
[1]

Learning OpenCV 3 Computer
Vision with Python
Second Edition

Unleash the power of computer vision with Python
using OpenCV

Joe Minichino

Joseph Howse

BIRMINGHAM - MUMBAI

Learning OpenCV 3 Computer Vision with Python
Second Edition

Copyright © 2015 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the authors, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: September 2015

Production reference: 1240915

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78528-384-0

www.packtpub.com

Credits

Authors
Joe Minichino

Joseph Howse

Reviewers
Nandan Banerjee

Tian Cao

Brandon Castellano

Haojian Jin

Adrian Rosebrock

Commissioning Editor
Akram Hussain

Acquisition Editors
Vivek Anantharaman

Prachi Bisht

Content Development Editor
Ritika Singh

Technical Editors
Novina Kewalramani

Shivani Kiran Mistry

Copy Editor
Sonia Cheema

Project Coordinator
Milton Dsouza

Proofreader
Safis Editing

Indexer
Monica Ajmera Mehta

Graphics
Disha Haria

Production Coordinator
Arvindkumar Gupta

Cover Work
Arvindkumar Gupta

About the Authors

Joe Minichino is a computer vision engineer for Hoolux Medical by day and a
developer of the NoSQL database LokiJS by night. On weekends, he is a heavy metal
singer/songwriter. He is a passionate programmer who is immensely curious about
programming languages and technologies and constantly experiments with them. At
Hoolux, Joe leads the development of an Android computer vision-based advertising
platform for the medical industry.

Born and raised in Varese, Lombardy, Italy, and coming from a humanistic
background in philosophy (at Milan's Università Statale), Joe has spent his last
11 years living in Cork, Ireland, which is where he became a computer science
graduate at the Cork Institute of Technology.

I am immensely grateful to my partner, Rowena, for always
encouraging me, and also my two little daughters for inspiring
me. A big thank you to the collaborators and editors of this book,
especially Joe Howse, Adrian Roesbrock, Brandon Castellano, the
OpenCV community, and the people at Packt Publishing.

Joseph Howse lives in Canada. During the winters, he grows his beard, while
his four cats grow their thick coats of fur. He loves combing his cats every day and
sometimes, his cats also pull his beard.

He has been writing for Packt Publishing since 2012. His books include OpenCV for
Secret Agents, OpenCV Blueprints, Android Application Programming with OpenCV 3,
OpenCV Computer Vision with Python, and Python Game Programming by Example.

When he is not writing books or grooming his cats, he provides consulting,
training, and software development services through his company,
Nummist Media (http://nummist.com).

About the Reviewers

Nandan Banerjee has a bachelor's degree in computer science and a master's
in robotics engineering. He started working with Samsung Electronics right after
graduation. He worked for a year at its R&D centre in Bangalore. He also worked in
the WPI-CMU team on the Boston Dynamics' robot, Atlas, for the DARPA Robotics
Challenge. He is currently working as a robotics software engineer in the technology
organization at iRobot Corporation. He is an embedded systems and robotics
enthusiast with an inclination toward computer vision and motion planning. He has
experience in various languages, including C, C++, Python, Java, and Delphi. He
also has a substantial experience in working with ROS, OpenRAVE, OpenCV, PCL,
OpenGL, CUDA and the Android SDK.

I would like to thank the author and publisher for coming out with
this wonderful book.

Tian Cao is pursuing his PhD in computer science at the University of North
Carolina in Chapel Hill, USA, and working on projects related to image analysis,
computer vision, and machine learning.

I dedicate this work to my parents and girlfriend.

Brandon Castellano is a student from Canada pursuing an MESc in electrical
engineering at the University of Western Ontario, City of London, Canada. He
received his BESc in the same subject in 2012. The focus of his research is in parallel
processing and GPGPU/FPGA optimization for real-time implementations of image
processing algorithms. Brandon also works for Eagle Vision Systems Inc., focusing
on the use of real-time image processing for robotics applications.

