

Chef Infrastructure
Automation Cookbook
Second Edition

Over 80 recipes to automate your cloud and server
infrastructure with Chef and its associated toolset

Matthias Marschall

BIRMINGHAM - MUMBAI

Chef Infrastructure Automation Cookbook
Second Edition

Copyright © 2015 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system,
or transmitted in any form or by any means, without the prior written permission of the
publisher, except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the
information presented. However, the information contained in this book is sold without
warranty, either express or implied. Neither the author nor Packt Publishing, and its dealers
and distributors will be held liable for any damages caused or alleged to be caused directly
or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies
and products mentioned in this book by the appropriate use of capitals. However, Packt
Publishing cannot guarantee the accuracy of this information.

First published: August 2013

Second edition: May 2015

Production reference: 1260515

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78528-794-7

www.packtpub.com

www.packtpub.com

Credits

Author
Matthias Marschall

Reviewers
Robert Curth

Kristian Hoffmann

Max Manders

Greg Swallow

Earl Waud

Commissioning Editor
Ashwin Nair

Acquisition Editor
Vinay Argekar

Content Development Editor
Rohit Kumar Singh

Technical Editor
Naveenkumar Jain

Copy Editor
Adithi Shetty

Project Coordinator
Izzat Contractor

Proofreaders
Stephen Copestake

Safis Editing

Indexer
Priya Sane

Production Coordinator
Komal Ramchandani

Cover Work
Komal Ramchandani

About the Author

Matthias Marschall is a software engineer "Made in Germany" and the author of the Chef
Infrastructure Automation Cookbook by Packt Publishing. His four children make sure that he
feels comfortable and stays in control of chaotic situations. A lean and Agile engineering lead,
he's passionate about continuous delivery, infrastructure automation, and all things DevOps.

In recent years, Matthias has helped build several web-based businesses, first with Java
and then with Ruby on Rails. He quickly moved into system administration, writing his own
configuration management tool before moving his whole infrastructure to Chef in its early days.

In 2008, he started a blog (http://www.agileweboperations.com) with Dan Ackerson.
There, they shared their ideas about DevOps since the early days of the continually emerging
movement. You can fid him on Twitter at @mmarschall.

Matthias is the CTO of www.gutefrage.net GmbH that helps run Germany's biggest Q&A
site among other high traffic sites. He holds a master's degree in computer science [Dipl.-Inf.
(FH)] and teaches courses on Agile software development at the University of Augsburg.

When not writing or coding, Matthias enjoys drawing cartoons and playing Go. He lives near
Munich, Germany.

Thanks go to my colleagues at gutefrage.net for all those valuable
discussions.
I would also like to thank Adam Jacob, Joshua Timberman, and all the
other great people at Chef, Inc. for your help with this book.
Special thanks go to my reviewers, Earl Waud, Greg Swallow, Max Manders,
and Robert Curth, who made this book so much better.

http://www.agileweboperations.com
www.gutefrage.net

About the Reviewers

Robert Curth is an engineer at gutefrage gruppe. In his current project, HELPSTER, Chef is
used to automate the server setup. When Robert is not programming, he organizes company
events and talks about how to live a good life on his blog at http://rocu.de.

I want to thank all the amazing authors of Chef cookbooks and tools. Chef
has come a long way since the first edition of this book!
Thanks, Matthias, for updating this book. I love how elegant many of these
recipes are. I hope you, dear reader, enjoy them as much as I did!

Kristian Hoffmann is the sort of twisted individual who likes hacking code (in Perl, if
possible) and cars (the smaller and faster, the better) and solving problems that would lead
other people to throw their hands up in despair. After some early experimentation with Linux
(circa Slackware 3.0), his tech career started as a lowly tech at a local ISP. He went on to
complete his bachelor's in computer science, marry a fellow technophile, and rise to the
ranks of the president/CTO in his adolescent ISP hacking grounds. He now enjoys the most
significant challenge of raising two hopelessly tech-bound children.

http://rocu.de

Max Manders is a recovering PHP developer and former sysadmin, who currently works as
a systems developer and ops engineer helping to run the Operations Centre for Cloudreach,
an Amazon Web Services Premier Consulting Partner. Max has put his past experiences and
skills to good use to evangelize all things DevOps, working to master Ruby and advocating
infrastructure-as-code as a Chef practitioner.

