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Preface
OpenCV 3 is a state-of-the-art computer vision library that is used for a variety 
of image and video processing operations. Some of the more spectacular and 
futuristic features, such as face recognition or object tracking, are easily achievable 
with OpenCV 3. Learning the basic concepts behind computer vision algorithms, 
models, and OpenCV's API will enable the development of all sorts of real-world 
applications, including security and surveillance tools.

Starting with basic image processing operations, this book will take you through 
a journey that explores advanced computer vision concepts. Computer vision is a 
rapidly evolving science whose applications in the real world are exploding, so this 
book will appeal to computer vision novices as well as experts of the subject who 
want to learn about the brand new OpenCV 3.0.0.

What this book covers
Chapter 1, Setting Up OpenCV, explains how to set up OpenCV 3 with Python on 
different platforms. It will also troubleshoot common problems.

Chapter 2, Handling Files, Cameras, and GUIs, introduces OpenCV's I/O functionalities. 
It will also discuss the concept of a project and the beginnings of an object-oriented 
design for this project.

Chapter 3, Processing Images with OpenCV 3, presents some techniques required to 
alter images, such as detecting skin tone in an image, sharpening an image, marking 
contours of subjects, and detecting crosswalks using a line segment detector.

Chapter 4, Depth Estimation and Segmentation, shows you how to use data from a 
depth camera to identify foreground and background regions, such that we can  
limit an effect to only the foreground or background.
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Chapter 5, Detecting and Recognizing Faces, introduces some of OpenCV's face 
detection functionalities, along with the data files that define particular types  
of trackable objects.

Chapter 6, Retrieving Images and Searching Using Image Descriptors, shows how to 
detect the features of an image with the help of OpenCV and make use of them  
to match and search for images.

Chapter 7, Detecting and Recognizing Objects, introduces the concept of detecting and 
recognizing objects, which is one of the most common challenges in computer vision.

Chapter 8, Tracking Objects, explores the vast topic of object tracking, which is the 
process of locating a moving object in a movie or video feed with the help of a camera.

Chapter 9, Neural Networks with OpenCV – an Introduction, introduces you to Artificial 
Neural Networks in OpenCV and illustrates their usage in a real-life application.

What you need for this book
You simply need a relatively recent computer, as the first chapter will guide 
you through the installation of all the necessary software. A webcam is highly 
recommended, but not necessary.

Who this book is for
This book is aimed at programmers with working knowledge of Python as well as 
people who want to explore the topic of computer vision using the OpenCV library. 
No previous experience of computer vision or OpenCV is required. Programming 
experience is recommended.

Conventions
In this book, you will find a number of text styles that distinguish between different 
kinds of information. Here are some examples of these styles and an explanation of 
their meaning.

Code words in text, database table names, folder names, filenames, file extensions, 
pathnames, dummy URLs, user input, and Twitter handles are shown as follows: 
"We can include other contexts through the use of the include directive."
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A block of code is set as follows:

import cv2
import numpy as np

img = cv2.imread('images/chess_board.png')
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
gray = np.float32(gray)
dst = cv2.cornerHarris(gray, 2, 23, 0.04)

When we wish to draw your attention to a particular part of a code block, the 
relevant lines or items are set in bold:

img = cv2.imread('images/chess_board.png')
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
gray = np.float32(gray)
dst = cv2.cornerHarris(gray, 2, 23, 0.04)

Any command-line input or output is written as follows:

mkdir build && cd build

cmake  D CMAKE_BUILD_TYPE=Release -DOPENCV_EXTRA_MODULES_PATH=<opencv_
contrib>/modules   D CMAKE_INSTALL_PREFIX=/usr/local ..

make

New terms and important words are shown in bold. Words that you see on the 
screen, for example, in menus or dialog boxes, appear in the text like this: " On 
Windows Vista / Windows 7 / Windows 8, click on the Start menu."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.
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Reader feedback
Feedback from our readers is always welcome. Let us know what you think about 
this book—what you liked or disliked. Reader feedback is important for us as it helps 
us develop titles that you will really get the most out of.