While he has been using OpenCV and C++ for more than 5 years, he has also been
advocating the use of Python frequently in his research, most notably, for its rapid
speed of development, allowing low-level interfacing with complex systems. This is
evident in his open source projects hosted on GitHub, for example, PySceneDetect,
which is mostly written in Python. In addition to image/video processing, he
has also worked on implementations of three-dimensional displays as well as the
software tools to support the development of such displays.

In addition to posting technical articles and tutorials on his website
(http://www.bcastell.com), he participates in a variety of both open and
closed source projects and contributes to GitHub under the username Breakthrough
(http://www.github.com/Breakthrough). He is an active member of the Super
User and Stack Overflow communities (under the name Breakthrough), and can be
contacted directly via his website.

I would like to thank all my friends and family for their patience
during the past few years (especially my parents, Peter and Lori,
and my brother, Mitchell). I could not have accomplished everything
without their continued love and support. I can't ever thank
everyone enough.

I would also like to extend a special thanks to all of the developers
that contribute to open source software libraries, specifically
OpenCV, which help bring the development of cutting-edge
software technology closer to all the software developers around the
world, free of cost. I would also like to thank those people who help
write documentation, submit bug reports, and write tutorials/books
(especially the author of this book!). Their contributions are vital
to the success of any open source project, especially one that is as
extensive and complex as OpenCV.

Haojian Jin is a software engineer/researcher at Yahoo! Labs, Sunnyvale, CA. He
looks primarily at building new systems of what's possible on commodity mobile
devices (or with minimum hardware changes). To create things that don't exist
today, he spends large chunks of his time playing with signal processing, computer
vision, machine learning, and natural language processing and using them in
interesting ways. You can find more about him at http://shift-3.com/

Adrian Rosebrock is an author and blogger at http://www.pyimagesearch.com/.
He holds a PhD in computer science from the University of Maryland, Baltimore
County, USA, with a focus on computer vision and machine learning.

He has consulted for the National Cancer Institute to develop methods that
automatically predict breast cancer risk factors using breast histology images. He has
also authored a book, Practical Python and OpenCV (http://pyimg.co/x7ed5), on the
utilization of Python and OpenCV to build real-world computer vision applications.

www.PacktPub.com

Support files, eBooks, discount offers, and more
For support files and downloads related to your book, please visit www.PacktPub.com.

Did you know that Packt offers eBook versions of every book published, with PDF
and ePub files available? You can upgrade to the eBook version at www.PacktPub.com
and as a print book customer, you are entitled to a discount on the eBook copy. Get in
touch with us at service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign
up for a range of free newsletters and receive exclusive discounts and offers on Packt
books and eBooks.

TM

https://www2.packtpub.com/books/subscription/packtlib

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital
book library. Here, you can search, access, and read Packt's entire library of books.

Why subscribe?
• Fully searchable across every book published by Packt
• Copy and paste, print, and bookmark content
• On demand and accessible via a web browser

Free access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view 9 entirely free books. Simply use your login credentials for
immediate access.

[i]

Table of Contents
Preface vii
Chapter 1: Setting Up OpenCV 1

Choosing and using the right setup tools 2
Installation on Windows 2

Using binary installers (no support for depth cameras) 3
Using CMake and compilers 4

Installing on OS X 7
Using MacPorts with ready-made packages 8
Using MacPorts with your own custom packages 10
Using Homebrew with ready-made packages (no support for depth cameras) 12
Using Homebrew with your own custom packages 13

Installation on Ubuntu and its derivatives 13
Using the Ubuntu repository (no support for depth cameras) 14
Building OpenCV from a source 14

Installation on other Unix-like systems 15
Installing the Contrib modules 16
Running samples 16
Finding documentation, help, and updates 18
Summary 19

Chapter 2: Handling Files, Cameras, and GUIs 21
Basic I/O scripts 21

Reading/writing an image file 22
Converting between an image and raw bytes 24
Accessing image data with numpy.array 26
Reading/writing a video file 28
Capturing camera frames 29
Displaying images in a window 31
Displaying camera frames in a window 32

Project Cameo (face tracking and image manipulation) 34

Table of Contents

[ii]

Cameo – an object-oriented design 35
Abstracting a video stream with managers.CaptureManager 35
Abstracting a window and keyboard with managers.WindowManager 41
Applying everything with cameo.Cameo 42