Max is a cofounder and organizer of Whisky Web, a Scottish conference for the web
development and ops community. When he's not writing code or tinkering with the latest and
greatest monitoring and operations tools, Max enjoys the odd whisky and playing jazz and
funk trombone. He lives in Edinburgh with his wife, Jo, and their cats, Ziggy and Maggie.

It's been an absolute pleasure to have the opportunity to provide a technical
review of this book. I hope you enjoy reading it as much as I did! Thank you,
Jo, for putting up with my mutterings and ignorance while I tinkered with
the code in this book. And thank you, Shona, for sharing the load at work,
affording me time to get this done!

Greg Swallow has been wrangling with all sorts of computers in the Indianapolis
area for 20 years now, for folks like IN.gov, Expedient Data Centers, Salesforce, and Indigo
BioAutomation. When he's not playing digital plumber, you can catch him on the roads
and trails of Indiana, either on his bike or in his running shoes.

He has also reviewed VMware vSphere 5.x Datacenter Design Cookbook by Hersey
Cartwright, Packt Publishing.

I would also like to thank Packt Publishing for offering me the opportunity to
review this and other books. It's been fun!

Earl Waud is a Virtualization Development Professional with more than 9 years of focused
industry experience creating innovative solutions for hypervisor provisioning, management,
and automation. He is an expert in aligning engineering strategy with organizational vision
and goals and delivering highly scalable and user-friendly virtualization environments.

With more than 20 years of experience developing customer-facing and corporate IT software
solutions, Earl has a proven track record of delivering high-caliber and on-time technology
solutions that significantly impact business results.

Earl lives in San Diego, California. He is blessed with a beautiful wife, Patti, and three
amazing daughters, Madison, Daniella, and Alexis.

Thank you, my wonderful family, for allowing me to spend some of our
precious family time to review this book. I love you and appreciate you,
and I know I am truly blessed that you are my family.

Currently, Earl is a senior systems engineer with Intuit Inc., a company that creates business
and financial management solutions that simplify the business of life for small businesses,
consumers, and accounting professionals.

Earl can be reached online at http://sandiegoearl.com.

http://sandiegoearl.com

www.PacktPub.com

Support files, eBooks, discount offers, and more
For support files and downloads related to your book, please visit www.PacktPub.com.

Did you know that Packt offers eBook versions of every book published, with PDF and ePub
files available? You can upgrade to the eBook version at www.PacktPub.com and as a print
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at
service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up
for a range of free newsletters and receive exclusive discounts and offers on Packt books
and eBooks.

TM

https://www2.packtpub.com/books/subscription/packtlib

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital
book library. Here, you can search, access, and read Packt's entire library of books.

Why subscribe?
ff Fully searchable across every book published by Packt

ff Copy and paste, print, and bookmark content

ff On demand and accessible via a web browser

Free access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view 9 entirely free books. Simply use your login credentials for
immediate access.

www.PacktPub.com
www.PacktPub.com
www.PacktPub.com
https://www2.packtpub.com/books/subscription/packtlib
www.PacktPub.com

i

Table of Contents
Preface	 v
Chapter 1: Chef Infrastructure	 1

Introduction	 2
Using version control	 2
Installing the Chef development kit on your workstation	 5
Using the hosted Chef platform	 7
Managing virtual machines with Vagrant	 10
Creating and using cookbooks	 14
Inspecting files on your Chef server with knife	 16
Defining cookbook dependencies	 19
Managing cookbook dependencies with Berkshelf	 21
Downloading and integrating cookbooks as vendor branches into
your Git repository	 25
Using custom knife plugins	 30
Deleting a node from the Chef server	 32
Developing recipes with local mode	 33
Using roles	 36
Using environments	 37
Freezing cookbooks	 41
Running Chef client as a daemon	 43
Using chef-shell	 44

