

HTML5 Game Development
by Example Beginner's Guide
Second Edition

Make the most of HTML5 techniques to create
exciting games from scratch

Makzan

BIRMINGHAM - MUMBAI

HTML5 Game Development by Example Beginner's Guide
Second Edition

Copyright © 2015 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system,
or transmitted in any form or by any means, without the prior written permission of the
publisher, except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the
information presented. However, the information contained in this book is sold without
warranty, either express or implied. Neither the author, nor Packt Publishing, and its
dealers and distributors will be held liable for any damages caused or alleged to be
caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: August 2011

Second edition: June 2015

Production reference: 2250615

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78528-777-0

www.packtpub.com

www.packtpub.com

Credits

Author

Makzan

Reviewers

Lauri Hosio

Dan Nagle

Matt Palmerlee

Leonardo Risuleo

Commissioning Editor

Dipika Gaonkar

Acquisition Editors

Vivek Anantharaman

Sam Wood

Content Development Editor

Arwa Manasawala

Technical Editor

Menza Mathew

Copy Editors

Ameesha Green

Jasmine Nadar

Project Coordinator

Shweta H Birwatkar

Proofreader

Safis Editing

Indexer

Tejal Daruwale Soni

Production Coordinator

Manu Joseph

Cover Work

Manu Joseph

About the Author

Makzan focuses on the fields of web development and game design. He has over 14 years
of experience in building digital products. He has worked on real-time multiplayer interaction
games, iOS applications, and rich interactive websites.

He has written three books, on building a Flash virtual world, and creating games with
HTML5 and the latest web standards and developed a video course as well. He currently
teaches courses in Hong Kong and Macao SAR. He writes tutorials and shares his know-how
on makzan.net.

I wish to thank my wife, Candy, for her patience and understanding.
I would also like to thank the entire team at Packt Publishing. The book
would not have been possible without their help. I thank all the reviewers
for providing useful comments from which I have learned a lot.

makzan.net

About the Reviewers

Lauri Hosio has been making games since he discovered QBASIC with his friends in
elementary school. Professionally, he's worked with web and mobile games for over 7 years.

Previously, he worked at Rovio as the acting lead game programmer on Angry Birds Friends.
At other companies, he has also worked on web-based MMO games and general web
development.

Before HTML5, he made independent web games with Flash that were played by millions of
players. Some of his games have been published by AddictingGames and ArmorGames. Lauri
currently works in Kansas City, Missouri, on mobile games and full-stack web development.

Dan Nagle has, since graduating as a valedictorian in computer engineering from the
Mississippi State University in 2003, written and published apps for Android, Windows, Mac,
Linux, iOS, numerous web apps, network servers, and pure embedded C. He is the author of
the book, HTML5 Game Engines: App Development and Distribution, which was published by
CRC Press. He has also written articles and spoken at conferences about developing websites
and HTML5-based games.

For about 4 years, he owned and operated a web company that focused on website hosting
and custom game development. Before that, he was an electrical engineer who developed
embedded systems.

Currently, he is a senior software engineer who writes control software, web interfaces,
and mobile apps for network devices that distribute HD video. He can be reached through
his website at http://DanNagle.com/.

http://DanNagle.com/

Matt Palmerlee has been developing software professionally since 2001 and has a passion
for JavaScript and HTML5 game development. He built Astriarch, an open source multiplayer
space strategy game, using HTML5 and Node.js. Matt has developed other HTML5 games,
which were published by Mastered Software, his software development consulting company.

Matt occasionally blogs about interesting aspects of software development and HTML5
games on his personal website at http://mattpalmerlee.com/.

Leonardo Risuleo is the owner and creative director of Small Screen Design. He is a
designer and developer with several years of experience in mobile, new media, and user
experience. Leonardo is a highly dedicated professional, and he's passionate about what
he does. He started his career in 2003, and in the last few years, he has worked on a
variety of different mobile and embedded platforms for a number of well-known brands
and studios. Leonardo designs, prototypes, and develops mobile applications, games,
widgets, and websites.

From 2008 to 2010, he had the honor of being the Nokia Developer Champion,
a recognition and reward program for top mobile developers worldwide. In 2008, Leonardo
formally founded Small Screen Design (https://www.smallscreendesign.com),
a design and development studio focused on mobile design and user experience. In 2015,
he became Digital Champion—an ambassador for the Digital Agenda—for Squillace, to help
every European become digital.

http://mattpalmerlee.com/
https://www.smallscreendesign.com

www.PacktPub.com

Support files, eBooks, discount offers, and more
For support files and downloads related to your book, please visit www.PacktPub.com.

Did you know that Packt offers eBook versions of every book published, with PDF and ePub
files available? You can upgrade to the eBook version at www.PacktPub.com and as a print
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at
service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up
for a range of free newsletters and receive exclusive discounts and offers on Packt books
and eBooks.

TM

https://www2.packtpub.com/books/subscription/packtlib

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital book
library. Here, you can search, access, and read Packt's entire library of books.