Summary 44
Chapter 3: Processing Images with OpenCV 3 45

Converting between different color spaces 45
A quick note on BGR 46

The Fourier Transform 46
High pass filter 47
Low pass filter 49

Creating modules 49
Edge detection 49
Custom kernels – getting convoluted 51
Modifying the application 53
Edge detection with Canny 55
Contour detection 56
Contours – bounding box, minimum area rectangle,
and minimum enclosing circle 57
Contours – convex contours and the Douglas-Peucker algorithm 60
Line and circle detection 62

Line detection 62
Circle detection 63

Detecting shapes 64
Summary 65

Chapter 4: Depth Estimation and Segmentation 67
Creating modules 67
Capturing frames from a depth camera 68
Creating a mask from a disparity map 71
Masking a copy operation 72
Depth estimation with a normal camera 74
Object segmentation using the Watershed and GrabCut algorithms 80

Example of foreground detection with GrabCut 82
Image segmentation with the Watershed algorithm 84

Summary 87
Chapter 5: Detecting and Recognizing Faces 89

Conceptualizing Haar cascades 90
Getting Haar cascade data 91
Using OpenCV to perform face detection 91

Performing face detection on a still image 92

Table of Contents

[iii]

Performing face detection on a video 94
Performing face recognition 97

Generating the data for face recognition 98
Recognizing faces 100
Preparing the training data 101
Loading the data and recognizing faces 102
Performing an Eigenfaces recognition 103
Performing face recognition with Fisherfaces 105
Performing face recognition with LBPH 106
Discarding results with confidence score 106

Summary 107
Chapter 6: Retrieving Images and Searching
Using Image Descriptors 109

Feature detection algorithms 109
Defining features 110

Detecting features – corners 110
Feature extraction and description using DoG and SIFT 113

Anatomy of a keypoint 116
Feature extraction and detection using Fast Hessian and SURF 117
ORB feature detection and feature matching 120

FAST 120
BRIEF 121
Brute-Force matching 121

Feature matching with ORB 122
Using K-Nearest Neighbors matching 125
FLANN-based matching 126
FLANN matching with homography 130
A sample application – tattoo forensics 133

Saving image descriptors to file 133
Scanning for matches 134

Summary 137
Chapter 7: Detecting and Recognizing Objects 139

Object detection and recognition techniques 139
HOG descriptors 140

The scale issue 142
The location issue 142
Non-maximum (or non-maxima) suppression 145
Support vector machines 146

People detection 147
Creating and training an object detector 149

Bag-of-words 149
BOW in computer vision 150

Detecting cars 153
What did we just do? 155

Table of Contents

[iv]

SVM and sliding windows 160
Example – car detection in a scene 161
Dude, where's my car? 171

Summary 175
Chapter 8: Tracking Objects 177

Detecting moving objects 177
Basic motion detection 178

Background subtractors – KNN, MOG2, and GMG 181
Meanshift and CAMShift 185
Color histograms 188

The calcHist function 189
The calcBackProject function 190
In summary 190

Back to the code 191
CAMShift 193
The Kalman filter 194

Predict and update 195
An example 196
A real-life example – tracking pedestrians 199

The application workflow 200
A brief digression – functional versus object-oriented programming 200

The Pedestrian class 202
The main program 205

Where do we go from here? 207
Summary 208

Chapter 9: Neural Networks with OpenCV – an Introduction 209
Artificial neural networks 209

Neurons and perceptrons 210
The structure of an ANN 211

Network layers by example 212
The input layer 212
The output layer 212
The hidden layer 212

ANNs in OpenCV 214
ANN-imal classification 216
Training epochs 220

Handwritten digit recognition with ANNs 222
MNIST – the handwritten digit database 222
Customized training data 222
The initial parameters 222

The input layer 222
The hidden layer 223
The output layer 223

Table of Contents

[v]

Training epochs 223
Other parameters 223
Mini-libraries 224
The main file 228

Possible improvements and potential applications 234
Improvements 234

Potential applications 235
Summary 235

To boldly go… 235
Index 237

[vii]

Preface
OpenCV 3 is a state-of-the-art computer vision library that is used for a variety
of image and video processing operations. Some of the more spectacular and
futuristic features, such as face recognition or object tracking, are easily achievable
with OpenCV 3. Learning the basic concepts behind computer vision algorithms,
models, and OpenCV's API will enable the development of all sorts of real-world
applications, including security and surveillance tools.

