catalog of books and videos available at
https://github.com/PacktPublishing/. Check them out!

Downloading the color images of this book
We also provide you with a PDF file that has color images of the screenshots/diagrams used
in this book. The color images will help you better understand the changes in the output.
You can download this file from http://www.packtpub.com/sites/default/
files/downloads/DockerandKubernetesforJavaDevelopers_ColorImages.pdf.

http://www.packtpub.com
http://www.packtpub.com/support
https://github.com/PacktPublishing/Docker-and-Kubernetes-for-Java-Developers
https://github.com/PacktPublishing/
http://www.packtpub.com/sites/default/files/downloads/DockerandKubernetesforJavaDevelopers_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/DockerandKubernetesforJavaDevelopers_ColorImages.pdf

Preface

[5]

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes do
happen. If you find a mistake in one of our books-maybe a mistake in the text or the code-
we would be grateful if you could report this to us. By doing so, you can save other readers
from frustration and help us improve subsequent versions of this book. If you find any
errata, please report them by visiting http://www.packtpub.com/submit-errata, selecting
your book, clicking on the Errata Submission Form link, and entering the details of your
errata. Once your errata are verified, your submission will be accepted and the errata will
be uploaded to our website or added to any list of existing errata under the Errata section of
that title. To view the previously submitted errata, go to
https://www.packtpub.com/books/content/support and enter the name of the book in the
search field. The required information will appear under the Errata section.

Piracy
Piracy of copyrighted material on the internet is an ongoing problem across all media. At
Packt, we take the protection of our copyright and licenses very seriously. If you come
across any illegal copies of our works in any form on the internet, please provide us with
the location address or website name immediately so that we can pursue a remedy. Please
contact us at copyright@packtpub.com with a link to the suspected pirated material. We
appreciate your help in protecting our authors and our ability to bring you valuable
content.

Questions
If you have a problem with any aspect of this book, you can contact us
at questions@packtpub.com, and we will do our best to address the problem.

http://www.packtpub.com/submit-errata
https://www.packtpub.com/books/content/support

1
Introduction to Docker

The first thing we will do in this chapter will be to explain the reasoning behind Docker and
its architecture. We will cover Docker concepts such as images, layers, and containers. Next,
we will install Docker and learn how to pull a sample, basic Java application image from the
remote registry and run it on the local machine.

Docker was created as the internal tool in the platform as a service company, dotCloud. In
March 2013, it was released to the public as open source. Its source code is freely available
to everyone on GitHub at: https://github.com/docker/docker. Not only do the core
Docker Inc. team work on the development of Docker, there are also a lot of big names
sponsoring their time and effort to enhance and contribute to Docker such as Google,
Microsoft, IBM, Red Hat, Cisco systems, and many others. Kubernetes is a tool developed
by Google for deploying containers across clusters of computers based on best practices
learned by them on Borg (Google's homemade container system). It compliments Docker
when it comes to orchestration, automating deployment, managing, and scaling containers;
it manages workloads for Docker nodes by keeping container deployments balanced across
a cluster. Kubernetes also provides ways for containers to communicate with each other,
without the need for opening network ports. Kubernetes is also an open source project,
living on the GitHub at https://github.com/kubernetes/kubernetes. Everyone can
contribute. Let's begin our journey with Docker first. The following will be covered in:

We will start with the basic idea behind this wonderful tool and show the
benefits gained from using it, in comparison to traditional virtualization
We will install Docker on three major platforms: macOS, Linux, and Windows