To send us general feedback, simply e-mail feedback@packtpub.com, and mention 
the book's title in the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing 
or contributing to a book, see our author guide at www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to 
help you to get the most from your purchase.

Downloading the example code
You can download the example code files from your account at http://www.
packtpub.com for all the Packt Publishing books you have purchased. If you 
purchased this book elsewhere, you can visit http://www.packtpub.com/support 
and register to have the files e-mailed directly to you.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes 
do happen. If you find a mistake in one of our books—maybe a mistake in the text or 
the code—we would be grateful if you could report this to us. By doing so, you can 
save other readers from frustration and help us improve subsequent versions of this 
book. If you find any errata, please report them by visiting http://www.packtpub.
com/submit-errata, selecting your book, clicking on the Errata Submission Form 
link, and entering the details of your errata. Once your errata are verified, your 
submission will be accepted and the errata will be uploaded to our website or added 
to any list of existing errata under the Errata section of that title.

To view the previously submitted errata, go to https://www.packtpub.com/books/
content/support and enter the name of the book in the search field. The required 
information will appear under the Errata section.

www.packtpub.com/authors
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com/support
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
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Piracy
Piracy of copyrighted material on the Internet is an ongoing problem across all 
media. At Packt, we take the protection of our copyright and licenses very seriously. 
If you come across any illegal copies of our works in any form on the Internet, please 
provide us with the location address or website name immediately so that we can 
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected  
pirated material.

We appreciate your help in protecting our authors and our ability to bring you 
valuable content.

Questions
If you have a problem with any aspect of this book, you can contact us at 
questions@packtpub.com, and we will do our best to address the problem.
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Setting Up OpenCV
You picked up this book so you may already have an idea of what OpenCV is. 
Maybe, you heard of Sci-Fi-sounding features, such as face detection, and got 
intrigued. If this is the case, you've made the perfect choice. OpenCV stands for 
Open Source Computer Vision. It is a free computer vision library that allows you 
to manipulate images and videos to accomplish a variety of tasks from displaying 
the feed of a webcam to potentially teaching a robot to recognize real-life objects.

In this book, you will learn to leverage the immense potential of OpenCV with the 
Python programming language. Python is an elegant language with a relatively 
shallow learning curve and very powerful features. This chapter is a quick guide to 
setting up Python 2.7, OpenCV, and other related libraries. After setup, we also look 
at OpenCV's Python sample scripts and documentation.

If you wish to skip the installation process and jump right into action, 
you can download the virtual machine (VM) I've made available at 
http://techfort.github.io/pycv/.
This file is compatible with VirtualBox, a free-to-use virtualization 
application that lets you build and run VMs. The VM I've built is 
based on Ubuntu Linux 14.04 and has all the necessary software 
installed so that you can start coding right away.
This VM requires at least 2 GB of RAM to run smoothly, so make sure 
that you allocate at least 2 (but, ideally, more than 4) GB of RAM to 
the VM, which means that your host machine will need at least 6 GB 
of RAM to sustain it.

http://techfort.github.io/pycv/
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The following related libraries are covered in this chapter:

• NumPy: This library is a dependency of OpenCV's Python bindings.  
It provides numeric computing functionality, including efficient arrays.

• SciPy: This library is a scientific computing library that is closely related to 
NumPy. It is not required by OpenCV, but it is useful for manipulating data 
in OpenCV images.

• OpenNI: This library is an optional dependency of OpenCV. It adds the 
support for certain depth cameras, such as Asus XtionPRO.

• SensorKinect: This library is an OpenNI plugin and optional dependency of 
OpenCV. It adds support for the Microsoft Kinect depth camera.