Starting with basic image processing operations, this book will take you through
a journey that explores advanced computer vision concepts. Computer vision is a
rapidly evolving science whose applications in the real world are exploding, so this
book will appeal to computer vision novices as well as experts of the subject who
want to learn about the brand new OpenCV 3.0.0.

What this book covers
Chapter 1, Setting Up OpenCV, explains how to set up OpenCV 3 with Python on
different platforms. It will also troubleshoot common problems.

Chapter 2, Handling Files, Cameras, and GUIs, introduces OpenCV's I/O functionalities.
It will also discuss the concept of a project and the beginnings of an object-oriented
design for this project.

Chapter 3, Processing Images with OpenCV 3, presents some techniques required to
alter images, such as detecting skin tone in an image, sharpening an image, marking
contours of subjects, and detecting crosswalks using a line segment detector.

Chapter 4, Depth Estimation and Segmentation, shows you how to use data from a
depth camera to identify foreground and background regions, such that we can
limit an effect to only the foreground or background.

Preface

[viii]

Chapter 5, Detecting and Recognizing Faces, introduces some of OpenCV's face
detection functionalities, along with the data files that define particular types
of trackable objects.

Chapter 6, Retrieving Images and Searching Using Image Descriptors, shows how to
detect the features of an image with the help of OpenCV and make use of them
to match and search for images.

Chapter 7, Detecting and Recognizing Objects, introduces the concept of detecting and
recognizing objects, which is one of the most common challenges in computer vision.

Chapter 8, Tracking Objects, explores the vast topic of object tracking, which is the
process of locating a moving object in a movie or video feed with the help of a camera.

Chapter 9, Neural Networks with OpenCV – an Introduction, introduces you to Artificial
Neural Networks in OpenCV and illustrates their usage in a real-life application.

What you need for this book
You simply need a relatively recent computer, as the first chapter will guide
you through the installation of all the necessary software. A webcam is highly
recommended, but not necessary.

Who this book is for
This book is aimed at programmers with working knowledge of Python as well as
people who want to explore the topic of computer vision using the OpenCV library.
No previous experience of computer vision or OpenCV is required. Programming
experience is recommended.

Conventions
In this book, you will find a number of text styles that distinguish between different
kinds of information. Here are some examples of these styles and an explanation of
their meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows:
"We can include other contexts through the use of the include directive."

Preface

[ix]

A block of code is set as follows:

import cv2
import numpy as np

img = cv2.imread('images/chess_board.png')
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
gray = np.float32(gray)
dst = cv2.cornerHarris(gray, 2, 23, 0.04)

When we wish to draw your attention to a particular part of a code block, the
relevant lines or items are set in bold:

img = cv2.imread('images/chess_board.png')
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
gray = np.float32(gray)
dst = cv2.cornerHarris(gray, 2, 23, 0.04)

Any command-line input or output is written as follows:

mkdir build && cd build

cmake D CMAKE_BUILD_TYPE=Release -DOPENCV_EXTRA_MODULES_PATH=<opencv_
contrib>/modules D CMAKE_INSTALL_PREFIX=/usr/local ..

make

New terms and important words are shown in bold. Words that you see on the
screen, for example, in menus or dialog boxes, appear in the text like this: " On
Windows Vista / Windows 7 / Windows 8, click on the Start menu."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Preface

[x]

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or disliked. Reader feedback is important for us as it helps
us develop titles that you will really get the most out of.

To send us general feedback, simply e-mail feedback@packtpub.com, and mention
the book's title in the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide at www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Downloading the example code
You can download the example code files from your account at http://www.
packtpub.com for all the Packt Publishing books you have purchased. If you
purchased this book elsewhere, you can visit http://www.packtpub.com/support
and register to have the files e-mailed directly to you.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in the text or
the code—we would be grateful if you could report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
book. If you find any errata, please report them by visiting http://www.packtpub.
com/submit-errata, selecting your book, clicking on the Errata Submission Form
link, and entering the details of your errata. Once your errata are verified, your
submission will be accepted and the errata will be uploaded to our website or added
to any list of existing errata under the Errata section of that title.