Chapter 2: Evaluating and Troubleshooting Cookbooks
and Chef Runs	 47

Introduction	 48
Testing your Chef cookbooks	 48
Flagging problems in your Chef cookbooks	 50
Test-driven development for cookbooks using ChefSpec	 53

ii

Table of Contents

Integration testing your Chef cookbooks with Test Kitchen	 58
Showing affected nodes before uploading cookbooks	 63
Overriding a node's run list to execute a single recipe	 64
Using why-run mode to find out what a recipe might do	 66
Debugging Chef client runs	 68
Inspecting the results of your last Chef run	 70
Raising and logging exceptions in recipes	 72
Diff-ing cookbooks with knife	 74
Using community exception and report handlers	 76
Creating custom handlers	 78

Chapter 3: Chef Language and Style	 83
Introduction	 84
Using community Chef style	 84
Using attributes to dynamically configure recipes	 86
Using templates	 89
Mixing plain Ruby with Chef DSL	 92
Installing Ruby gems and using them in recipes	 95
Using libraries	 96
Using definitions	 99
Creating your own Lightweight Resource Providers (LWRP)	 101
Extending community cookbooks by using application
wrapper cookbooks	 106
Creating custom Ohai plugins	 108
Creating custom knife plugins	 112

Chapter 4: Writing Better Cookbooks	 117
Introduction	 118
Setting the environment variables	 118
Passing arguments to shell commands	 120
Overriding attributes	 122
Using search to find nodes	 125
Using data bags	 128
Using search to find data bag items	 131
Using encrypted data bag items	 132
Accessing data bag values from external scripts	 135
Getting information about the environment	 138
Writing cross-platform cookbooks	 139
Finding the complete list of operating systems you can use
in cookbooks	 142
Making recipes idempotent by using conditional execution	 145

iii

Table of Contents

Chapter 5: Working with Files and Packages	 147
Introduction	 147
Creating configuration files using templates	 148
Using pure Ruby in templates for conditionals and iterations	 150
Installing packages from a third-party repository	 153
Installing software from source	 157
Running a command when a file is updated	 161
Distributing directory trees	 163
Cleaning up old files	 166
Distributing different files based on the target platform	 168

Chapter 6: Users and Applications	 171
Introduction	 171
Creating users from data bags	 172
Securing the Secure Shell Daemon (SSHD)	 176
Enabling passwordless sudo	 179
Managing NTP	 182
Managing nginx	 185
Creating nginx virtual hosts	 189
Creating MySQL databases and users	 193
Managing WordPress sites	 197
Managing Ruby on Rails applications	 200
Managing Varnish	 205
Managing your local workstation	 208

Chapter 7: Servers and Cloud Infrastructure	 213
Introduction	 214
Creating your infrastructure using Chef Provisioning	 214
Creating cookbooks from a running system with Blueprint	 217
Running the same command on many machines at once	 220
Setting up SNMP for external monitoring services	 222
Deploying a Nagios monitoring server	 224
Building high-availability services using heartbeat	 228
Using HAProxy to load-balance multiple web servers	 233
Using custom bootstrap scripts	 236
Managing firewalls with iptables	 238
Managing fail2ban to ban malicious IP addresses	 241
Managing Amazon EC2 instances	 244
Loading your Chef infrastructure from a file with spiceweasel and knife	 248

Index	 251

v

Preface
Irrespective of whether you're a systems administrator or developer, if you're sick and tired
of repetitive manual work and don't know whether you may dare to reboot your server,
it's time for you to get your infrastructure automated.

This book has all the required recipes to configure, deploy, and scale your servers
and applications, irrespective of whether you manage five servers, 5,000 servers,
or 500,000 servers.

It is a collection of easy-to-follow, step-by-step recipes showing you how to solve
real-world automation challenges. Learn techniques from the pros and make sure
you get your infrastructure automation project right the first time.