For this book's purposes, OpenNI and SensorKinect can be considered optional.  
They are used throughout Chapter 4, Depth Estimation and Segmentation, but are  
not used in the other chapters or appendices.

This book focuses on OpenCV 3, the new major release of the 
OpenCV library. All additional information about OpenCV is 
available at http://opencv.org, and its documentation is 
available at http://docs.opencv.org/master.

Choosing and using the right setup tools
We are free to choose various setup tools, depending on our operating system and 
how much configuration we want to do. Let's take an overview of the tools for 
Windows, Mac, Ubuntu, and other Unix-like systems.

Installation on Windows
Windows does not come with Python preinstalled. However, installation wizards are 
available for precompiled Python, NumPy, SciPy, and OpenCV. Alternatively, we 
can build from a source. OpenCV's build system uses CMake for configuration and 
either Visual Studio or MinGW for compilation.

If we want support for depth cameras, including Kinect, we should first install 
OpenNI and SensorKinect, which are available as precompiled binaries with 
installation wizards. Then, we must build OpenCV from a source.

The precompiled version of OpenCV does not offer support 
for depth cameras.

http://opencv.org
http://docs.opencv.org/master
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On Windows, OpenCV 2 offers better support for 32-bit Python than 64-bit Python; 
however, with the majority of computers sold today being 64-bit systems, our 
instructions will refer to 64-bit. All installers have 32-bit versions available from the 
same site as the 64-bit.

Some of the following steps refer to editing the system's PATH variable. This task can 
be done in the Environment Variables window of Control Panel.

1. On Windows Vista / Windows 7 / Windows 8, click on the Start menu and 
launch Control Panel. Now, navigate to System and Security | System | 
Advanced system settings. Click on the Environment Variables… button.

2. On Windows XP, click on the Start menu and navigate to Control Panel | 
System. Select the Advanced tab. Click on the Environment Variables… 
button.

3. Now, under System variables, select Path and click on the Edit… button.
4. Make changes as directed.
5. To apply the changes, click on all the OK buttons (until we are back in the 

main window of Control Panel).
6. Then, log out and log back in (alternatively, reboot).

Using binary installers (no support for depth 
cameras)
You can choose to install Python and its related libraries separately if you prefer; 
however, there are Python distributions that come with installers that will set up the 
entire SciPy stack (which includes Python and NumPy), which make it very trivial to 
set up the development environment.

One such distribution is Anaconda Python (downloadable at 
http://09c8d0b2229f813c1b93 c95ac804525aac4b6dba79b00b39d1d3.r79.
cf1.rackcdn.com/Anaconda-2.1.0 Windows-x86_64.exe). Once the installer is 
downloaded, run it and remember to add the path to the Anaconda installation to 
your PATH variable following the preceding procedure.

http://09c8d0b2229f813c1b93-c95ac804525aac4b6dba79b00b39d1d3.r79.cf1.rackcdn.com/Anaconda-2.1.0-Windows-x86_64.exe
http://09c8d0b2229f813c1b93-c95ac804525aac4b6dba79b00b39d1d3.r79.cf1.rackcdn.com/Anaconda-2.1.0-Windows-x86_64.exe
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Here are the steps to set up Python7, NumPy, SciPy, and OpenCV:

1. Download and install the 32-bit Python 2.7.9 from https://www.python.
org/ftp/python/2.7.9/python-2.7.9.amd64.msi.

2. Download and install NumPy 1.6.2 from http://www.lfd.uci.
edu/~gohlke/pythonlibs/#numpyhttp://sourceforge.net/projects/
numpy/files/NumPy/1.6.2/numpy-1.6.2-win32-superpack-
python2.7.exe/download (note that installing NumPy on Windows 64-bit 
is a bit tricky due to the lack of a 64-bit Fortran compiler on Windows, which 
NumPy depends on. The binary at the preceding link is unofficial).