To view the previously submitted errata, go to https://www.packtpub.com/books/
content/support and enter the name of the book in the search field. The required
information will appear under the Errata section.

www.packtpub.com/authors
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com/support
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support

Preface

[xi]

Piracy
Piracy of copyrighted material on the Internet is an ongoing problem across all
media. At Packt, we take the protection of our copyright and licenses very seriously.
If you come across any illegal copies of our works in any form on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors and our ability to bring you
valuable content.

Questions
If you have a problem with any aspect of this book, you can contact us at
questions@packtpub.com, and we will do our best to address the problem.

[1]

Setting Up OpenCV
You picked up this book so you may already have an idea of what OpenCV is.
Maybe, you heard of Sci-Fi-sounding features, such as face detection, and got
intrigued. If this is the case, you've made the perfect choice. OpenCV stands for
Open Source Computer Vision. It is a free computer vision library that allows you
to manipulate images and videos to accomplish a variety of tasks from displaying
the feed of a webcam to potentially teaching a robot to recognize real-life objects.

In this book, you will learn to leverage the immense potential of OpenCV with the
Python programming language. Python is an elegant language with a relatively
shallow learning curve and very powerful features. This chapter is a quick guide to
setting up Python 2.7, OpenCV, and other related libraries. After setup, we also look
at OpenCV's Python sample scripts and documentation.

If you wish to skip the installation process and jump right into action,
you can download the virtual machine (VM) I've made available at
http://techfort.github.io/pycv/.
This file is compatible with VirtualBox, a free-to-use virtualization
application that lets you build and run VMs. The VM I've built is
based on Ubuntu Linux 14.04 and has all the necessary software
installed so that you can start coding right away.
This VM requires at least 2 GB of RAM to run smoothly, so make sure
that you allocate at least 2 (but, ideally, more than 4) GB of RAM to
the VM, which means that your host machine will need at least 6 GB
of RAM to sustain it.

http://techfort.github.io/pycv/

Setting Up OpenCV

[2]

The following related libraries are covered in this chapter:

• NumPy: This library is a dependency of OpenCV's Python bindings.
It provides numeric computing functionality, including efficient arrays.

• SciPy: This library is a scientific computing library that is closely related to
NumPy. It is not required by OpenCV, but it is useful for manipulating data
in OpenCV images.

• OpenNI: This library is an optional dependency of OpenCV. It adds the
support for certain depth cameras, such as Asus XtionPRO.

• SensorKinect: This library is an OpenNI plugin and optional dependency of
OpenCV. It adds support for the Microsoft Kinect depth camera.

For this book's purposes, OpenNI and SensorKinect can be considered optional.
They are used throughout Chapter 4, Depth Estimation and Segmentation, but are
not used in the other chapters or appendices.

This book focuses on OpenCV 3, the new major release of the
OpenCV library. All additional information about OpenCV is
available at http://opencv.org, and its documentation is
available at http://docs.opencv.org/master.

Choosing and using the right setup tools
We are free to choose various setup tools, depending on our operating system and
how much configuration we want to do. Let's take an overview of the tools for
Windows, Mac, Ubuntu, and other Unix-like systems.

Installation on Windows
Windows does not come with Python preinstalled. However, installation wizards are
available for precompiled Python, NumPy, SciPy, and OpenCV. Alternatively, we
can build from a source. OpenCV's build system uses CMake for configuration and
either Visual Studio or MinGW for compilation.

If we want support for depth cameras, including Kinect, we should first install
OpenNI and SensorKinect, which are available as precompiled binaries with
installation wizards. Then, we must build OpenCV from a source.

The precompiled version of OpenCV does not offer support
for depth cameras.

http://opencv.org
http://docs.opencv.org/master

Chapter 1

[3]

On Windows, OpenCV 2 offers better support for 32-bit Python than 64-bit Python;
however, with the majority of computers sold today being 64-bit systems, our
instructions will refer to 64-bit. All installers have 32-bit versions available from the
same site as the 64-bit.

