
[1]

Learning Object-Oriented
Programming

Explore and crack the OOP code in Python, JavaScript,
and C#

Gastón C. Hillar

BIRMINGHAM - MUMBAI

Learning Object-Oriented Programming

Copyright © 2015 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the author, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: July 2015

Production reference: 1100715

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78528-963-7

www.packtpub.com

www.packtpub.com

Credits

Author
Gastón C. Hillar

Reviewers
Róman Joost

Hugo Solis

Commissioning Editor
Sarah Croufton

Acquisition Editor
Nadeem Bagban

Content Development Editor
Divij Kotian

Technical Editor
Parag Topre

Copy Editor
Relin Hedly

Project Coordinator
Nikhil Nair

Proofreader
Safis Editing

Indexer
Monica Ajmera Mehta

Graphics
Disha Haria

Production Coordinator
Arvindkumar Gupta

Cover Work
Arvindkumar Gupta

About the Author

Gastón C. Hillar is an Italian and has been working with computers since he
was 8 years old. In the early 80s, he began programming with the legendary Texas
TI-99/4A and Commodore 64 home computers. Gaston has a bachelor's degree
in computer science and graduated with honors. He also holds an MBA, in which
he graduated with an outstanding thesis. At present, Gaston is an independent IT
consultant and a freelance author who is always looking for new adventures around
the world.

He has been a senior contributing editor at Dr. Dobb's and has written more
than a hundred articles on software development topics. Gatson was also a former
Microsoft MVP in technical computing. He has received the prestigious Intel® Black
Belt Software Developer award seven times.

He is a guest blogger at Intel® Software Network (http://software.intel.com).
You can reach him at gastonhillar@hotmail.com and follow him on Twitter at
http://twitter.com/gastonhillar. Gastón's blog is http://csharpmulticore.
blogspot.com.

He lives with his wife, Vanesa, and his two sons, Kevin and Brandon.

http://software.intel.com
http://twitter.com/gastonhillar.
http://csharpmulticore.blogspot.com
http://csharpmulticore.blogspot.com

Acknowledgments

At the time of writing this book, I was fortunate to work with an excellent team at
Packt Publishing. Their contributions vastly improved the presentation of this book.
James Jones gave me a brilliant idea that led me to jump into the exciting project
of teaching object-oriented programming in three popular, yet heterogeneous,
programming languages. Divij Kotian helped me realize my vision for this book
and provided many sensible suggestions regarding the text, format, and flow of
the book, which is quite noteworthy. I would like to thank my technical reviewers
and proofreaders for their thorough reviews and insightful comments. I was able to
incorporate some of the knowledge and wisdom that they have gained in their many
years in the software development industry. This book was possible because of their
valuable feedback.

The entire process of writing a book requires a huge number of lonely hours.
I couldn't have written an entire book without dedicating some time to play
soccer with my sons, Kevin and Brandon, and my nephew, Nicolas. Of course,
I never won a match.

About the Reviewers

Róman Joost first learned about open source software in 1997. He has
contributed to multiple open source projects in his professional career. Roman is
currently working at Red Hat in Brisbane, Australia. In his leisure time, he enjoys
photography, spending time with his family, and digital painting with GIMP.

Hugo Solis is an assistant professor in the physics department at the University
of Costa Rica. His current research interests include computational cosmology,
complexity, and the influence of hydrogen on material properties. Hugo has vast
experience in languages, including C, C++, and Python for scientific programming
and visualization. He is a member of the Free Software Foundation and has
contributed code to some free software projects. Hugo has contributed to Mastering
Object-oriented Python and Kivy: Interactive Applications in Python as a technical reviewer
and is the author of Kivy Cookbook, Packt Publishing. He is currently in charge of the
IFT, a Costa Rican scientific nonprofit organization for the multidisciplinary practice
of physics (http://iftucr.org).

I'd like to thank my beloved mother, Katty Sanchez, for her support
and vanguard thoughts.

http://iftucr.org

www.PacktPub.com

Support files, eBooks, discount offers, and more
For support files and downloads related to your book, please visit www.PacktPub.com.

Did you know that Packt offers eBook versions of every book published, with PDF
and ePub files available? You can upgrade to the eBook version at www.PacktPub.com
and as a print book customer, you are entitled to a discount on the eBook copy. Get in
touch with us at service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign
up for a range of free newsletters and receive exclusive discounts and offers on Packt
books and eBooks.

