

Python GUI
Programming
Cookbook

Over 80 object-oriented recipes to help you create mind-
blowing GUIs in Python

Burkhard A. Meier

BIRMINGHAM - MUMBAI

Python GUI Programming Cookbook

Copyright © 2015 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system,
or transmitted in any form or by any means, without the prior written permission of the
publisher, except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of
the information presented. However, the information contained in this book is sold
without warranty, either express or implied. Neither the author, nor Packt Publishing,
and its dealers and distributors will be held liable for any damages caused or alleged
to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: November 2015

Production reference: 1261115

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78528-375-8

www.packtpub.com

www.packtpub.com

Credits

Author
Burkhard A. Meier

Reviewers
Joy Bindroo

Peter Bouda

Joseph Rex

Commissioning Editor
Nadeem Bagban

Acquisition Editor
Vivek Anantharaman

Content Development Editor
Sumeet Sawant

Technical Editor
Pramod Kumavat

Copy Editor
Janbal Dharmaraj

Project Coordinator
Shweta H. Birwatkar

Proofreader
Safis Editing

Indexer
Priya Sane

Graphics
Kirk Dpenha

Production Coordinator
Komal Ramchandani

Cover Work
Komal Ramchandani

About the Author

Burkhard A. Meier has more than 15 years of professional experience working in the
software industry as a software tester and developer, specializing in software test automation
development, execution, and analysis. He has a very strong background in SQL relational
database administration, the development of stored procedures, and debugging code.

While experienced in Visual Studio .NET C#, Visual Test, TestComplete, and other testing
languages (such as C/C++), the main focus of the author over the past two years has been
developing test automation written in Python 3 to test the leading edge of FLIR ONE infrared
cameras for iPhone and Android smart phones as well as handheld tablets.

Being highly appreciative of art, beauty, and programming, the author developed GUIs in C# and
Python to streamline everyday test automation tasks, enabling these automated tests to run
unattended for weeks, collecting very useful data to be analyzed and automatically plotted into
graphs and e-mailed to upper management upon completion of nightly automated test runs.

His previous jobs include working as a senior test automation engineer and designer for
InfoGenesis (now Agilysys), QAD, InTouch Health, and presently, FLIR Systems.

You can get in touch with him through his LinkedIn account, https://www.linkedin.com/
pub/burkhard-meier/5/246/296.

I would like to thank all truly great artists such as Leonardo Da Vinci, Charles
Baudelaire, Edgar Poe, and so many more for bringing the presence of beauty
into our human lives. This book is about creating very beautiful GUIs written
in the Python programming language, and it was inspired by these truly great
artists.
I would like to thank all of the great people that made this book possible.
Without any of you, this book would only exist in my mind. I would like to
especially thank all of my editors at Packt Publishing: Vivek, Arwa, Sumeet,
Pramod, Nikhil and so many more. I would also like to thank all of the
reviewers of the code of this book. Without them this book would be harder
to read and apply to real-world problems. Last but not least, I like to thank my
wife, our daughter, and our parents for the emotional support they provided
so successfully during the writing of this book. I also like to give thanks to the
creator of this very beautiful and powerful programming language that Python
truly is. Thank you Guido.

https://www.linkedin.com/pub/burkhard-meier/5/246/296
https://www.linkedin.com/pub/burkhard-meier/5/246/296

About the Reviewers

Joy Bindroo holds a bachelor's degree in computer science and engineering. He is currently
pursuing his post-graduate studies in the field of information management. He is a creative
person and enjoys working on Linux platform and other open source technologies. He
enjoys writing about Python and sharing his ideas and skills on his website, http://www.
joybindroo.com/. He likes to sketch, write poems, listen to music, and have fun with his
friends in his free time.

I would like to thank my family, teachers, and friends for always encouraging
and supporting me. I'm most thankful to Lord Shiva who enables me to
achieve greater heights.