Some of the following steps refer to editing the system's PATH variable. This task can
be done in the Environment Variables window of Control Panel.

1. On Windows Vista / Windows 7 / Windows 8, click on the Start menu and
launch Control Panel. Now, navigate to System and Security | System |
Advanced system settings. Click on the Environment Variables… button.

2. On Windows XP, click on the Start menu and navigate to Control Panel |
System. Select the Advanced tab. Click on the Environment Variables…
button.

3. Now, under System variables, select Path and click on the Edit… button.
4. Make changes as directed.
5. To apply the changes, click on all the OK buttons (until we are back in the

main window of Control Panel).
6. Then, log out and log back in (alternatively, reboot).

Using binary installers (no support for depth
cameras)
You can choose to install Python and its related libraries separately if you prefer;
however, there are Python distributions that come with installers that will set up the
entire SciPy stack (which includes Python and NumPy), which make it very trivial to
set up the development environment.

One such distribution is Anaconda Python (downloadable at
http://09c8d0b2229f813c1b93 c95ac804525aac4b6dba79b00b39d1d3.r79.
cf1.rackcdn.com/Anaconda-2.1.0 Windows-x86_64.exe). Once the installer is
downloaded, run it and remember to add the path to the Anaconda installation to
your PATH variable following the preceding procedure.

http://09c8d0b2229f813c1b93-c95ac804525aac4b6dba79b00b39d1d3.r79.cf1.rackcdn.com/Anaconda-2.1.0-Windows-x86_64.exe
http://09c8d0b2229f813c1b93-c95ac804525aac4b6dba79b00b39d1d3.r79.cf1.rackcdn.com/Anaconda-2.1.0-Windows-x86_64.exe

Setting Up OpenCV

[4]

Here are the steps to set up Python7, NumPy, SciPy, and OpenCV:

1. Download and install the 32-bit Python 2.7.9 from https://www.python.
org/ftp/python/2.7.9/python-2.7.9.amd64.msi.

2. Download and install NumPy 1.6.2 from http://www.lfd.uci.
edu/~gohlke/pythonlibs/#numpyhttp://sourceforge.net/projects/
numpy/files/NumPy/1.6.2/numpy-1.6.2-win32-superpack-
python2.7.exe/download (note that installing NumPy on Windows 64-bit
is a bit tricky due to the lack of a 64-bit Fortran compiler on Windows, which
NumPy depends on. The binary at the preceding link is unofficial).

3. Download and install SciPy 11.0 from http://www.lfd.uci.edu/~gohlke/
pythonlibs/#scipyhttp://sourceforge.net/projects/scipy/files/
scipy/0.11.0/scipy-0.11.0 win32-superpack-python2.7.exe/download
(this is the same as NumPy and these are community installers).

4. Download the self-extracting ZIP of OpenCV 3.0.0 from https://github.
com/Itseez/opencv. Run this ZIP, and when prompted, enter a destination
folder, which we will refer to as <unzip_destination>. A subfolder,
<unzip_destination>\opencv, is created.

5. Copy <unzip_destination>\opencv\build\python\2.7\cv2.pyd to C:\
Python2.7\Lib\site-packages (assuming that we had installed Python 2.7
to the default location). If you installed Python 2.7 with Anaconda, use the
Anaconda installation folder instead of the default Python installation. Now,
the new Python installation can find OpenCV.

6. A final step is necessary if we want Python scripts to run using the new
Python installation by default. Edit the system's PATH variable and append
;C:\Python2.7 (assuming that we had installed Python 2.7 to the default
location) or your Anaconda installation folder. Remove any previous Python
paths, such as ;C:\Python2.6. Log out and log back in (alternatively, reboot).