https://github.com/docker/docker
https://github.com/docker/docker
https://github.com/docker/docker
https://github.com/docker/docker
https://github.com/docker/docker
https://github.com/docker/docker
https://github.com/docker/docker
https://github.com/docker/docker
https://github.com/docker/docker
https://github.com/docker/docker
https://github.com/docker/docker
https://github.com/docker/docker
https://github.com/docker/docker
https://github.com/docker/docker
https://github.com/docker/docker
https://github.com/docker/docker
https://github.com/docker/docker
https://github.com/docker/docker
https://github.com/docker/docker
https://github.com/docker/docker
https://github.com/docker/docker
https://github.com/docker/docker
https://github.com/docker/docker
https://github.com/docker/docker
https://github.com/docker/docker
https://github.com/docker/docker
https://github.com/docker/docker
https://github.com/kubernetes/kubernetes
https://github.com/kubernetes/kubernetes
https://github.com/kubernetes/kubernetes
https://github.com/kubernetes/kubernetes
https://github.com/kubernetes/kubernetes
https://github.com/kubernetes/kubernetes
https://github.com/kubernetes/kubernetes
https://github.com/kubernetes/kubernetes
https://github.com/kubernetes/kubernetes
https://github.com/kubernetes/kubernetes
https://github.com/kubernetes/kubernetes
https://github.com/kubernetes/kubernetes
https://github.com/kubernetes/kubernetes
https://github.com/kubernetes/kubernetes
https://github.com/kubernetes/kubernetes
https://github.com/kubernetes/kubernetes
https://github.com/kubernetes/kubernetes
https://github.com/kubernetes/kubernetes
https://github.com/kubernetes/kubernetes
https://github.com/kubernetes/kubernetes
https://github.com/kubernetes/kubernetes
https://github.com/kubernetes/kubernetes
https://github.com/kubernetes/kubernetes
https://github.com/kubernetes/kubernetes
https://github.com/kubernetes/kubernetes
https://github.com/kubernetes/kubernetes
https://github.com/kubernetes/kubernetes
https://github.com/kubernetes/kubernetes
https://github.com/kubernetes/kubernetes
https://github.com/kubernetes/kubernetes
https://github.com/kubernetes/kubernetes
https://github.com/kubernetes/kubernetes
https://github.com/kubernetes/kubernetes
https://github.com/kubernetes/kubernetes
https://github.com/kubernetes/kubernetes

Introduction to Docker

[8]

The idea behind Docker
The idea behind Docker is to pack an application with all the dependencies it needs into a
single, standardized unit for the deployment. Those dependencies can be binaries, libraries,
JAR files, configuration files, scripts, and so on. Docker wraps up all of it into a complete
filesystem that contains everything your Java application needs to run the virtual machine
itself, the application server such as Wildfly or Tomcat, the application code, and runtime
libraries, and basically everything you would install and deploy on the server to make your
application run. Packaging all of this into a complete image guarantees that it is portable; it
will always run in the same way, no matter what environment it is deployed in. With
Docker, you can run Java applications without having to install a Java runtime on the host
machine. All the problems related to incompatible JDK or JRE, wrong version of the
application server, and so on are gone. Upgrades are also easy and effortless; you just run
the new version of your container on the host.

If you need to do some cleanup, you can just destroy the Docker image and it's as though
nothing ever happened. Think about Docker, not as a programming language or a
framework, but rather as a tool that helps in solving the common problems such as
installing, distributing, and managing the software. It allows developers and DevOps to
build, ship, and run their code anywhere. Anywhere means also on more than one machine,
and this is where Kubernetes comes in handy; we will shortly get back to it.

Having all of your application code and runtime dependencies packaged as a single and
complete unit of software may seem the same as a virtualization engine, but it's far from
that, as we will explain now. To fully get to know what Docker really is, first we need to
understand the difference between traditional virtualization and containerization. Let's
compare those two technologies now.

Virtualization and containerization compared
A traditional virtual machine represents the hardware-level virtualization. In essence, it's a
complete, virtualized physical machine with BIOS and an operating system installed. It runs
on top of the host operating system. Your Java application runs in the virtualized
environment as it would normally do on your own machine. There are a lot of advantages
from using virtual machines for your applications. Each virtual machine can have a totally
different operating system; those can be different Linux flavors, Solaris, or Windows, for
example. Virtual machines are also very secure by definition; they are totally isolated,
complete operating systems in a box.