TM

https://www2.packtpub.com/books/subscription/packtlib

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital
book library. Here, you can search, access, and read Packt's entire library of books.

Why subscribe?
• Fully searchable across every book published by Packt
• Copy and paste, print, and bookmark content
• On demand and accessible via a web browser

Free access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view 9 entirely free books. Simply use your login credentials for
immediate access.

http://www.PacktPub.com
www.PacktPub.com
http://www.PacktPub.com
mailto:service@packtpub.com
http://www.PacktPub.com
https://www2.packtpub.com/books/subscription/packtlib
http://www.packtpub.com/

To my sons, Kevin and Brandon, and my wife, Vanesa

[i]

Table of Contents
Preface v
Chapter 1: Objects Everywhere 1

Recognizing objects from nouns 1
Generating blueprints for objects 4
Recognizing attributes/fields 5
Recognizing actions from verbs – methods 6
Organizing the blueprints – classes 9
Object-oriented approaches in Python, JavaScript, and C# 11
Summary 12

Chapter 2: Classes and Instances 13
Understanding classes and instances 13
Understanding constructors and destructors 14
Declaring classes in Python 16
Customizing constructors in Python 17
Customizing destructors in Python 19
Creating instances of classes in Python 21
Declaring classes in C# 23
Customizing constructors in C# 23
Customizing destructors in C# 26
Creating instances of classes in C# 27
Understanding that functions are objects in JavaScript 29
Working with constructor functions in JavaScript 30
Creating instances in JavaScript 34
Summary 35

Chapter 3: Encapsulation of Data 37
Understanding the different members of a class 37
Protecting and hiding data 39
Working with properties 40

Table of Contents

[ii]

Understanding the difference between mutability and immutability 41
Encapsulating data in Python 43

Adding attributes to a class 43
Hiding data in Python using prefixes 45
Using property getters and setters in Python 46
Using methods to add behaviors to classes in Python 50

Encapsulating data in C# 53
Adding fields to a class 53
Using access modifiers 55
Using property getters and setters in C# 57
Working with auto-implemented properties 63
Using methods to add behaviors to classes in C# 64

Encapsulating data in JavaScript 66
Adding properties to a constructor function 67
Hiding data in JavaScript with local variables 68
Using property getters and setters in JavaScript 69
Using methods to add behaviors to constructor functions 71

Summary 74
Chapter 4: Inheritance and Specialization 75

Using classes to abstract behavior 75
Understanding inheritance 78
Understanding method overloading and overriding 81
Understanding operator overloading 81
Taking advantage of polymorphism 82
Working with simple inheritance in Python 82

Creating classes that specialize behavior in Python 82
Using simple inheritance in Python 83
Overriding methods in Python 85
Overloading operators in Python 88
Understanding polymorphism in Python 89

Working with simple inheritance in C# 91
Creating classes that specialize behavior in C# 91
Using simple inheritance in C# 93
Overloading and overriding methods in C# 95
Overloading operators in C# 101
Understanding polymorphism in C# 102

Working with the prototype-based inheritance in JavaScript 104
Creating objects that specialize behavior in JavaScript 104
Using the prototype-based inheritance in JavaScript 105
Overriding methods in JavaScript 106

Table of Contents

[iii]

Overloading operators in JavaScript 109
Understanding polymorphism in JavaScript 110

Summary 111
Chapter 5: Interfaces, Multiple Inheritance, and Composition 113

Understanding the requirement to work with multiple base classes 113
Working with multiple inheritance in Python 115

Declaring base classes for multiple inheritance 115
Declaring classes that override methods 117
Declaring a class with multiple base classes 119
Working with instances of classes that use multiple inheritance 124
Working with abstract base classes 127

Interfaces and multiple inheritance in C# 128
Declaring interfaces 129
Declaring classes that implement interfaces 131
Working with multiple inheritance 134
Working with methods that receive interfaces as arguments 140

Working with composition in JavaScript 143
Declaring base constructor functions for composition 143
Declaring constructor functions that use composition 145
Working with an object composed of many objects 147
Working with instances composed of many objects 154

Summary 158
Chapter 6: Duck Typing and Generics 159

Understanding parametric polymorphism and duck typing 159
Working with duck typing in Python 160