This book takes you on a journey through the many facets of Chef. It teaches you simple
techniques as well as full-fledged real-world solutions. By looking at easily digestible examples,
you'll be able to grasp the main concepts of Chef, which you'll need to automate your own
infrastructure. Instead of wasting time trying to get the existing community cookbooks running
in your environment, you'll get ready-made code examples to get you started.

After describing how to use the basic Chef tools, the book shows you how to troubleshoot
your work and explains the Chef language. Then, it shows you how to manage users,
applications, and your whole Cloud infrastructure. The book concludes by providing you
with additional, indispensable tools, and giving you an in-depth look into the Chef ecosystem.

Learn the techniques of the pros by walking through a host of step-by-step guides to solve
your real-world infrastructure automation challenges.

What this book covers
Chapter 1, Chef Infrastructure, helps you to get started with Chef. It explains some key
concepts, such as cookbooks, roles, and environments, and shows you how to use some
basic tools like the Chef development kit (ChefDK), such as Git, knife, chef shell, Vagrant,
and Berkshelf.

Preface

vi

Chapter 2, Evaluating and Troubleshooting Cookbooks and Chef Runs, is all about getting
your cookbooks right. It covers logging and debugging as well as the why run mode, and
shows you how to develop your cookbooks totally test driven.

Chapter 3, Chef Language and Style, covers additional Chef concepts, such as attributes,
templates, libraries, and even Light Weight Resource Providers. It shows you how to use
plain old Ruby inside your recipes and ends with writing your own Ohai and knife plugins.

Chapter 4, Writing Better Cookbooks, shows you how to make your cookbooks more flexible.
It covers ways to override attributes, use data bags and search, and to make your cookbooks
idempotent. Writing cross-platform cookbooks is covered as well.

Chapter 5, Working with Files and Packages, covers powerful techniques to manage
configuration files, and install and manage software packages. It shows you how to install
software from source and how to manage whole directory trees.

Chapter 6, Users and Applications, shows you how to manage user accounts, securing
SSH and configuring sudo. Then, it walks you through installing complete applications,
such as nginx, MySQL, WordPress, Ruby on Rails, and Varnish. It ends by showing you
how to manage your own OS X workstation with Chef.

Chapter 7, Servers and Cloud Infrastructure, deals with networking and applications spanning
multiple servers. You'll learn how to create your whole infrastructure using Chef provisioning.
Then it shows you how to set up high-availability services and load-balancers, and how to
monitor your whole infrastructure with Nagios. Finally, it'll show you how to manage your
Amazon EC2 Cloud with Chef.

What you need for this book
To run the examples in this book, you'll need a computer running OS X or Ubuntu Linux 14.04.
The examples will use Sublime Text (http://www.sublimetext.com/) as the editor. Make
sure you configured Sublime text command-line tool subl to follow along smoothly.

It helps if you have Ruby 2.1.0 with bundler (http://bundler.io/) installed on your system
as well.

Who this book is for
This book is for system engineers and administrators who have a fundamental understanding
of information management systems and infrastructure. It helps if you've already played
around with Chef; however, this book covers all the important topics you will need to know.
If you don't want to dig through a whole book before you can get started, this book is for you,
as it features a set of independent recipes you can try out immediately.

http://www.sublimetext.com/
http://bundler.io/

Preface

vii

Sections
In this book, you will find several headings that appear frequently (Getting ready, How to do
it…, How it works…, There's more…, and See also).

To give clear instructions on how to complete a recipe, we use these sections as follows:

Getting ready
This section tells you what to expect in the recipe and describes how to set up any software
or preliminary settings required for the recipe.

How to do it…
This section contains the steps required to follow the recipe.

How it works…
This section usually consists of a detailed explanation of what happened in the previous section.

There's more…
This section consists of additional information about the recipe in order to make the reader
more knowledgeable about the recipe.

See also
This section provides helpful links to other useful information for the recipe.

Conventions
In this book, you will find a number of text styles that distinguish between different kinds of
information. Here are some examples of these styles and an explanation of their meaning.