Why subscribe?
 � Fully searchable across every book published by Packt

 � Copy and paste, print, and bookmark content

 � On demand and accessible via a web browser

Free access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view nine entirely free books. Simply use your login credentials for
immediate access.

www.PacktPub.com
www.PacktPub.com
www.PacktPub.com
https://www2.packtpub.com/books/subscription/packtlib
www.PacktPub.com

[i]

Table of Contents
Preface xi

Chapter 1: Introducing HTML5 Games 1
Discovering new features in HTML5 2

Canvas 2
Audio 2
Touch Events 2
GeoLocation 2
WebGL 3
WebSocket 3
Local storage 3
Offline applications 4

Discovering new features in CSS3 4
CSS3 transition 5
CSS3 transform 6
CSS3 animation 6

The benefit of creating HTML5 games 7
Free and open standards 7
Support for multiple platforms 7
Native app-rendering performance in particular scenarios 8
Breaking the boundary of usual browser games 8
Building HTML5 games 9

What others are playing with HTML5 9
Coca-Cola's Ahh campaign 9
Asteroid-styled bookmarklet 10
X-Type 10
Cursors.io 11

Table of Contents

[ii]

What we are going to create in this book 12
Preparing the development environment 13
Summary 13

Chapter 2: Getting Started with DOM-based Game Development 15
Preparing the HTML documents for a DOM-based game 16
Time for action – installing the jQuery library 16

New HTML5 doctype 18
Header and footer 18
The best practice to place the JavaScript code 19
Choosing the jQuery file 19
Running jQuery inside a scope 20
Running our code after the page is ready 20
Downloading the image assets 21

Setting up the Ping Pong game elements 22
Time for action – placing Ping Pong game elements in the DOM 22

Using jQuery 25
Understanding basic jQuery selectors 26
Understanding the jQuery CSS function 27
Manipulating game elements in DOM with jQuery 27
Understanding the behavior of absolute position 28
Declaring global variables in a better way 29

Getting mouse input 29
Time for action – moving DOM objects by mouse input 30

Getting the mouse event 32
RequestAnimationFrame 32
Checking the console window 32
Moving a DOM object with JavaScript Interval 33

Time for action – Moving the ball with JavaScript Interval 34
Creating a JavaScript timer with the setInterval function 37
Understanding the game loop 38
Separating the data and the view logic 38

Beginning collision detection 39
Time for action – hitting the ball with the paddles 39
Controlling the left paddle movement 41
Time for action – auto moving the left paddle 42

What just happened? 42
Showing text dynamically in HTML 42
Time for action – Showing the score of both players 43

What just happened? 44
Summary 45

Table of Contents

[iii]

Chapter 3: Building a Card-matching Game in CSS3 47
Moving game objects with CSS3 transition 48
Time for action – moving a playing card around 48

2D transform functions 51
3D transform functions 51
Tweening the styles using CSS3 transition 52

Creating a card-flipping effect 54
Time for action – flipping a card with CSS3 54

Toggling a class with jQuery's toggleClass function 56
Introducing CSS' perspective property 57
Introducing backface-visibility 58

Creating a card-matching memory game 59
Downloading the sprite sheet of playing cards 59
Setting up the game environment 60

Time for action – preparing the card-matching game 60
Cloning DOM elements with jQuery 66
Selecting the first child of an element in jQuery using child filters 66
Vertically aligning a DOM element 66
Using CSS sprite with a background position 67

Adding game logic to the matching game 68
Time for action – adding game logic to the matching game 69

Executing code after the CSS transition has ended 72
Delaying code execution on flipping cards 72
Randomizing an array in JavaScript 72
Storing internal custom data with an HTML5 custom data attribute 74
Accessing custom data attribute with jQuery 75
Making other playing card games 76

Embedding web fonts into our game 77
Time for action – embedding a font from the Google Fonts directory 77

Choosing different font delivery services 80
Summary 80

Chapter 4: Building the Untangle Game with Canvas and the Drawing API 81
Introducing the HTML5 canvas element 82
Drawing a circle in the Canvas 83
Time for action – drawing color circles in the Canvas 83

Putting in fallback content when the web browser does not support
the Canvas 85
The Canvas context 85
Drawing circles and shapes with the Canvas arc function 86
Converting degrees to radians 86

Table of Contents

[iv]

Executing the path drawing in the Canvas 86
Beginning a path for each style 87
Closing a path 88
Wrapping the circle drawing in a function 88

Time for action – putting the circle drawing code into a function 88
Dividing code into files 90
Generating random numbers in JavaScript 91
Saving the circle position 92

Time for action – saving the circle position 92
Defining a basic class definition in JavaScript 93

Drawing lines in the Canvas 94
Time for action – drawing straight lines between each circle 94

Introducing the line drawing API 96
Using mouse events to interact with objects drawn in the Canvas 97
Time for action – dragging the circles in the Canvas 97

Detecting mouse events in circles in the Canvas 100
Game loop 101
Clearing the Canvas 101