Declaring a base class that defines the generic behavior 161
Declaring subclasses for duck typing 163
Declaring a class that works with duck typing 163
Using a generic class for multiple types 165
Working with duck typing in mind 167

Working with generics in C# 170
Declaring an interface to be used as a constraint 170
Declaring an abstract base class that implements two interfaces 171
Declaring subclasses of an abstract base class 174
Declaring a class that works with a constrained generic type 175
Using a generic class for multiple types 178
Declaring a class that works with two constrained generic types 181
Using a generic class with two generic type parameters 184

Working with duck typing in JavaScript 185
Declaring a constructor function that defines the generic behavior 185

Table of Contents

[iv]

Working with the prototype chain and duck typing 187
Declaring methods that work with duck typing 188
Using generic methods for multiple objects 190
Working with duck typing in mind 192

Summary 194
Chapter 7: Organization of Object-Oriented Code 195

Thinking about the best ways to organize code 195
Organizing object-oriented code in Python 198

Working with source files organized in folders 198
Importing modules 200
Working with module hierarchies 204

Organizing object-oriented code in C# 207
Working with folders 207
Using namespaces 211
Working with namespace hierarchies in C# 220

Organizing object-oriented code in JavaScript 223
Working with objects to organize code 224
Declaring constructor functions within objects 226
Working with nested objects that organize code 229

Summary 230
Chapter 8: Taking Full Advantage of
Object-Oriented Programming 231

Putting together all the pieces of the object-oriented puzzle 231
Refactoring existing code in Python 234
Refactoring existing code in C# 241
Refactoring existing code in JavaScript 248
Summary 252

Index 253

[v]

Preface
Object-oriented programming, also known as OOP, is a required skill in absolutely
any modern software developer job. It makes a lot of sense because object-oriented
programming allows you to maximize code reuse and minimize the maintenance
costs. However, learning object-oriented programming is challenging because it
includes too many abstract concepts that require real-life examples to make it easy
to understand. In addition, object-oriented code that doesn't follow best practices
can easily become a maintenance nightmare.

Nowadays, you need to work with more than one programming language at the
same time to develop applications. For example, a modern Internet of Things
project may require the Python code running on a board and a combination of
C#, JavaScript, and HTML code to develop both the web and mobile apps that
allow users to control the Internet of Things device. Thus, learning object-oriented
programming for a single programming language is usually not enough.

This book allows you to develop high-quality reusable object-oriented code in
Python, JavaScript, and C#. You will learn the object-oriented programming
principles and how they are or will be used in each of the three covered
programming languages. You will also learn how to capture objects from real-world
elements and create object-oriented code that represents them. This book will help
you understand the different approaches of Python, JavaScript, and C# toward
object-oriented code. You will maximize code reuse in the three programming
languages and reduce maintenance costs. Your code will become easy to understand
and it will work with representations of real-life elements.

Preface

[vi]

What this book covers
Chapter 1, Objects Everywhere, covers the principles of object-oriented paradigms
and some of the differences in the approaches toward object-oriented code in
each of the three covered programming languages: Python, JavaScript, and C#.
You will understand how real-world objects can become part of fundamental
elements in the code.

Chapter 2, Classes and Instances, tells you how to generate blueprints in order to
create objects. You will understand the difference between classes, prototypes,
and instances in object-oriented programming.

Chapter 3, Encapsulation of Data, teaches you how to organize data in the blueprints
that generate objects. You will understand the different members of a class, learn the
difference between mutability and immutability, and customize methods and fields
to protect them against undesired access.

Chapter 4, Inheritance and Specialization, explores how to create a hierarchy of
blueprints that generate objects. We will take advantage of inheritance and
many related features to specialize behavior.

Chapter 5, Interfaces, Multiple Inheritance, and Composition, works with more complex
scenarios in which we have to use instances that belong to more than one blueprint.
We will use the different features included in each of the three covered programming
languages to code an application that requires the combination of multiple blueprints
in a single instance.

Chapter 6, Duck Typing and Generics, covers how to maximize code reuse by writing
code capable of working with objects of different types. In this chapter, you will
learn parametric polymorphism, generics, and duck typing.

Chapter 7, Organization of Object-Oriented Code, provides information on how to
write code for a complex application that requires dozens of classes, interfaces, and
constructor functions according to the programing language that you use. It will help
you understand the importance of organizing object-oriented code and think about
the best solution to organize object-oriented code.