Code words in text, database table names, folder names, filenames, file extensions, pathnames,
dummy URLs, user input, and Twitter handles are shown as follows: "The omnibus installer will
download Ruby and all required Ruby gems into /opt/chef/embedded."

Preface

viii

A block of code is set as follows:

name "web_servers"
description "This role contains nodes, which act as web servers"
run_list "recipe[ntp]"
default_attributes 'ntp' => {
 'ntpdate' => {
 'disable' => true
 }
}

When we wish to draw your attention to a particular part of a code block, the relevant lines
or items are set in bold:

name "web_servers"
description "This role contains nodes, which act as web servers"
run_list "recipe[ntp]"
default_attributes 'ntp' => {
 'ntpdate' => {
 'disable' => true
 }

}

Any command-line input or output is written as follows:

mma@laptop:~/chef-repo $ knife role from file web_servers.rb

New terms and important words are shown in bold. Words that you see on the screen, for
example, in menus or dialog boxes, appear in the text like this: "Open http://requestb.in
in your browser and click on Create a RequestBin."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about this
book—what you liked or disliked. Reader feedback is important for us as it helps us
develop titles that you will really get the most out of.

http://requestb.in

Preface

ix

To send us general feedback, simply e-mail feedback@packtpub.com, and mention
the book's title in the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing or
contributing to a book, see our author guide at www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to help you to
get the most from your purchase.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes do happen.
If you find a mistake in one of our books—maybe a mistake in the text or the code—we would be
grateful if you could report this to us. By doing so, you can save other readers from frustration
and help us improve subsequent versions of this book. If you find any errata, please report them
by visiting http://www.packtpub.com/submit-errata, selecting your book, clicking on
the Errata Submission Form link, and entering the details of your errata. Once your errata are
verified, your submission will be accepted and the errata will be uploaded to our website or
added to any list of existing errata under the Errata section of that title.

To view the previously submitted errata, go to https://www.packtpub.com/books/
content/support and enter the name of the book in the search field. The required
information will appear under the Errata section.

Piracy
Piracy of copyrighted material on the Internet is an ongoing problem across all media.
At Packt, we take the protection of our copyright and licenses very seriously. If you come
across any illegal copies of our works in any form on the Internet, please provide us with
the location address or website name immediately so that we can pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors and our ability to bring you valuable content.

Questions
If you have a problem with any aspect of this book, you can contact us at questions@
packtpub.com, and we will do our best to address the problem.

www.packtpub.com/authors
http://www.packtpub.com/submit-errata
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support

1

1
Chef Infrastructure

"What made Manhattan Manhattan was the underground infrastructure, that
engineering marvel."

 Andrew Cuomo

A well-engineered infrastructure builds the basis for successful companies. In this chapter,
we will see how to set up the infrastructure around Chef as the basis of your infrastructure
as code. We'll cover the following recipes in this chapter:

ff Using version control
ff Installing the Chef development kit on your workstation
ff Using the hosted Chef platform
ff Managing virtual machines with Vagrant
ff Creating and using cookbooks
ff Inspecting files on your Chef server with knife
ff Defining cookbook dependencies
ff Managing cookbook dependencies with Berkshelf
ff Downloading and integrating cookbooks as vendor branches into your Git repository
ff Using custom knife plugins
ff Deleting a node from the Chef server
ff Developing recipes with local mode
ff Using roles
ff Using environments
ff Freezing cookbooks
ff Running Chef client as a daemon
ff Using chef-shell

Chef Infrastructure

2

Introduction
This chapter will cover the basics of Chef, including common terminology, workflow practices,
and various tools that work in accordance with Chef. We will explore version control using Git,
walk through working with community cookbooks, and running those cookbooks on your own
servers, so that you can configure them in the way you need them.

First, let's talk about some important terms used in the Chef universe.

A cookbook is a collection of all the components needed to change something on a server,
such as installing MySQL, the most important one being recipes, which tell Chef which
resources you want to configure on your host.

You need to deploy cookbooks to the nodes that you want to change. Chef offers multiple
ways for this task. Most probably, you'll use a central Chef server. You can either run your
own server or sign up for hosted Chef.