Detecting line intersection in the Canvas 103
Time for action – distinguishing the intersected lines 103

Determining whether two line segments intersect 106
Adding touch support for tablets 108
Time for action – adding the touch input support 108

Handling touches 109
Mouse move and Touch move 110

Summary 110

Chapter 5: Building a Canvas Game's Masterclass 111
Making the Untangle puzzle game 112
Time for action – making the Untangle puzzle game in Canvas 112

Defining the leveling data 118
Determining level-up 118
Displaying the current level and completeness progress 119

Drawing text in the Canvas 119
Time for action – displaying the progress level text inside the canvas element 119

Using embedded web font inside the Canvas 122
Time for action – embedding a Google web font into the canvas element 122
Drawing images in the Canvas 124
Time for action – adding graphics to the game 124

Using the drawImage function 127

Table of Contents

[v]

Decorating the Canvas-based game 128
Time for action – adding CSS styles and image decoration to the game 129
Animating a sprite sheet in Canvas 131
Time for action – making a game guide animation 131
Creating a multilayer Canvas game 136
Time for action – dividing the game into four layers 136

Mixing a CSS technique with Canvas drawing 142
Summary 143

Chapter 6: Adding Sound Effects to Your Games 145
Adding a sound effect to the Play button 146
Time for action – adding sound effects to the Play button 146

Defining an audio element 149
Playing a sound 151
jQuery's selector versus browser selector 152
Pausing a sound 152
Adjusting the sound volume 152
Using the jQuery hover event 153
File format for WebAudio 153

Building a mini piano musical game 154
Time for action – creating a basic background for the music game 154

Creating scenes in games 156
Creating a slide-in effect in CSS3 157
Visualizing the music playback 158

Time for action – creating the playback visualization in the music game 159
Choosing the right song for the music game 164
Playing audio on mobile devices 165
Storing and extracting the song-level data 165
Getting the elapsed time of the game 166
Creating music dots 167
Moving the music dots 167

Creating a keyboard-driven mini piano musical game 169
Time for action – creating a mini piano musical game 169

Hitting the three music lines by key down 171
Determining music dot hits on key down 172
Removing an element in an array with the given index 172

Adding additional features to the mini piano game 173
Adjusting the music volume according to the player 174

Time for action – removing missed melody notes 174
Removing dots from the game 176

Table of Contents

[vi]

Storing the success count in the last five results 176
Recording music notes as level data 176

Time for action – adding functionalities to record the music level data 177
Adding touch support 179
Time for action – indicating a game over event in the console 179
Handling the audio event in playback complete events 180
Time for action – indicating a game over event in the console 180

Handling audio events 181
Summary 182

Chapter 7: Saving the Game's Progress 183
Storing data using HTML5 local storage 184

Creating a game over dialog 185
Time for action – creating a game over dialog with the elapsed played time 185

Saving scores in the browser 188
Time for action – saving the game score 188

Storing and loading data with local storage 190
The local storage saves the string value 191
Treating the local storage object as an associative array 192

Saving objects in the local storage 192
Time for action – saving the time alongside the score 192

Getting the current date and time in JavaScript 195
Using the native JSON to encode an object into a string 195
Loading a stored object from a JSON string 196
Inspecting the local storage in a console window 197

Notifying players when they break a new record with a nice ribbon effect 198
Time for action – creating a ribbon in CSS3 199
Saving the entire game progress 202
Time for action – saving all essential game data in the local storage 202

Removing a record from the local storage 205
Cloning an array in JavaScript 205
Resuming the game progress 206

Time for action – resuming a game from the local storage 206
Caching the game for offline access 209
Time for action – adding the AppCache Manifest 209

The AppCache file 210
Summary 211

Table of Contents

[vii]

Chapter 8: Building a Multiplayer Draw-and-Guess Game
with WebSockets 213

Installing a WebSocket server 214
Installing the Node.js WebSocket server 214

Time for action – installing Node.js 215
Creating a WebSocket server to send connection count 216

Time for action – running a WebSocket server 216
Initializing the WebSocket server 217
Listening to the connection event on the server side 217
Creating a client that connects to a WebSocket server and getting the
total connections count 217

Time for action – showing the connection count in a WebSocket application 218
Establishing a WebSocket connection 220
WebSocket client events 220
Sending a message to all connected browsers 220

Time for action – sending total count to all users 220
Defining class and instant instance methods 223
Handling a newly connected user 223
Exporting modules 223
Sending messages to the client 223

Building a chatting application with WebSockets 223
Sending a message to the server 224

Time for action – sending a message to the server through WebSockets 224
Sending a message from the client to the server 226
Receiving a message on the server side 226

Sending every received message on the server side to create a chat room 226
Time for action – sending messages to all connected browsers 226

Comparing WebSockets with polling approaches 228
Making a shared drawing whiteboard with Canvas and WebSockets 230

Building a local drawing sketchpad 230
Time for action – making a local drawing whiteboard with the Canvas 230

Sending the drawing to all the connected browsers 233
Time for action – sending the drawing through WebSockets 233