Using CMake and compilers
Windows does not come with any compilers or CMake. We need to install them.
If we want support for depth cameras, including Kinect, we also need to install
OpenNI and SensorKinect.

https://www.python.org/ftp/python/2.7.9/python-2.7.9.amd64.msi
https://www.python.org/ftp/python/2.7.9/python-2.7.9.amd64.msi
http://www.lfd.uci.edu/~gohlke/pythonlibs/#numpyhttp://sourceforge.net/projects/numpy/files/NumPy/1.6.2/numpy-1.6.2-win32-superpack-python2.7.exe/download
http://www.lfd.uci.edu/~gohlke/pythonlibs/#numpyhttp://sourceforge.net/projects/numpy/files/NumPy/1.6.2/numpy-1.6.2-win32-superpack-python2.7.exe/download
http://www.lfd.uci.edu/~gohlke/pythonlibs/#numpyhttp://sourceforge.net/projects/numpy/files/NumPy/1.6.2/numpy-1.6.2-win32-superpack-python2.7.exe/download
http://www.lfd.uci.edu/~gohlke/pythonlibs/#numpyhttp://sourceforge.net/projects/numpy/files/NumPy/1.6.2/numpy-1.6.2-win32-superpack-python2.7.exe/download
http://www.lfd.uci.edu/~gohlke/pythonlibs/#scipyhttp://sourceforge.net/projects/scipy/files/scipy/0.11.0/scipy-0.11.0-win32-superpack-python2.7.exe/download
http://www.lfd.uci.edu/~gohlke/pythonlibs/#scipyhttp://sourceforge.net/projects/scipy/files/scipy/0.11.0/scipy-0.11.0-win32-superpack-python2.7.exe/download
http://www.lfd.uci.edu/~gohlke/pythonlibs/#scipyhttp://sourceforge.net/projects/scipy/files/scipy/0.11.0/scipy-0.11.0-win32-superpack-python2.7.exe/download
https://github.com/Itseez/opencv
https://github.com/Itseez/opencv

Chapter 1

[5]

Let's assume that we have already installed 32-bit Python 2.7, NumPy, and SciPy
either from binaries (as described previously) or from a source. Now, we can
proceed with installing compilers and CMake, optionally installing OpenNI and
SensorKinect, and then building OpenCV from the source:

1. Download and install CMake 3.1.2 from http://www.cmake.org/files/
v3.1/cmake-3.1.2-win32-x86.exe. When running the installer, select
either Add CMake to the system PATH for all users or Add CMake to
the system PATH for current user. Don't worry about the fact that a 64-bit
version of CMake is not available CMake is only a configuration tool and
does not perform any compilations itself. Instead, on Windows, it creates
project files that can be opened with Visual Studio.

2. Download and install Microsoft Visual Studio 2013 (the Desktop edition if
you are working on Windows 7) from https://www.visualstudio.com/
products/free-developer-offers-vs.aspx?slcid=0x409&type=web
or MinGW.
Note that you will need to sign in with your Microsoft account and if you
don't have one, you can create one on the spot. Install the software and
reboot after installation is complete.
For MinGW, get the installer from http://sourceforge.net/projects/
mingw/files/Installer/mingw-get-setup.exe/download and http://
sourceforge.net/projects/mingw/files/OldFiles/mingw-get-inst/
mingw-get-inst-20120426/mingw-get-inst-20120426.exe/download.
When running the installer, make sure that the destination path does not
contain spaces and that the optional C++ compiler is included. Edit the
system's PATH variable and append ;C:\MinGW\bin (assuming that MinGW
is installed to the default location). Reboot the system.

3. Optionally, download and install OpenNI 1.5.4.0 from the links provided in
the GitHub homepage of OpenNI at https://github.com/OpenNI/OpenNI.

4. You can download and install SensorKinect 0.93 from https://github.com/
avin2/SensorKinect/blob/unstable/Bin/SensorKinect093-Bin-Win32-
v5.1.2.1.msi?raw=true (32-bit). Alternatively, for 64-bit Python, download
the setup from https://github.com/avin2/SensorKinect/blob/
unstable/Bin/SensorKinect093-Bin-Win64-v5.1.2.1.msi?raw=true
(64-bit). Note that this repository has been inactive for more than three years.