Chapter 8, Taking Full Advantage of Object-Oriented Programming, talks about how
to refactor existing code to take advantage of all the object-oriented programming
techniques that you learned so far. The difference between writing object-oriented
code from scratch and refactoring existing code is explained in this chapter. It will
also help you prepare object-oriented code for future requirements.

Preface

[vii]

What you need for this book
You will need a computer with at least an Intel Core i3 CPU or equivalent with 4
GB RAM, running on Windows 7 or a higher version, Mac OS X Mountain Lion or
a higher version, or any Linux version that is capable of running Python 3.4, and a
browser with JavaScript support.

You will need Python 3.4.3 installed on your computer. You can work with
your favorite editor or use any Python IDE that is compatible with the mentioned
Python version.

In order to work with the C# examples, you will need Visual Studio 2015 or 2013.
You can use the free Express editions to run all the examples. If you aren't working
on Windows, you can use Xamarin Studio 5.5 or higher.

In order to work with the JavaScript examples, you will need web browsers such as
Chrome 40.x or higher, Firefox 37.x or higher, Safari 8.x or higher, Internet Explorer
10 or higher that provides a JavaScript console.

Who this book is for
If you're a Python, JavaScript, or C# developer and want to learn the basics of
object-oriented programming with real-world examples, this book is for you.

Conventions
In this book, you will find a number of text styles that distinguish between different
kinds of information. Here are some examples of these styles and an explanation of
their meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows:
"We can use a rectangle class as a blueprint to generate the four different
rectangle instances."

A block of code is set as follows:

function calculateArea(width, height) {
 return new Rectangle(width, height).calculateArea();
}

calculateArea(143, 187);

Preface

[viii]

When we wish to draw your attention to a particular part of a code block, the
relevant lines or items are set in bold:

function Mammal() {}
Mammal.prototype = new Animal();
Mammal.prototype.constructor = Mammal;
Mammal.prototype.isPregnant = false;
Mammal.prototype.pairsOfEyes = 1;

Any command-line input or output is written as follows:

Rectangle {width: 293, height: 117}

Rectangle {width: 293, height: 137}

New terms and important words are shown in bold. Words that you see on the screen,
for example, in menus or dialog boxes, appear in the text like this: "The following line
prints "System.Object" as a result in the Immediate Window in the IDE."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or disliked. Reader feedback is important for us as it
helps us develop titles that you will really get the most out of.

To send us general feedback, simply e-mail feedback@packtpub.com, and mention
the book's title in the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide at www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

www.packtpub.com/authors

Preface

[ix]

Downloading the example code
You can download the example code files from your account at http://www.
packtpub.com for all the Packt Publishing books you have purchased. If you
purchased this book elsewhere, you can visit http://www.packtpub.com/support
and register to have the files e-mailed directly to you.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in the text or
the code—we would be grateful if you could report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
book. If you find any errata, please report them by visiting http://www.packtpub.
com/submit-errata, selecting your book, clicking on the Errata Submission Form
link, and entering the details of your errata. Once your errata are verified, your
submission will be accepted and the errata will be uploaded to our website or added
to any list of existing errata under the Errata section of that title.

To view the previously submitted errata, go to https://www.packtpub.com/books/
content/support and enter the name of the book in the search field. The required
information will appear under the Errata section.

Piracy
Piracy of copyrighted material on the Internet is an ongoing problem across all
media. At Packt, we take the protection of our copyright and licenses very seriously.
If you come across any illegal copies of our works in any form on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors and our ability to bring you
valuable content.

http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com/support
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support

Preface

[x]

eBooks, discount offers, and more
Did you know that Packt offers eBook versions of every book published, with PDF
and ePub files available? You can upgrade to the eBook version at www.PacktPub.com
and as a print book customer, you are entitled to a discount on the eBook copy. Get in
touch with us at customercare@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles,
sign up for a range of free newsletters, and receive exclusive discounts and
offers on Packt books and eBooks.