Introduction to Docker

[9]

However, nothing comes without a price. Virtual machines contain all the features that an
operating system needs to have to be operational: core system libraries, device drivers, and
so on. Sometimes they can be resource hungry and heavyweight. Virtual machines require
full installation, which sometimes can be cumbersome and not so easy to set up. Last, but
not least, you will need more compute power and resources to execute your application in
the virtual machine the hypervisor needs to first import the virtual machine and then power
it up and this takes time. However, I believe, when it comes to running Java applications,
having the complete virtualized environment is not something that we would want very
often. Docker comes to the rescue with the concept of containerization. Java applications
(but of course, it's not limited to Java) run on Docker in an isolated environment called a
container. A container is not a virtual machine in the popular sense. It behaves as a kind of
operating system virtualization, but there's no emulation at all. The main difference is that
while each traditional virtual machine image runs on an independent guest operating
system, the Docker containers run within the same kernel running on the host machine. A
container is self-sufficient and isolated not only from the underlying OS, but from other
containers as well. It has its own separated filesystem and environment variables.
Naturally, containers can communicate with each other (as an application and a database
container for example) and also can share the files on disk. Here comes the main difference
when comparing to traditional virtualization because the containers run within the same
kernel they utilize fewer system resources. All the operating system core software is
removed from the Docker image. The base container can be, and usually is, very
lightweight. There is no overhead related to a classic virtualization hypervisor and a guest
operating system. This way you can achieve almost bare metal, core performance for your
Java applications. Also, the startup time of a containerized Java application is usually very
low due to the minimal overhead of the container. You can also roll-out hundreds of
application containers in seconds to reduce the time needed for provisioning your software.
We will do this using Kubernetes in one of the coming chapters. Although Docker is quite
different from the traditional virtualization engines. Be aware that containers cannot
substitute virtual machines for all use cases; a thoughtful evaluation is still required to
determine what is best for your application. Both solutions have their advantages. On the
one hand, we have the fully isolated secure virtual machine with average performance. On
the other hand, we have the containers that are missing some of the key features, but are
equipped with high performance that can be provisioned very fast. Let's see what other
benefits you will get when using Docker containerization.

Introduction to Docker

[10]

Benefits from using Docker
As we have said before, the major visible benefit of using Docker will be very fast
performance and short provisioning time. You can create or destroy containers quickly and
easily. Containers share resources such as the operating system's kernel and the needed
libraries efficiently with other Docker containers. Because of that, multiple versions of an
application running in containers will be very lightweight. The result is faster deployment,
easier migration, and startup times.

Docker can be especially useful when deploying Java microservices. We will get back to
microservices in detail in one of the coming chapters. A microservices application is
composed of a series of discrete services, communicating with others via an API.
Microservices break an app into a large number of small processes. They are the opposite of
the monolithic applications, which run all operations as a single process or a set of large
processes.

Using Docker containers enables you to deploy ready-to-run software, which is portable
and extremely easy to distribute. Your containerized application simply runs within its
container; there's no need for installation. The lack of an installation process has a huge
advantage; it eliminates problems such as software and library conflicts or even driver
compatibility issues. Docker containers are portable; they can be run from anywhere: your
local machine, a remote server, and private or public cloud. All major cloud computing
providers, such as Amazon Web Services (AWS) and Google's compute platform support
Docker now. A container running on, let's say, an Amazon EC2 instance, can easily be
transferred to some other environment, achieving exactly the same consistency and
functionality. The additional level of abstraction Docker provides on the top of your
infrastructure layer is an indispensable feature. Developers can create the software without
worrying about the platform it will later be run on. Docker has the same promise as Java;
write once, run anywhere; except instead of code, you configure your server exactly the
way you want it (by picking the operating system, tuning the configuration files, installing
dependencies) and you can be certain that your server template will run exactly the same
on any host that runs Docker.