Defining a data object to communicate between the client and the server 237
Packing the drawing lines data into JSON for sending 237
Recreating the drawing lines after receiving them from other clients 238

Building a multiplayer draw-and-guess game 238
Time for action – building the draw-and-guess game 238

Inheriting the Room class 245

Table of Contents

[viii]

Controlling the game flow of a multiplayer game 246
Room and Game Room 247
Improving the game 247

Improving the styles 247
Storing drawn lines on each game 247
Improving the answer checking mechanism 248

Summary 248

Chapter 9: Building a Physics Car Game with Box2D and Canvas 249
Installing the Box2D JavaScript library 250
Time for action – installing the Box2D physics library 251

Using b2World to create a new world 253
Setting the gravity of the world 254
Setting Box2D to ignore the sleeping object 254

Creating a static ground body in the physics world 254
Time for action – creating a ground in the world 254

Pixel per meter 255
Creating a shape with a fixture 256
Creating a body 256
Setting the bouncing effect with the restitution property 256

Drawing the physics world in the Canvas 257
Time for action – drawing the physics world into the canvas 257
Creating a dynamic box in the physics world 259
Time for action – putting a dynamic box in the world 259
Advancing the world time 260
Time for action – setting up the world step loop 260
Adding wheels to the game 261
Time for action – putting two circles in the world 262
Creating a physical car 263
Time for action – connecting the box and two circles with a revolute joint 263

Using a revolute joint to create an anchor point between two bodies 265
Adding force to the car with a keyboard input 266
Time for action – adding force to the car 266

Applying force to a body 267
Clearing Force 267
Understanding the difference between ApplyForce and ApplyImpulse 267
Adding ramps to our game environment 268

Time for action – creating the world with ramps 268
Checking collisions in the Box2D world 269

Table of Contents

[ix]

Time for action – checking a collision between the car and the
destination body 270

Getting the collision contact list 271
Restarting the game 272
Time for action – restarting the game while pressing the R key 272
Adding a level support to our car game 274
Time for action – loading the game with levels data 274
Replacing the Box2D outline drawing with graphics 278
Time for action – adding a flag graphic and a car graphic to the game 278

Using userData in shape and body 281
Drawing graphics in every frame according to the state of its physics body 282
Rotating and translating an image in the canvas 282

Adding a final touch to make the game fun to play 283
Time for action – decorating the game and adding a fuel limitation 284

Adding fuel to add a constraint when applying force 289
Presenting the remaining fuel in a CSS3 progress bar 289

Adding touch support for tablets 290
Time for action – adding touch support 290
Summary 294

Chapter 10: Deploying HTML5 Games 295
Preparing the deploying materials 296
Putting the game on the Web 296
Hosting the node.js server 296
Deploying as a mobile web app in the home screen 297
Time for action – adding a meta tag for a mobile web app 297
Building an HTML5 game into a Mac OS X app 298
Time for action—putting the HTML5 games into a Mac app 298
Building an HTML5 game into a mobile app with the Web View 306
Building with the PhoneGap build 307
App store's reviewing process 308
Summary 308

Appendix: Pop Quiz Answers 311

Index 315

Preface
HTML5 promises to be the hot new platform for online games. HTML5 games work on
computers, smartphones, tablets, iPhones, and iPads. Be one of the first developers to
build HTML5 games today and be ready for tomorrow!

This book will show you how to use the latest HTML5 and CSS3 web standards to build
card games, drawing games, physics games, and even multiplayer games over the network.
With this book, you will build six example games with clear systematic tutorials.

HTML5, CSS3, and the related JavaScript API are the latest hot topic in the Web. These
standards bring us the new game market of HTML5 games. With the new power from
them, we can design games with HTML5 elements, CSS3 properties, and JavaScript to
play in browsers.

The book is divided into 10 chapters with each one focusing on one topic. While building
the six games in the book, you will learn how to draw game objects, animate them, add
audio, connect players, and build physics game with the Box2D physics engine.

What this book covers
Chapter 1, Introducing HTML5 Games, introduces the new features of HTML5, CSS3,
and the related JavaScript API. It demonstrates what games we can make with these
features and their benefits.

Chapter 2, Getting Started with DOM-based Game Development, kickstarts the game
development journey by creating a traditional Ping Pong game in DOM and jQuery.

Chapter 3, Building a Card-matching Game in CSS3, walks you through the new features of
CSS3 and discusses how we can create a memory card-matching game in DOM and CSS3.

Preface

[xii]

Chapter 4, Building the Untangle Game with Canvas and the Drawing API, introduces a
new way to draw things and interact with them in a web page with the new canvas element.
This also demonstrates how to handle dragging on touch devices.

Chapter 5, Building a Canvas Game's Masterclass, extends the Untangle game to show how
we can draw gradients and images in the Canvas. It also discusses sprite sheet animations
and multilayer management.

Chapter 6, Adding Sound Effects to Your Games, adds sound effects and background music
to the game by using the Audio element. It discusses the audio format capability among
web browsers and creates a keyboard-driven music game by the end of the chapter.