Questions
If you have a problem with any aspect of this book, you can contact us at
questions@packtpub.com, and we will do our best to address the problem.

http://www.PacktPub.com
mailto:customercare@packtpub.com
http://www.PacktPub.com

[1]

Objects Everywhere
Objects are everywhere, and therefore, it is very important to recognize elements,
known as objects, from real-world situations. It is also important to understand
how they can easily be translated into object-oriented code. In this chapter, you
will learn the principles of object-oriented paradigms and some of the differences
in the approaches towards object-oriented code in each of the three programming
languages: Python, JavaScript, and C#. In this chapter, we will:

• Understand how real-world objects can become a part of fundamental
elements in the code

• Recognize objects from nouns
• Generate blueprints for objects and understand classes
• Recognize attributes to generate fields
• Recognize actions from verbs to generate methods
• Work with UML diagrams and translate them into object-oriented code
• Organize blueprints to generate different classes
• Identify the object-oriented approaches in Python, JavaScript, and C#

Recognizing objects from nouns
Let's imagine, we have to develop a new simple application, and we receive a
description with the requirements. The application must allow users to calculate
the areas and perimeters of squares, rectangles, circles, and ellipses.

Objects Everywhere

[2]

It is indeed a very simple application, and you can start writing code in Python,
JavaScript, and C#. You can create four functions that calculate the areas of the
shapes mentioned earlier. Moreover, you can create four additional functions that
calculate the perimeters for them. For example, the following seven functions would
do the job:

• calculateSquareArea: This receives the parameters of the square and
returns the value of the calculated area for the shape

• calculateRectangleArea: This receives the parameters of the rectangle and
returns the value of the calculated area for the shape

• calculateCircleArea: This receives the parameters of the circle and returns
the value of the calculated area for the shape

• calculateEllipseArea: This receives the parameters of the ellipse and
returns the value of the calculated area for the shape

• calculateSquarePerimeter: This receives the parameters of the square and
returns the value of the calculated perimeter for the shape

• calculateRectanglePerimeter: This receives the parameters of the
rectangle and returns the value of the calculated perimeter for the shape

• calculateCirclePerimeter: This receives the parameters of the circle and
returns the value of the calculated perimeter for the shape

However, let's forget a bit about programming languages and functions. Let's
recognize the real-world objects from the application's requirements. It is necessary
to calculate the areas and perimeters of four elements, that is, four nouns in the
requirements that represent real-life objects:

• Square
• Rectangle
• Circle
• Ellipse

We can design our application by following an object-oriented paradigm. Instead of
creating a set of functions that perform the required tasks, we can create software
objects that represent the state and behavior of a square, rectangle, circle, and an
ellipse. This way, the different objects mimic the real-world shapes. We can work
with the objects to specify the different attributes required to calculate their areas
and their perimeters.

Chapter 1

[3]

Now, let's move to the real world and think about the four shapes. Imagine that you
have to draw the four shapes on paper and calculate both their areas and perimeters.
What information do you require for each of the shapes? Think about this, and then,
take a look at the following table that summarizes the data required for each shape:

Shape Required data
Square Length of side
Rectangle Width and height
Circle Radius (usually labeled as r)
Ellipse Semi-major axis (usually labeled as a) and semi-minor

axis (usually labeled as b)

The data required by each of the shapes is going to be encapsulated
in each object. For example, the object that represents a rectangle
encapsulates both the rectangle's width and height. Data encapsulation
is one of the major pillars of object-oriented programming.

The following diagram shows the four shapes drawn and their elements:

Objects Everywhere

[4]

Generating blueprints for objects
Imagine that you want to draw and calculate the areas of four different rectangles.
You will end up with four rectangles drawn, with their different widths, heights,
and calculated areas. It would be great to have a blueprint to simplify the process
of drawing each rectangle with their different widths and heights.

In object-oriented programming, a class is a blueprint or a template definition
from which the objects are created. Classes are models that define the state and
behavior of an object. After defining a class that defines the state and behavior
of a rectangle, we can use it to generate objects that represent the state and
behavior of each real-world rectangle.

Objects are also known as instances. For example, we can say
each rectangle object is an instance of the rectangle class.

The following image shows four rectangle instances drawn, with their widths and
heights specified: Rectangle #1, Rectangle #2, Rectangle #3, and Rectangle #4. We
can use a rectangle class as a blueprint to generate the four different rectangle
instances. It is very important to understand the difference between a class and
the objects or instances generated through its usage. Object-oriented programming
allows us to discover the blueprint we used to generate a specific object. Thus, we
are able to infer that each object is an instance of the rectangle class.