Because of Docker's reproducible build environment, it's particularly well suited for testing,
especially in your continuous integration or continuous delivery flow. You can quickly boot
up identical environments to run the tests. And because the container images are all
identical each time, you can distribute the workload and run tests in parallel without a
problem. Developers can run the same image on their machine that will be run in
production later, which again has a huge advantage in testing.

Introduction to Docker

[11]

The use of Docker containers speeds up continuous integration. There are no more endless
build-test-deploy cycles; Docker containers ensure that applications run identically in
development, test, and production environments. The code grows over time and becomes
more and more troublesome. That's why the idea of an immutable infrastructure becomes
more and more popular nowadays and the concept of containerization has become so
popular. By putting your Java applications into containers, you can simplify the process of
deployment and scaling. By having a lightweight Docker host that needs almost no
configuration management, you manage your applications simply by deploying and
redeploying containers to the host. And again, because the containers are very lightweight,
it takes only seconds.

We have been talking a lot about images and containers, without getting much into the
details. Let's do it now and see what Docker images and containers are.

Docker concepts - images and containers
When dealing with Kubernetes, we will be working with Docker containers; it is an open
source container cluster manager. To run our own Java application, we will need to create
an image first. Let's begin with the concept of Docker images.

Images
Think of an image as a read-only template which is a base foundation to create a container
from. It's same as a recipe containing the definition of everything your application needs to
operate. It can be Linux with an application server (such as Tomcat or Wildfly, for example)
and your Java application itself. Every image starts from a base image; for
example, Ubuntu; a Linux image. Although you can begin with a simple image and build
your application stack on top of it, you can also pick an already prepared image from the
hundreds available on the Internet. There are a lot of images especially useful for Java
developers: openjdk, tomcat, wildfly, and many others. We will use them later as a
foundation for our own images. It's a lot easier to have, let's say, Wildfly installed and
configured properly as a starting point for your own image. You can then just focus on your
Java application. If you're a novice in building images, downloading a specialized base
image is a great way to get a serious speed boost in comparison to developing one by
yourself.

Introduction to Docker

[12]

Images are created using a series of commands, called instructions. Instructions are placed
in the Dockerfile. The Dockerfile is just a plain text file, containing an ordered collection of
root filesystem changes (the same as running a command that starts an application server,
adding a file or directory, creating environmental variables, and so on.) and the
corresponding execution parameters for use within a container runtime later on. Docker
will read the Dockerfile when you start the process of building an image and execute the
instructions one by one. The result will be the final image. Each instruction creates a new
layer in the image. That image layer then becomes the parent for the layer created by the
next instruction. Docker images are highly portable across hosts and operating systems; an
image can be run in a Docker container on any host that runs Docker. Docker is natively
supported in Linux, but has to be run in a VM on Windows and macOS. It's important to
know that Docker uses images to run your code, not the Dockerfile. The Dockerfile is used
to create the image when you run the docker build command. Also, if you publish your
image to the Docker Hub, you publish a resulting image with its layers, not a source
Dockerfile itself.

We have said before that every instruction in a Dockerfile creates a new layer. Layers are
the internal nature of an image; Docker images are composed from them. Let's explain now
what they are and what their characteristics are.

Layers
Each image consists of a series of layers which are stacked, one on top of the another. In
fact, every layer is an intermediate image. By using the union filesystem, Docker combines
all these layers into a single image entity. The union filesystem allows transparent
overlaying files and directories of separate filesystems, giving a single, consistent filesystem
as a result, as you can see the following diagram:

Introduction to Docker

[13]