5. Download the self-extracting ZIP of OpenCV 3.0.0 from https://github.
com/Itseez/opencv. Run the self-extracting ZIP, and when prompted, enter
any destination folder, which we will refer to as <unzip_destination>. A
subfolder, <unzip_destination>\opencv, is then created.

http://www.cmake.org/files/v3.1/cmake-3.1.2-win32-x86.exe
http://www.cmake.org/files/v3.1/cmake-3.1.2-win32-x86.exe
https://www.visualstudio.com/products/free-developer-offers-vs.aspx?slcid=0x409&type=web or MinGW
https://www.visualstudio.com/products/free-developer-offers-vs.aspx?slcid=0x409&type=web or MinGW
https://www.visualstudio.com/products/free-developer-offers-vs.aspx?slcid=0x409&type=web or MinGW
http://sourceforge.net/projects/mingw/files/Installer/mingw-get-setup.exe/download
http://sourceforge.net/projects/mingw/files/Installer/mingw-get-setup.exe/download
http://sourceforge.net/projects/mingw/files/OldFiles/mingw-get-inst/mingw-get-inst-20120426/mingw-get-inst-20120426.exe/download
http://sourceforge.net/projects/mingw/files/OldFiles/mingw-get-inst/mingw-get-inst-20120426/mingw-get-inst-20120426.exe/download
http://sourceforge.net/projects/mingw/files/OldFiles/mingw-get-inst/mingw-get-inst-20120426/mingw-get-inst-20120426.exe/download
https://github.com/OpenNI/OpenNI
https://github.com/avin2/SensorKinect/blob/unstable/Bin/SensorKinect093-Bin-Win32-v5.1.2.1.msi?raw=true
https://github.com/avin2/SensorKinect/blob/unstable/Bin/SensorKinect093-Bin-Win32-v5.1.2.1.msi?raw=true
https://github.com/avin2/SensorKinect/blob/unstable/Bin/SensorKinect093-Bin-Win32-v5.1.2.1.msi?raw=true
https://github.com/avin2/SensorKinect/blob/unstable/Bin/SensorKinect093-Bin-Win64-v5.1.2.1.msi?raw=true
https://github.com/avin2/SensorKinect/blob/unstable/Bin/SensorKinect093-Bin-Win64-v5.1.2.1.msi?raw=true
https://github.com/Itseez/opencv
https://github.com/Itseez/opencv

Setting Up OpenCV

[6]

6. Open Command Prompt and make another folder where our build will go
using this command:
> mkdir<build_folder>

Change the directory of the build folder:
> cd <build_folder>

7. Now, we are ready to configure our build. To understand all the options,
we can read the code in <unzip_destination>\opencv\CMakeLists.txt.
However, for this book's purposes, we only need to use the options that will
give us a release build with Python bindings, and optionally, depth camera
support via OpenNI and SensorKinect.

8. Open CMake (cmake-gui) and specify the location of the source code of
OpenCV and the folder where you would like to build the library. Click on
Configure. Select the project to be generated. In this case, select Visual Studio
12 (which corresponds to Visual Studio 2013). After CMake has finished
configuring the project, it will output a list of build options. If you see a red
background, it means that your project may need to be reconfigured: CMake
might report that it has failed to find some dependencies. Many of OpenCV's
dependencies are optional, so do not be too concerned yet.

If the build fails to complete or you run into problems later,
try installing missing dependencies (often available as prebuilt
binaries), and then rebuild OpenCV from this step.
You have the option of selecting/deselecting build options
(according to the libraries you have installed on your machine) and
click on Configure again, until you get a clear background (white).

9. At the end of this process, you can click on Generate, which will create
an OpenCV.sln file in the folder you've chosen for the build. You can then
navigate to <build_folder>/OpenCV.sln and open the file with Visual
Studio 2013, and proceed with building the project, ALL_BUILD. You will
need to build both the Debug and Release versions of OpenCV, so go ahead
and build the library in the Debug mode, then select Release and rebuild it
(F7 is the key to launch the build).

10. At this stage, you will have a bin folder in the OpenCV build directory,
which will contain all the generated .dll files that will allow you to include
OpenCV in your projects.
Alternatively, for MinGW, run the following command:
> cmake -D:CMAKE_BUILD_TYPE=RELEASE -D:WITH_OPENNI=ON -G
"MinGWMakefiles" <unzip_destination>\opencv