3. Download and install SciPy 11.0 from http://www.lfd.uci.edu/~gohlke/
pythonlibs/#scipyhttp://sourceforge.net/projects/scipy/files/
scipy/0.11.0/scipy-0.11.0 win32-superpack-python2.7.exe/download 
(this is the same as NumPy and these are community installers).

4. Download the self-extracting ZIP of OpenCV 3.0.0 from https://github.
com/Itseez/opencv. Run this ZIP, and when prompted, enter a destination 
folder, which we will refer to as <unzip_destination>. A subfolder, 
<unzip_destination>\opencv, is created.

5. Copy <unzip_destination>\opencv\build\python\2.7\cv2.pyd to C:\
Python2.7\Lib\site-packages (assuming that we had installed Python 2.7 
to the default location). If you installed Python 2.7 with Anaconda, use the 
Anaconda installation folder instead of the default Python installation. Now, 
the new Python installation can find OpenCV.

6. A final step is necessary if we want Python scripts to run using the new 
Python installation by default. Edit the system's PATH variable and append 
;C:\Python2.7 (assuming that we had installed Python 2.7 to the default 
location) or your Anaconda installation folder. Remove any previous Python 
paths, such as ;C:\Python2.6. Log out and log back in (alternatively, reboot).

Using CMake and compilers
Windows does not come with any compilers or CMake. We need to install them. 
If we want support for depth cameras, including Kinect, we also need to install 
OpenNI and SensorKinect.

https://www.python.org/ftp/python/2.7.9/python-2.7.9.amd64.msi
https://www.python.org/ftp/python/2.7.9/python-2.7.9.amd64.msi
http://www.lfd.uci.edu/~gohlke/pythonlibs/#numpyhttp://sourceforge.net/projects/numpy/files/NumPy/1.6.2/numpy-1.6.2-win32-superpack-python2.7.exe/download
http://www.lfd.uci.edu/~gohlke/pythonlibs/#numpyhttp://sourceforge.net/projects/numpy/files/NumPy/1.6.2/numpy-1.6.2-win32-superpack-python2.7.exe/download
http://www.lfd.uci.edu/~gohlke/pythonlibs/#numpyhttp://sourceforge.net/projects/numpy/files/NumPy/1.6.2/numpy-1.6.2-win32-superpack-python2.7.exe/download
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Let's assume that we have already installed 32-bit Python 2.7, NumPy, and SciPy 
either from binaries (as described previously) or from a source. Now, we can 
proceed with installing compilers and CMake, optionally installing OpenNI and 
SensorKinect, and then building OpenCV from the source:

1. Download and install CMake 3.1.2 from http://www.cmake.org/files/
v3.1/cmake-3.1.2-win32-x86.exe. When running the installer, select 
either Add CMake to the system PATH for all users or Add CMake to 
the system PATH for current user. Don't worry about the fact that a 64-bit 
version of CMake is not available CMake is only a configuration tool and 
does not perform any compilations itself. Instead, on Windows, it creates 
project files that can be opened with Visual Studio.

2. Download and install Microsoft Visual Studio 2013 (the Desktop edition if 
you are working on Windows 7) from https://www.visualstudio.com/
products/free-developer-offers-vs.aspx?slcid=0x409&type=web  
or MinGW.
Note that you will need to sign in with your Microsoft account and if you 
don't have one, you can create one on the spot. Install the software and 
reboot after installation is complete.
For MinGW, get the installer from http://sourceforge.net/projects/
mingw/files/Installer/mingw-get-setup.exe/download and http://
sourceforge.net/projects/mingw/files/OldFiles/mingw-get-inst/
mingw-get-inst-20120426/mingw-get-inst-20120426.exe/download. 
When running the installer, make sure that the destination path does not 
contain spaces and that the optional C++ compiler is included. Edit the 
system's PATH variable and append ;C:\MinGW\bin (assuming that MinGW 
is installed to the default location). Reboot the system.