Contents and structure of directories which have the same path within these separate
filesystems will be seen together in a single merged directory, within the new, virtual-like
filesystem. In other words, the filesystem structure of the top layer will merge with the
structure of the layer beneath. Files and directories which have the same path as in the
previous layer will cover those beneath. Removing the upper layer will again reveal and
expose the previous directory content. As we have mentioned earlier, layers are placed in a
stack, one on the top of another. To maintain the order of layers, Docker utilizes the concept
of layer IDs and pointers. Each layer contains the ID and a pointer to its parent layer. A
layer without a pointer referencing the parent is the first layer in the stack, a base. You can
see the relation in the following diagram:

Introduction to Docker

[14]

Layers have some interesting features. First, they are reusable and cacheable. The pointer to
a parent layer you can see in the previous diagram is important. As Docker is processing
your Dockerfile it's looking at two things: the Dockerfile instruction being executed and the
parent image. Docker will scan all of the children of the parent layer and look for one whose
command matches the current instruction. If a match is found, Docker skips to the next
Dockerfile instruction and repeats the process. If a matching layer is not found in the cache,
a new one is created. For the instructions that add files to your image (we will get to know
them later in detail), Docker creates a checksum for each file contents. During the building
process, this checksum is compared against the checksum of the existing images to check if
the layer can be reused from the cache. If two different images have a common part, let's
say a Linux shell or Java runtime for example, Docker, which tracks all of the pulled layers,
will reuse the shell layer in both of the images. It's a safe operation; as you already
know, layers are read-only. When downloading another image, the layer will be reused and
only the difference will be pulled from the Docker Hub. This saves time, bandwidth, and
disk space of course, but it has another great advantage. If you modify your Docker image,
for example by modifying your containerized Java application, only the application layer
gets modified. After you've successfully built an image from your Dockerfile, you will
notice that subsequent builds of the same Dockerfile finish a lot faster. Once Docker caches
an image layer for an instruction, it doesn't need to be rebuilt. Later on, instead of
distributing the whole image, you push just the updated part. It makes the process simpler
and faster. This is especially useful if you use Docker in your continuous deployment flow:
pushing a Git branch will trigger building an image and then publishing the application for
users. Due to the layer-reuse feature, the whole process is a lot faster.

The concept of reusable layers is also a reason why Docker is so lightweight in comparison
to full virtual machines, which don't share anything. It is thanks to layers that when you
pull an image, you eventually don't have to download all of its filesystem. If you already
have another image that has some of the layers of the image you pull, only the missing
layers are actually downloaded. There is a word of warning though, related to another
feature of layers: apart from being reusable, layers are also additive. If you create a large file
in the container, then make a commit (we will get to that in a while), then delete the file,
and do another commit; this file will still be present in the layer history. Imagine this
scenario: you pull the base Ubuntu image, and install the Wildfly application server. Then
you change your mind, uninstall the Wildfly and install Tomcat instead. All those files
removed from the Wildfly installation will still be present in the image, although they have
been deleted. Image size will grow in no time. Understanding of Docker's layered
filesystem can make a big difference in the size of your images. Size can become a problem
when you publish your images to a registry; it takes more requests and is longer to transfer.

Introduction to Docker

[15]

Large images become an issue when thousands of containers need to be deployed across a
cluster, for example. You should always be aware of the additivity of layers and try to
optimize the image at every step of your Dockerfile, the same as using the command
chaining, for example. We will be using the command chaining technique later on, when
creating our Java application images.

Because layers are additive, they provide a full history of how a specific image was built.
This gives you another great feature: the possibility to make a rollback to a certain point in
the image's history. Since every image contains all of its building steps, we can easily go
back to a previous step if we want to. This can be done by tagging a certain layer. We will
cover image tagging later in our book.

Layers and images are closely related to each other. As we have said before, Docker images
are stored as a series of read-only layers. This means that once the container image has been
created, it does not change. But having all the filesystem read-only would not make a lot of
sense. What about modifying an image? Or adding your software to a base web server
image? Well, when we start a container, Docker actually takes the read-only image (with all
its read-only layers) and adds a writable layer on top of the layers stack. Let's focus on the
containers now.