Peter Bouda works as a senior web developer for MAJ Digital and is a specialist in
full stack JavaScript applications based on LoopBack and AngularJS. He develops Python
GUIs for companies and research projects since 2003 and wrote a German book, PyQt und
PySide – GUI- und Anwendungsentwicklung mit Python und Qt, on Python GUI development,
which was published in 2012. Currently, he is getting crazy with embedded and open
hardware platforms and is working on a modular game console based on open hardware.

Joseph Rex is a full stack developer with a background in computer security. He has worked
on Python GUI products and some CLI programs to experiment with information security. He
came out of security to web development and developed a passion for rails and JavaScript MVC
frameworks after working on several projects using jQuery. He has been in the web industry
for 3 years, building web applications and mobile apps. He has also written articles on security
for InfoSec Institute and has written some scripts to back them up. He has to his credit several
personal experimental projects written in Python.

http://www.joybindroo.com/
http://www.joybindroo.com/

www.PacktPub.com

Support files, eBooks, discount offers, and more
For support files and downloads related to your book, please visit www.PacktPub.com.

Did you know that Packt offers eBook versions of every book published, with PDF and ePub
files available? You can upgrade to the eBook version at www.PacktPub.com and as a print
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at
service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up for
a range of free newsletters and receive exclusive discounts and offers on Packt books and
eBooks.

TM

https://www2.packtpub.com/books/subscription/packtlib

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital book
library. Here, you can search, access, and read Packt's entire library of books.

Why Subscribe?
 f Fully searchable across every book published by Packt
 f Copy and paste, print, and bookmark content
 f On demand and accessible via a web browser

Free Access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view 9 entirely free books. Simply use your login credentials for
immediate access.

www.PacktPub.com
www.PacktPub.com
www.PacktPub.com
https://www2.packtpub.com/books/subscription/packtlib
www.PacktPub.com

i

Table of Contents
Preface v
Chapter 1: Creating the GUI Form and Adding Widgets 1

Introduction 1
Creating our first Python GUI 2
Preventing the GUI from being resized 4
Adding a label to the GUI form 6
Creating buttons and changing their text property 7
Text box widgets 9
Setting the focus to a widget and disabling widgets 11
Combo box widgets 12
Creating a check button with different initial states 14
Using radio button widgets 16
Using scrolled text widgets 18
Adding several widgets in a loop 20

Chapter 2: Layout Management 23
Introduction 23
Arranging several labels within a label frame widget 24
Using padding to add space around widgets 26
How widgets dynamically expand the GUI 28
Aligning the GUI widgets by embedding frames within frames 32
Creating menu bars 36
Creating tabbed widgets 41
Using the grid layout manager 46

ii

Table of Contents

Chapter 3: Look and Feel Customization 49
Introduction 49
Creating message boxes – information, warning, and error 50
How to create independent message boxes 53
How to create the title of a tkinter window form 56
Changing the icon of the main root window 57
Using a spin box control 58
Relief, sunken, and raised appearance of widgets 61
Creating tooltips using Python 63
How to use the canvas widget 67

Chapter 4: Data and Classes 69
Introduction 69
How to use StringVar() 69
How to get data from a widget 73
Using module-level global variables 75
How coding in classes can improve the GUI 79
Writing callback functions 85
Creating reusable GUI components 86

Chapter 5: Matplotlib Charts 91
Introduction 91
Creating beautiful charts using Matplotlib 92
Matplotlib – downloading modules using pip 94
Matplotlib – downloading modules with whl extensions 98
Creating our first chart 100
Placing labels on charts 102
How to give the chart a legend 106
Scaling charts 109
Adjusting the scale of charts dynamically 112

Chapter 6: Threads and Networking 117
Introduction 117
How to create multiple threads 118
Starting a thread 121
Stopping a thread 125
How to use queues 128
Passing queues among different modules 133
Using dialog widgets to copy files to your network 136
Using TCP/IP to communicate via networks 145
Using URLOpen to read data from websites 147

iii

Table of Contents

Chapter 7: Storing Data in Our MySQL Database via Our GUI 153
Introduction 153
Connecting to a MySQL database from Python 154
Configuring the MySQL connection 157
Designing the Python GUI database 161
Using the SQL INSERT command 168
Using the SQL UPDATE command 172
Using the SQL DELETE command 177
Storing and retrieving data from our MySQL database 181