Chapter 7, Saving the Game's Progress, extends the CSS3 memory-matching game to
demonstrate how we can use the Local Storage API to store and resume game progress
and records the best scores.

Chapter 8, Building a Multiplayer Draw-and-Guess Game with WebSockets, discusses the
WebSockets API that allows browsers to establish persistent connection with the socket
server. This allows multiple players to play the game together in real time. A draw-and-guess
game is created at the end of the chapter.

Chapter 9, Building a Physics Car Game with Box2D and Canvas, teaches you how to integrate
a famous physics engine, Box2D, into our canvas games. It discusses how to create physics
bodies, apply force, connect them together, associate graphics with the physics, and finally
create a platform car game.

Chapter 10, Deploying HTML5 Games, shares the different ways in which we can publish
our games. It discusses wrapping the web into a native app for Apple's App Store.

Appendix, Pop Quiz Answers, gives the answers to the pop quiz questions in each of
the chapters.

What you need for this book
You need the latest modern web browsers, a good text editor, and a basic knowledge of
HTML, CSS, and JavaScript. In Chapter 8, Building a Multiplayer Draw-and-Guess Game with
WebSockets, we need the Node.js server, which we will help you to install in that chapter.

Who this book is for
This book is for web designers who have a basic knowledge of HTML, CSS, and JavaScript and
want to create Canvas or DOM-based games that run on browsers.

Preface

[xiii]

Sections
In this book, you will find several headings that appear frequently (Time for action, What just
happened?, Pop quiz, and Have a go hero).

To give clear instructions on how to complete a procedure or task, we use these sections
as follows:

Time for action – heading
1. Action 1

2. Action 2

3. Action 3

Instructions often need some extra explanation to ensure they make sense, so they are
followed with these sections:

What just happened?
This section explains the working of the tasks or instructions that you have just completed.

You will also find some other learning aids in the book, for example:

Pop quiz – heading
These are short multiple-choice questions intended to help you test your own understanding.

Have a go hero – heading
These are practical challenges that give you ideas to experiment with what you have learned.

Conventions
You will also find a number of text styles that distinguish between different kinds of
information. Here are some examples of these styles and an explanation of their meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows:
"Open the index.html file in the code editor."

Preface

[xiv]

A block of code is set as follows:

var matchingGame = {};
matchingGame.deck = [
 'cardAK', 'cardAK',
 'cardAQ', 'cardAQ',
 'cardAJ', 'cardAJ',
 'cardBK', 'cardBK',
 'cardBQ', 'cardBQ',
 'cardBJ', 'cardBJ',
];

When we wish to draw your attention to a particular part of a code block, the relevant lines
or items are set in bold:

$(function(){
 matchingGame.deck.sort(shuffle);

 for(var i=0;i<11;i++){
 $(".card:first-child").clone().appendTo("#cards");
 }

New terms and important words are shown in bold. Words that you see on the screen,
in menus or dialog boxes for example, appear in the text like this: "In MAC, click on the
Get the code tab and you will see the following screenshot; this shows a guide on how
to embed this font into our web page."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about this
book—what you liked or disliked. Reader feedback is important for us as it helps us
develop titles that you will really get the most out of.

To send us general feedback, simply e-mail feedback@packtpub.com, and mention
the book's title in the subject of your message.

Preface

[xv]

If there is a topic that you have expertise in and you are interested in either writing or
contributing to a book, see our author guide at www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to help you
to get the most from your purchase.

Downloading the example code
You can download the example code files from your account at http://www.packtpub.
com for all the Packt Publishing books you have purchased. If you purchased this book
elsewhere, you can visit http://www.packtpub.com/support and register to have
the files e-mailed directly to you.

Downloading the color images of this book
We also provide you with a PDF file that has color images of the screenshots/diagrams used
in this book. The color images will help you better understand the changes in the output.
You can download this file from https://www.packtpub.com/sites/default/files/
downloads/7770OS_ColoredImages.pdf.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes do happen.
If you find a mistake in one of our books—maybe a mistake in the text or the code—we
would be grateful if you could report this to us. By doing so, you can save other readers from
frustration and help us improve subsequent versions of this book. If you find any errata, please
report them by visiting http://www.packtpub.com/submit-errata, selecting your book,
clicking on the Errata Submission Form link, and entering the details of your errata. Once your
errata are verified, your submission will be accepted and the errata will be uploaded to our
website or added to any list of existing errata under the Errata section of that title.

To view the previously submitted errata, go to https://www.packtpub.com/books/
content/support and enter the name of the book in the search field. The required
information will appear under the Errata section.

www.packtpub.com/authors
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com/support
https://www.packtpub.com/sites/default/files/downloads/7770OS_ColoredImages.pdf
https://www.packtpub.com/sites/default/files/downloads/7770OS_ColoredImages.pdf
http://www.packtpub.com/submit-errata
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support

Preface

[xvi]

Piracy
Piracy of copyrighted material on the Internet is an ongoing problem across all media.
At Packt, we take the protection of our copyright and licenses very seriously. If you come
across any illegal copies of our works in any form on the Internet, please provide us with
the location address or website name immediately so that we can pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors and our ability to bring you
valuable content.