Chapter 1

[5]

We recognized four completely different real-world objects from the application's
requirements. We need classes to create the objects, and therefore, we require the
following four classes:

• Square
• Rectangle
• Circle
• Ellipse

Recognizing attributes/fields
We already know the information required for each of the shapes. Now, it is time
to design the classes to include the necessary attributes that provide the required
data to each instance. In other words, we have to make sure that each class has the
necessary variables that encapsulate all the data required by the objects to perform
all the tasks.

Let's start with the Square class. It is necessary to know the length of side for each
instance of this class, that is, for each square object. Thus, we need an encapsulated
variable that allows each instance of this class to specify the value of the length of side.

The variables defined in a class to encapsulate data for each
instance of the class are known as attributes or fields. Each
instance has its own independent value for the attributes or
fields defined in the class.

The Square class defines a floating point attribute named LengthOfSide whose initial
value is equal to 0 for any new instance of the class. After you create an instance of the
Square class, it is possible to change the value of the LengthOfSide attribute.

For example, imagine that you create two instances of the Square class. One of the
instances is named square1, and the other is square2. The instance names allow
you to access the encapsulated data for each object, and therefore, you can use them
to change the values of the exposed attributes.

Imagine that our object-oriented programming language uses a dot (.) to allow us
to access the attributes of the instances. So, square1.LengthOfSide provides
access to the length of side for the Square instance named square1, and square2.
LengthOfSide does the same for the Square instance named square2.

Objects Everywhere

[6]

You can assign the value 10 to square1.LengthOfSide and 20 to square2.
LengthOfSide. This way, each Square instance is going to have a different
value for the LengthOfSide attribute.

Now, let's move to the Rectangle class. We can define two floating-point attributes
for this class: Width and Height. Their initial values are also going to be 0. Then, you
can create two instances of the Rectangle class: rectangle1 and rectangle2.

You can assign the value 10 to rectangle1.Width and 20 to rectangle1.Height.
This way, rectangle1 represents a 10 x 20 rectangle. You can assign the value 30 to
rectangle2.Width and 50 to rectangle2.Height to make the second Rectangle
instance, which represents a 30 x 50 rectangle.

The following table summarizes the floating-point attributes defined for each class:

Class name Attributes list
Square LengthOfSide
Rectangle Width

Height
Circle Radius
Ellipse SemiMajorAxis

The following image shows a UML (Unified Modeling Language) diagram with the
four classes and their attributes:

Recognizing actions from
verbs – methods
So far, we have designed four classes and identified the necessary attributes for
each of them. Now, it is time to add the necessary pieces of code that work with
the previously defined attributes to perform all the tasks. In other words, we have
to make sure that each class has the necessary encapsulated functions that process
the attribute values specified in the objects to perform all the tasks.

Chapter 1

[7]

Let's start with the Square class. The application's requirements specified that we
have to calculate the areas and perimeters of squares. Thus, we need pieces of code
that allow each instance of this class to use the LengthOfSide value to calculate the
area and the perimeter.

The functions or subroutines defined in a class to encapsulate the
behavior for each instance of the class are known as methods. Each
instance can access the set of methods exposed by the class. The code
specified in a method is able to work with the attributes specified in
the class. When we execute a method, it will use the attributes of the
specific instance. A good practice is to define the methods in a logical
place, that is, in the place where the required data is kept.

The Square class defines the following two parameterless methods. Notice that we
declare the code for both methods in the definition of the Square class:

• CalculateArea: This returns a floating-point value with the calculated area
for the square. The method returns the square of the LengthOfSide attribute
value (LengthOfSide2 or LengthOfSide ^ 2).

• CalculatePerimeter: This returns a floating-point value with the calculated
perimeter for the square. The method returns the LengthOfSide attribute
value multiplied by 4 (4 * LengthOfSide).

Imagine that, our object-oriented programming language uses a dot (.) to allow
us to execute methods of the instances. Remember that we had two instances of
the Square class: square1 with LengthOfSide equal to 10 and square2 with
LengthOfSide equal to 20. If we call square1.CalculateArea, it would return the
result of 102, which is 100. On the other hand, if we call square2.CalculateArea, it
would return the result of 202, which is 400. Each instance has a diverse value for the
LengthOfSide attribute, and therefore, the results of executing the CalculateArea
method are different.

If we call square1.CalculatePerimeter, it would return the result of 4 * 10, which
is 40. On the other hand, if we call square2.CalculatePerimeter, it would return
the result of 4 * 20, which is 80.