The Chef server is the central registry, where each node needs to be registered. The Chef
server distributes the cookbooks you uploaded to it, to your nodes.

Knife is Chef's command-line tool to interact with the Chef server. You run it on your local
workstation and use it to upload cookbooks and manage other aspects of Chef.

On your nodes, you need to install Chef client—the part that retrieves the cookbooks
from the Chef server and executes them on the node.

In this chapter, we'll see the basic infrastructure components of your Chef setup at work and
learn how to use the basic tools. Let's get started by taking a look at how to use Git as
a version control system for your cookbooks.

Using version control
Do you manually back up every file before you change it? And do you invent creative file name
extensions such as _me and _you when you try to collaborate a file? If you answer yes to any
of these, it's time to rethink your processes.

A version control system (VCS) helps you stay sane when dealing with important files and
collaborating with them.

Using version control is a fundamental part of any infrastructure automation. There are
multiple solutions (some free, some paid) to manage source version control, including Git,
SVN, Mercurial, and Perforce. Due to its popularity among the Chef community, we will be
using Git. However, you could easily use any other version control system with Chef.

Chapter 1

3

Don't even think about building your infrastructure as code without
using a version control system to manage it!

Getting ready
You'll need Git installed on your local workstation. Either use your operating system's package
manager (such as Apt on Ubuntu or Homebrew on OS X), or simply download the installer from
www.git-scm.org.

Git is a distributed version control system. This means that you don't necessarily need a central
host to store your repositories. However, in practice, using GitHub as your central repository has
proven to be very helpful. In this book, I'll assume that you're using GitHub. Therefore, you need
to go to www.github.com and create an (free) account to follow the instructions given in this
book. Make sure that you upload your Secure Shell (SSH) key by following the instructions at
https://help.github.com/articles/generating-ssh-keys, so that you're able to
use the SSH protocol to interact with your GitHub account.

As soon as you have created your GitHub account, you should create your repository by
visiting https://github.com while you're still logged in and using chef-repo as
the repository name.

Make sure you have wget installed on your local workstation, in order to be able to download
the required files from public servers.

How to do it...
Before you can write any cookbooks, you need to set up your initial Git repository on your
development box. Chef Software, Inc. provides an empty Chef repository to get you started.
Let's see how you can set up your own Chef repository with Git, using Chef's skeleton.

1.	 Download Chef's skeleton repository as a tarball:
mma@laptop $ wget http://github.com/chef/chef-repo/tarball/master

...TRUNCATED OUTPUT...

2014-11-30 22:00:43 (1.30 MB/s) - 'master' saved [9309/9309]

2.	 Extract the downloaded tarball:
mma@laptop $ tar xzvf master

3.	 Rename the directory:
mma@laptop:~ $ mv opscode-chef-repo-* chef-repo

www.git-scm.org
www.github.com
https://help.github.com/articles/generating-ssh-keys
https://github.com

Chef Infrastructure

4

4.	 Change to your newly created Chef repository:
mma@laptop:~ $ cd chef-repo/

5.	 Initialize a fresh Git repository:
mma@laptop:~/chef-repo $ git init .

Initialized empty Git repository in /Users/mma/work/chef-repo/.
git/

6.	 Connect your local repository to your remote repository on github.com. Make sure to
replace mmarschall with your own GitHub username:
mma@laptop:~/chef-repo $ git remote add origin git@github.
com:mmarschall/chef-repo.git

7.	 Configure Git with your user name and e-mail address:
mma@laptop:~/chef-repo $ git config --global user.email "you@
example.com"

mma@laptop:~/chef-repo $ git config --global user.name "Your Name"

8.	 Add and commit Chef's default directory structure:
mma@laptop:~/chef-repo $ git add .

mma@laptop:~/chef-repo $ git commit -m "initial commit"

[master (root-commit) 6148b20] initial commit
 11 files changed, 545 insertions(+), 0 deletions(-)
 create mode 100644 .gitignore
...TRUNCATED OUTPUT...
create mode 100644 roles/README.md

9.	 Push your initialized repository to GitHub. This makes it available to all your co-
workers to collaborate on:

mma@laptop:~/chef-repo $ git push -u origin master

...TRUNCATED OUTPUT...
To git@github.com:mmarschall/chef-repo.git
 * [new branch] master -> master

How it works...
You have downloaded a tarball containing Chef's skeleton repository. Then, you initialized
chef-repo and connected it to your own repository on GitHub.