Questions
If you have a problem with any aspect of this book, you can contact us at
questions@packtpub.com, and we will do our best to

[1]

Introducing HTML5 Games

Hypertext Markup Language, HTML, has been shaping the Internet in the last
few decades. It defines how content is structured in the Web and the linkage
between related pages. HTML has kept evolving from version 2 to HTML 4,
and later to XHTML 1.1. Thanks to the web applications and social networking
applications, it the era of HTML5 now.

Cascading Style Sheet (CSS) defines how web pages are presented visually.
It styles all HTML elements and the styles of their states, such as hover and active.

JavaScript is the logic controller of a web page. It makes the web page dynamic
and provides client-side interaction between the page and users. It accesses
the HTML through Document Object Model (DOM). It controls the new HTML
features via their APIs.

There are modern web browsers in most desktop and mobile devices. These latest web
techniques bring us the new game market—the HTML5 games. With the new power
from these techniques, we can design games with HTML5 elements, CSS3 properties,
and JavaScript to play in most browsers and mobile devices.

In this chapter, we will cover the following topics:

 � Discovering new features in HTML5

 � Discussing what makes us so excited around HTML5 and CSS3

 � Previewing what games we are going to build in later chapters

 � Preparing the development environment

So, let's get started.

1

Introducing HTML5 Games

[2]

Discovering new features in HTML5
There are many new things introduced in HTML5 and CSS3. Before getting our hands dirty by
creating the games, let's take an overview of the new features and see how we can use them
to create games.

Canvas
Canvas is an HTML5 element that provides drawing shapes and bitmap manipulation
functions in low levels. We can imagine the Canvas element as a dynamic image tag.
The traditional tag shows a static image. This image is usually static after it's
loaded. We can change the tag to another image source or apply styles to the
image, but we cannot modify the image's bitmap context itself.

On the other hand, Canvas is like a client-side dynamic tag. We can load images
inside it, draw shapes there, and interact with it using JavaScript.

Canvas plays an important role in HTML5 game development. It is one of our main focus
areas in this book.

Audio
Background music and sound effects are essential elements in game design. HTML5 comes
with native audio support from the audio tag. Thanks to this feature, we do not require
the proprietary Flash Player to play sound effects in our HTML5 games. However, there
have been some restrictions on using Web Audio on the Web. We will discuss the usage
of the audio tag in Chapter 6, Adding Sound Effects to Your Games.

Touch Events
Besides the traditional keyboard and mouse events, there are touch events that we can use
to handle single and multi-touch events. We can design a game that works on mobile devices
with touches. We can also handle gestures by observing the touch patterns.

GeoLocation
GeoLocation lets the web page retrieve the latitude and longitude of the user's computer.
For example, Google's Ingress game makes use of GeoLocation to let players play the game in
their real city. This feature may not have been so useful years ago when everyone was using
the Internet with their desktop. There are not many things for which we need the accurate
location of the road of the user. We can get the rough location by analyzing the IP address.

Chapter 1

[3]

These days, more and more users are going on the Internet with their powerful smartphones.
Webkit and other modern mobile browsers are in everyone's pocket. GeoLocation lets us
design mobile applications and games to play with the inputs of a location.

WebGL
WebGL extends the Canvas element by providing a set of 3D graphics APIs in the web
browser. The APIs follow the standard of OpenGL ES 2.0. WebGL provides a powerful
GPG-accelerated, 3D rendering API for HTML5 games. Some 3D game engines support
the export of WebGL, including the popular Unity engine. We can expect to see more
HTML5 3D games waiting to be released using WebGL.

The techniques used to create games with WebGL are quite different than using Canvas.
Creating games in WebGL requires handing the 3D models and using an API similar to
OpenGL. Therefore, we will not discuss WebGL game development in this book.

WebGL has a better performance than 2D Canvas because of the GPU-rendering support.
Some libraries allow a game to use Canvas 2D drawing API, and the tools render the
canvas by drawing on WebGL to gain performance. Pixi.js (http://www.pixijs.com),
EaselJS (http://blog.createjs.com/webgl-support-easeljs/) and WebGL-2D
(https://github.com/corbanbrook/webgl-2d) are several such tools among them.

WebSocket
WebSocket is part of the HTML5 spec to connect the web page to a socket server. It provides
us with a persistent connection between the browser and server. This means that the client
does not need to poll the server for new data within short periods. The server will push
updates to the browsers whenever there is any data to update. One benefit of this feature
is that game players can interact with each other in almost real time. When one player does
something and sends data to the server, we can send the individual player the update to
create one-on-one real-time page play, or we can iterate all the connections in the server to
send an event to every other connected browser to acknowledge what the player just did.
This creates the possibility of building multiplayer HTML5 games.