3. Optionally, download and install OpenNI 1.5.4.0 from the links provided in 
the GitHub homepage of OpenNI at https://github.com/OpenNI/OpenNI.

4. You can download and install SensorKinect 0.93 from https://github.com/
avin2/SensorKinect/blob/unstable/Bin/SensorKinect093-Bin-Win32-
v5.1.2.1.msi?raw=true (32-bit). Alternatively, for 64-bit Python, download 
the setup from https://github.com/avin2/SensorKinect/blob/
unstable/Bin/SensorKinect093-Bin-Win64-v5.1.2.1.msi?raw=true 
(64-bit). Note that this repository has been inactive for more than three years.

5. Download the self-extracting ZIP of OpenCV 3.0.0 from https://github.
com/Itseez/opencv. Run the self-extracting ZIP, and when prompted, enter 
any destination folder, which we will refer to as <unzip_destination>. A 
subfolder, <unzip_destination>\opencv, is then created.

http://www.cmake.org/files/v3.1/cmake-3.1.2-win32-x86.exe
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https://www.visualstudio.com/products/free-developer-offers-vs.aspx?slcid=0x409&type=web  or MinGW
https://www.visualstudio.com/products/free-developer-offers-vs.aspx?slcid=0x409&type=web  or MinGW
http://sourceforge.net/projects/mingw/files/Installer/mingw-get-setup.exe/download
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http://sourceforge.net/projects/mingw/files/OldFiles/mingw-get-inst/mingw-get-inst-20120426/mingw-get-inst-20120426.exe/download
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https://github.com/OpenNI/OpenNI
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https://github.com/avin2/SensorKinect/blob/unstable/Bin/SensorKinect093-Bin-Win64-v5.1.2.1.msi?raw=true
https://github.com/Itseez/opencv
https://github.com/Itseez/opencv


Setting Up OpenCV

[ 6 ]

6. Open Command Prompt and make another folder where our build will go 
using this command:
> mkdir<build_folder>

Change the directory of the build folder:
> cd <build_folder>

7. Now, we are ready to configure our build. To understand all the options, 
we can read the code in <unzip_destination>\opencv\CMakeLists.txt. 
However, for this book's purposes, we only need to use the options that will 
give us a release build with Python bindings, and optionally, depth camera 
support via OpenNI and SensorKinect.

8. Open CMake (cmake-gui) and specify the location of the source code of 
OpenCV and the folder where you would like to build the library. Click on 
Configure. Select the project to be generated. In this case, select Visual Studio 
12 (which corresponds to Visual Studio 2013). After CMake has finished 
configuring the project, it will output a list of build options. If you see a red 
background, it means that your project may need to be reconfigured: CMake 
might report that it has failed to find some dependencies. Many of OpenCV's 
dependencies are optional, so do not be too concerned yet.

If the build fails to complete or you run into problems later, 
try installing missing dependencies (often available as prebuilt 
binaries), and then rebuild OpenCV from this step.
You have the option of selecting/deselecting build options 
(according to the libraries you have installed on your machine) and 
click on Configure again, until you get a clear background (white).

9. At the end of this process, you can click on Generate, which will create 
an OpenCV.sln file in the folder you've chosen for the build. You can then 
navigate to <build_folder>/OpenCV.sln and open the file with Visual 
Studio 2013, and proceed with building the project, ALL_BUILD. You will 
need to build both the Debug and Release versions of OpenCV, so go ahead 
and build the library in the Debug mode, then select Release and rebuild it 
(F7 is the key to launch the build).

10. At this stage, you will have a bin folder in the OpenCV build directory, 
which will contain all the generated .dll files that will allow you to include 
OpenCV in your projects.
Alternatively, for MinGW, run the following command:
> cmake -D:CMAKE_BUILD_TYPE=RELEASE -D:WITH_OPENNI=ON -G 
"MinGWMakefiles" <unzip_destination>\opencv