Chapter 1

5

After that, you added all the files from the tarball to your repository and committed them.
This makes Git track your files and the changes you make later.

Finally, you pushed your repository to GitHub, so that your co-workers can use your code too.

There's more...
Let's assume you're working on the same chef-repo repository, together with your co-
workers. They cloned your repository, added a new cookbook called other_cookbook,
committed their changes locally, and pushed their changes back to GitHub. Now, it's time
for you to get the new cookbook downloaded on to your own laptop.

Pull your co-workers' changes from GitHub. This will merge their changes into your local copy
of the repository. Use the pull subcommand:

mma@laptop:~/chef-repo $ git pull --rebase

From github.com:mmarschall/chef-repo
 * branch master -> FETCH_HEAD
...TRUNCATED OUTPUT...
create mode 100644 cookbooks/other_cookbook/recipes/default.rb

In case of any conflicting changes, Git will help you merge and resolve them.

See also
ff Learn about Git basics at http://git-scm.com/videos

ff Walk through the basic steps using GitHub at https://help.github.com/
categories/54/articles

ff You'll use more Git features in the Downloading and integrating cookbooks as
vendor branches into your Git repository recipe in this chapter

Installing the Chef development kit on your
workstation

If you want to use Chef, you'll need to install the Chef development kit (DK) on your local
workstation first. You'll have to develop your configurations locally and use Chef to distribute
them to your Chef server.

http://git-scm.com/videos
https://help.github.com/categories/54/articles
https://help.github.com/categories/54/articles

Chef Infrastructure

6

Chef provides a fully packaged version, which does not have any external prerequisites. This
fully packaged Chef is called the omnibus installer. We'll see how to use it in this section.

How to do it...
Let's see how to install the Chef DK on your local workstation using Chef's omnibus installer:

1.	 Download the Chef DK for your specific workstation platform from https://
downloads.chef.io/chef-dk/ and run the installer.

2.	 Verify that Chef installed all the required components:
mma@laptop:~ $ chef verify
...TRUNCATED OUTPUT...
Verification of component 'rubocop' succeeded.
Verification of component 'kitchen-vagrant' succeeded.
Verification of component 'chefspec' succeeded.
Verification of component 'berkshelf' succeeded.
Verification of component 'fauxhai' succeeded.
Verification of component 'test-kitchen' succeeded.
Verification of component 'package installation' succeeded.
Verification of component 'chef-dk' succeeded.
Verification of component 'knife-spork' succeeded.
Verification of component 'chef-client' succeeded.

3.	 Add the newly installed Ruby to your path:

mma@laptop:~ $ echo 'export PATH="/opt/chefdk/embedded/bin:$PATH"'
>> ~/.bash_profile && source ~/.bash_profile

You may not want to use (and don't have to use) ChefDK's Ruby, especially
if you are a Rails Developer.
If you're happily using your Ruby rvm, or rbenv environment, you can
continue to do so. Just ensure that the ChefDK-provided applications
appear first in your PATH, before any gem-installed versions, and you're
good to go.

How it works...
The omnibus installer will download Ruby and all required Ruby gems into /opt/chefdk.

See also
ff Find detailed instructions for OS X, Linux, and Windows at https://learn.chef.io

ff Find ChefDK on GitHub at https://github.com/opscode/chef-dk

https://downloads.chef.io/chef-dk/
https://downloads.chef.io/chef-dk/
https://learn.chef.io
https://github.com/opscode/chef-dk

Chapter 1

7

Using the hosted Chef platform
If you want to get started with Chef right away (without the need to install your own Chef
server) or want a third party to give you a Service Level Agreement (SLA) for your Chef server,
you can sign up for hosted Chef by Chef Software, Inc. Chef Software, Inc. operates Chef as a
cloud service. It's quick to set up and gives you full control, using users and groups to control
the access permissions to your Chef setup. We'll configure knife, Chef's command-line tool to
interact with hosted Chef, so that you can start managing your nodes.