Local storage
HTML5 provides a persistent data storage solution to web browsers.

Local Storage stores key-value pair data persistently. The data is still there after the browser
terminates. Moreover, the data is not limited to be accessible only to the browsers that
created it. It is available to all browser instances with the same domain. Thanks to Local
Storage, we can easily save a game's status, such as progress and earned achievements,
locally in web browsers.

http://www.pixijs.com
http://blog.createjs.com/webgl-support-easeljs/
https://github.com/corbanbrook/webgl-2d

Introducing HTML5 Games

[4]

Another database on web browser is IndexedDB. It's key-value pair too, but it allows storing
objects and querying data with condition.

Offline applications
Normally, we need an Internet connection to browse web pages. Sometimes, we can browse
cached offline web pages. These cached offline web pages usually expire quickly. With the
next offline application introduced by HTML5, we can declare our cache manifest. This is a
list of files that will be stored for later access when there is no Internet connection.

With the cache manifest, we can store all the game graphics, game control JavaScript files,
CSS stylesheets, and the HTML files locally. We can also pack our HTML5 games as offline
games on the desktop or mobile devices. Players can play the games even in the airplane
mode. The following screenshot from the Pie Guy game (http://mrgan.com/pieguy)
shows an HTML5 game being played on an iPhone without an Internet connection; note
the little airplane symbol indicating the offline status:

Discovering new features in CSS3
CSS is the presentation layer and HTML is the content layer. It defines how the HTML looks.
We cannot miss CSS when we create games with HTML5, especially DOM-based games. We
may purely use JavaScript to create and style the games with a Canvas element. However, we
need CSS when we create DOM-based HTML5 games. Therefore, let's take a look at what is
new in CSS3 and how we can use the new properties to create games.

http://mrgan.com/pieguy

Chapter 1

[5]

Instead of directly drawing and interacting on Canvas' drawing board, new CSS3 properties
let us animate the DOM in different ways. This makes it possible to make more complicated
DOM-based browser games.

CSS3 transition
Traditionally, the style changes immediately when we apply a new style to an element.
CSS3 transition renders in-between styles during the style changes of the target elements
over duration. For example, here, we have a blue box and want to change it to dark blue
when we do a mouseover. We can do this by using the following code snippets:

HTML:

CSS:

a.box {
 display: block;
 width: 100px;
 height: 100px;
 background: blue;
}
a.box:hover {
 background: darkblue;
}

The box changes to dark blue immediately when we do a mouseover. With CSS3 transition
applied, we can tween the styles for a specific duration and easing value:

a.box {
 transition: all 0.5s ease-out;
}

Downloading the example code

For all the Packt Publishing books you have purchased, you can download the
example code files from your account at http://www.packtpub.com. If
you purchased this book elsewhere, you can visit http://www.packtpub.
com/support and register to have the files e-mailed directly to you.

In the past, we needed JavaScript to calculate and render the in-between styles; this is much
slower than using CSS3 transition because the browser natively makes the effects happen.

http://www.packtpub.com
http://www.packtpub.com/support
http://www.packtpub.com/support

Introducing HTML5 Games

[6]

Since some CSS3 specifications are still in the draft stage and not yet fixed,
implementation from different browser vendors may have some minor
differences to the W3C spec. Therefore, browser vendors tend to implement
their CSS3 properties with a vendor prefix to prevent conflict.

Safari uses the -webkit- prefix. Opera uses the -o- prefix. Firefox uses the
-moz- prefix and IE uses the -ms- prefix. Chrome used to use -webkit-,
but now it doesn't use any prefix after switching its engine to Blink. It is a little
complex now to declare a CSS3 property, such as flex, with several lines of the
same rule for several browsers. We can expect the prefix to be dropped after
the property spec is fixed.

In order to make the code cleaner in this book, I will use non-vendor prefix
for all the properties in this book. I recommend you to use JavaScript-based
libraries to automatically add the required vendor prefix for different web
browsers. The prefix-free library (http://leaverou.github.io/
prefixfree/) is one of them.

Alternatively, if you are using preprocessors, the compilation process may also
add the necessary vendor prefix for you.

CSS3 transform
CSS3 transform lets us scale the elements, rotate them, and translate their position. CSS3
transform is divided into 2D and 3D. By combining the transform origin and 3D rotation and
translation, we can animate 2D graphics in a 3D space.

CSS3 animation
CSS3 transition is one type of animation. It declares the tweening animation between two
styles of the elements.

CSS3 animation is one step further in animation. We can define key frames of an animation.
Each key frame contains a set of properties that should change at any particular moment.
It is like a set of CSS3 transitions that are applied in sequence to the target element.

The AT-AT Walker (http://anthonycalzadilla.com/css3-ATAT/index-bones.html)
shows a nice demo on creating a skeleton bone animation with CSS3 animation key frames,
transform, and transition. This is shown in the following diagram:

http://leaverou.github.io/prefixfree/
http://leaverou.github.io/prefixfree/
http://anthonycalzadilla.com/css3-ATAT/index-bones.html

Chapter 1

[7]

The benefit of creating HTML5 games
We have explored several new key features from HTML5 and CSS3. With these features,
we can create HTML5 games on browsers. But why do we need to do that? What is the
benefit of creating HTML5 games?