Containers
A running instance of an image is called a container. Docker launches them using the
Docker images as read-only templates. If you start an image, you have a running container
of this image. Naturally, you can have many running containers of the same image. In fact,
we will do it very often a little bit later, using Kubernetes.

To run a container, we use the docker run command:

docker run [OPTIONS] IMAGE [COMMAND] [ARG...]

There are a lot of run command options and switches that can be used; we will get to know
them later on. Some of the options include the network configuration, for example (we will
explain Docker's networking concepts in Chapter 2, Networking and Persistent Storage).
Others, the same as the -it (from interactive), tell the Docker engine to behave differently;
in this case, to make the container interactive and to attach a terminal to its output and
input. Let's just focus on the idea of the container to better understand the whole picture.
We are going to use the docker run command in a short while to test our setup.

Introduction to Docker

[16]

So, what happens under the hood when we run the docker run command? Docker will
check if the image that you would like to run is available on your local machine. If not, it
will be pulled down from the remote repository. The Docker engine takes the image and
adds a writable layer on top of the image's layers stack. Next, it initializes the image's name,
ID, and resource limits, such as CPU and memory. In this phase, Docker will also set up a
container's IP address by finding and attaching an available IP address from a pool. The last
step of the execution will be the actual command, passed as the last parameter of the
docker run command. If the it option has been used, Docker will capture and provide
the container output, it will be displayed in the console. You can now do things you would
normally do when preparing an operating system to run your applications. This can be
installing packages (via apt-get, for example), pulling source code with Git, building your
Java application using Maven, and so on. All of these actions will modify the filesystem in
the top, writable layer. If you then execute the commit command, a new image containing
all of your changes will be created, kind of frozen, and ready to be run later. To stop a
container, use the docker stop command:

docker stop

A container when stopped will retain all settings and filesystem changes (in the top layer
that is writeable). All processes running in the container will be stopped and you will lose
everything in memory. This is what differentiates a stopped container from a Docker image.

To list all containers you have on your system, either running or stopped, execute the
docker ps command:

docker ps -a

As a result, the Docker client will list a table containing container IDs (a unique identifier
you can use to refer to the container in other commands), creation date, the command used
to start a container, status, exposed ports, and a name, either assigned by you or the funny
name Docker has picked for you. To remove a container, you can just use the docker rm
command. If you want to remove a couple of them at once, you can use the list of containers
(given by the docker ps command) and a filter:

docker rm $(docker ps -a -q -f status=exited)

Introduction to Docker

[17]

We have said that a Docker image is always read-only and immutable. If it did not have the
possibility to change the image, it would not be very useful. So how's the image
modification possible except by, of course, altering a Dockerfile and doing a rebuild? When
the container is started, the writable layer on top of the layers stack is for our disposal. We
can actually make changes to a running container; this can be adding or modifying files, the
same as installing a software package, configuring the operating system, and so on. If you
modify a file in the running container, the file will be taken out of the underlying (parent)
read-only layer and placed in the top, writable layer. Our changes are only possible in the
top layer. The union filesystem will then cover the underlying file. The original, underlying
file will not be modified; it still exists safely in the underlying, read-only layer. By issuing
the docker commit command, you create a new read-only image from a running
container (and all it changes in the writable layer):

docker commit <container-id> <image-name>

The docker commit command saves changes you have made to the container in the
writable layer. To avoid data corruption or inconsistency, Docker will pause a container you
are committing changes into. The result of the docker commit command is a brand new,
read-only image, which you can create new containers from:

In response to a successful commit, Docker will output the full ID of a newly generated
image. If you remove the container without issuing a commit first and then relaunch the
same image again, Docker will start a fresh container without any of the changes made in
the previously running container. In either case, with or without a commit, your changes to
the filesystem will never affect the base image. Creating images by altering the top writable
layer in the container is useful when debugging and experimenting, but it's usually better to
use a Dockerfile to manage your images in a documented and maintainable way.