Getting ready
Before being able to use hosted Chef, you need to sign up for the service. There is a free
account for up to five nodes.

Visit http://manage.chef.io/signup and register for a free trial or a free account.

I registered as the user webops with an organization short name of awo.

After registering your account, it is time now to prepare your organization to be used with
your chef-repo repository.

How to do it...
Carry out the following steps in order to interact with the hosted Chef:

1.	 Create the configuration directory for your Chef client on your local workstation:
mma@laptop:~/chef-repo $ mkdir .chef

2.	 Navigate to http://manage.chef.io/organizations. After logging in,
you can start downloading your validation keys and configuration file.

3.	 Select your organization to be able to see its contents using the web UI.

http://manage.chef.io/signup
http://manage.chef.io/organizations

Chef Infrastructure

8

Regenerate the validation key for your organization and save it as <your-
organization-short-name>-validator.pem in the chef directory
inside your chef-repo repository.

4.	 Generate the knife config and put the downloaded knife.rb into the .chef
directory inside your chef-repo directory, as well. Make sure you have downloaded
your user's private key from https://www.chef.io/account/password and
replace webops with the username you chose for hosted Chef, and awo with the
short name you chose for your organization:
current_dir = File.dirname(__FILE__)
log_level :info
log_location STDOUT
node_name "webops"
client_key "#{current_dir}/webops.pem"
validation_client_name "awo-validator"
validation_key "#{current_dir}/awo-validator.pem"
chef_server_url "https://api.chef.io/organizations/awo"
cache_type 'BasicFile'
cache_options(:path => "#{ENV['HOME']}/.chef/checksums")
cookbook_path ["#{current_dir}/../cookbooks"]

Take a look at the following code:
.chef/*.pem

.chef/encrypted_data_bag_secret

You should add the preceding code to your .gitingore file
inside chef-repo to avoid your credentials from ending up in
your Git repository.

5.	 Use knife to verify that you can connect to your hosted Chef organization. It should
only have your validator client, so far. Instead of awo, you'll see your organization's
short name:

mma@laptop:~/chef-repo $ knife client list

awo-validator

https://www.chef.io/account/password

Chapter 1

9

How it works...
Hosted Chef uses two private keys (called validators):

ff one for the organization

ff one for every user.

You need to tell knife where it can find these two keys in your knife.rb file.

The following two lines of code in your knife.rb file tell the knife about which organization
to use and where to find its private key. The validation_key is used to allow new clients
to authenticate the Chef server before getting their own Client key:

validation_client_name "awo-validator"
validation_key "#{current_dir}/awo-validator.pem"

The following line of code in your knife.rb file tells the knife where to find your users'
private key. It is used by your local workstation to authenticate the Chef server:

client_key "#{current_dir}/webops.pem"

Also, the following line of code in your knife.rb file tells knife that you are using hosted
Chef. You will find your organization name as the last part of the URL:

chef_server_url "https://api.chef.io/organizations/awo"

Using the knife.rb file and your two validators knife, you can now connect to your
organization hosted by Chef Software, Inc.

You do not need your own self-hosted Chef server, nor do you need to use Chef client local
mode in this setup.

There's more...
This setup is good for you if you do not want to worry about running, scaling, and updating
your own Chef server and if you're happy with saving all your configuration data in the Cloud
(under the control of Chef Software, Inc.).

If you need to have all your configuration data within your own network
boundaries, you can install Chef server on premises by choosing "ON
PREMISES CHEF" at https://www.chef.io/chef/choose-
your- version/ or install the Open Source version of Chef server
directly from GitHub at https://github.com/chef/chef.

https://www.chef.io/chef/choose-your- version/
https://www.chef.io/chef/choose-your- version/
https://github.com/chef/chef