Free and open standards
The web standards are open and free for use. In contrast, third-party tools are usually
proprietary and they cost money. With proprietary technologies, the support from them
may drop because of changes to the company's focus. The standardization and openness
of HTML5 ensures that we will have browsers that support it.

Support for multiple platforms
With the built-in support of all the HTML5 features in modern browsers, we do not require
the users to preinstall any third-party plugin in order to play any file. These plugins are not
standard. They usually require an extra plugin installation that you may not be able to install.
For instance, millions of Apple iOS devices around the world do not support third-party
plugins, such as Flash Player, in their mobile Safari. Despite whatever the reason might be,
Apple does not allow Flash Player to run on their Mobile Safaris, instead, HTML5 and the
related web standard are what they get in their browsers. We can reach this user base by
creating HTML5 games that are optimized for mobiles.

Introducing HTML5 Games

[8]

Native app-rendering performance in particular scenarios
When we code the game in a Canvas, there are some rendering engines that can translate
our Canvas drawing code into OpenGL, thus rendering in native mobile device. This means
that while we are still coding the game for a web browser, our game can gain benefits in
mobile devices by the native app OpenGL rendering. Ejecta (http://impactjs.com/
ejecta) and CocoonJS (http://ludei.com/cocoonjs) are two such engines.

Breaking the boundary of usual browser games
In traditional game designing, we build games within a boundary box. We play video games
on a television. We play Flash games in web browsers with a rectangle boundary.

Using creativity, we are not bound in a rectangle game stage any more. We can have fun with
all the page elements.

Twitch (http://reas.com/twitch/) is a game from Chrome Experiments. It is a collection
of mini games where the player has to carry the ball from the starting point to the end
point. The fun part is that each mini game is a small browser window. When the ball reaches
the destination point of that mini game, it is transferred into the newly created mini game
browser to continue the journey. The following screenshot shows the whole map of Twitch
with the individual web browsers:

http://impactjs.com/ejecta
http://impactjs.com/ejecta
http://ludei.com/cocoonjs
http://reas.com/twitch/

Chapter 1

[9]

Building HTML5 games
Thanks to the new features of HTML5 and CSS3, we can now create an entire game in
the browser. We can control every element in the DOM. We can animate each document
object with CSS3. We have Canvas to dynamically draw things and interact with them.
We have an audio element to handle the background music and sound effects. We also
have Local Storage to save game data, and WebSocket to create a real-time multiplayer
game. Most modern browsers are already supporting these features. It is now time to
build HTML5 games.

What others are playing with HTML5
This is a good opportunity to study how different HTML5 games perform by watching other
HTML5 games that are made with different techniques.

Coca-Cola's Ahh campaign
Coca-Cola had run a campaign known as Ahh (http://ahh.com) with lots of interactive
mini games. The interactions combined several techniques that included canvas and device
rotation. Most of them work well in both desktop and mobile devices.

http://ahh.com

Introducing HTML5 Games

[10]

Asteroid-styled bookmarklet
Erik, a web designer from Sweden, created an interesting bookmarklet. This is an asteroid-
styled game for any web page. Yes, any web page! It shows an abnormal way to interact with
any web page. It creates a plane on the website you are reading from. You can then fly the
plane using arrow keys and fire bullets using the space bar. The fun part is that the bullets
will destroy the HTML elements on the page. Your goal is to destroy all the things on the web
page that you choose. This bookmarklet is another example of breaking the boundary of usual
browser games. It tells us that we can think outside the box while designing HTML5 games.

The following screenshot shows the plane destroying the contents on the web page:

The bookmarklet is available for installation at http://kickassapp.com. You can even
design the space ship that you control.

X-Type
The creator of a Canvas-based game engine named Impact, created this X-Type (http://
phoboslab.org/xtype/) shooting game for different platforms, including web browsers,
iOS, and Wii U. The following screenshot shows the game running smoothly in iPhone.

http://kickassapp.com
http://phoboslab.org/xtype/
http://phoboslab.org/xtype/

Chapter 1

[11]

Cursors.io
Cursors.io (http://cursors.io) demonstrates a nicely designed real-time multiplayer
game. Every user controls an anonymous mouse cursor and takes a journey through the
levels of the game by moving the cursor to the green exit. The fun part of the game is that
players must help the others to advance to the level. There are toggles that some cursors
click on them to unlock the doors. The anonymous players must take up the role to help
the others. Someone will take your role so that you can advance to the next level. The more
players that help you, the higher your chance is to succeed in the game. In case only a few
players are playing and you can't experience the game, I have recorded my playing screen
in 12 x speed (at http://vimeo.com/109414542) to let you have a glimpse of how this
multiplayer game works. This has been captured in the following screenshot:

http://cursors.io
http://vimeo.com/109414542