Chapter 8: Internationalization and Testing 187
Introduction 187
Displaying widget text in different languages 188
Changing the entire GUI language all at once 191
Localizing the GUI 196
Preparing the GUI for internationalization 201
How to design a GUI in an agile fashion 204
Do we need to test the GUI code? 208
Setting debug watches 212
Configuring different debug output levels 216
Creating self-testing code using
Python's __main__ section 220
Creating robust GUIs using unit tests 224
How to write unit tests using the Eclipse PyDev IDE 229

Chapter 9: Extending Our GUI with the wxPython Library 235
Introduction 235
How to install the wxPython library 236
How to create our GUI in wxPython 239
Quickly adding controls using wxPython 244
Trying to embed a main wxPython app in a main tkinter app 251
Trying to embed our tkinter GUI code into wxPython 253
How to use Python to control two different GUI frameworks 256
How to communicate between the two connected GUIs 260

Chapter 10: Creating Amazing 3D GUIs with PyOpenGL and PyGLet 265
Introduction 265
PyOpenGL transforms our GUI 266
Our GUI in 3D! 270
Using bitmaps to make our GUI pretty 275
PyGLet transforms our GUI more easily than PyOpenGL 279
Our GUI in amazing colors 283
Creating a slideshow using tkinter 286

iv

Table of Contents

Chapter 11: Best Practices 291
Introduction 291
Avoiding spaghetti code 291
Using __init__ to connect modules 298
Mixing fall-down and OOP coding 305
Using a code naming convention 310
When not to use OOP 314
How to use design patterns successfully 317
Avoiding complexity 320

Index 327

v

Preface
In this book, we will explore the beautiful world of graphical user interfaces (GUIs) using the
Python programming language.

Along the way, we will talk to networks, queues, the OpenGL graphical library, and many
more technologies.

This is a programming cookbook. Every chapter is self-contained and explains a certain
programming solution.

We will start very simply, yet throughout this book we will build a working program written
in Python 3.

We will also apply some design patterns and use best practices throughout this book.

The book assumes that the reader has some basic experience using the Python
programming language, but that is not really required to use this book.

If you are an experienced programmer in any programming language, you will have a fun
time extending your skills to programming GUIs using Python!

Are you ready?

Let's start on our journey…

What this book covers
Chapter 1, Creating the GUI Form and Adding Widgets, explains the steps to develop our
first GUI in Python. We will start with the minimum code required to build a running GUI
application. Each recipe then adds different widgets to the GUI form.

Chapter 2, Layout Management, explores how to arrange widgets to create our Python GUI.
The grid layout manager is one of the most important layout tools built into tkinter that we
will be using.

Preface

vi

Chapter 3, Look and Feel Customization, shows several examples of how to create a good
"look and feel" GUI. On a practical level, we will add functionality to the Help | About menu
item we created in one of the recipes.

Chapter 4, Data and Classes, discusses saving the data our GUI displays. We will start using
object-oriented programming (OOP) in order to extend Python's built-in functionality.

Chapter 5, Matplotlib Charts, explains how to create beautiful charts that visually represent
data. Depending upon the format of the data source, we can plot one or several columns of
data within the same chart.

Chapter 6, Threads and Networking, explains how to extend the functionality of our Python
GUI using threads, queues, and network connections. This will show us that our GUI is not
limited at all to the local scope of our PC.

Chapter 7, Storing Data in Our MySQL Database via Our GUI, shows us how to connect to a
MySQL database server. The first recipe in this chapter will show how to install the free MySQL
Server Community Edition, and in the following recipes we will create databases, tables, and
then load data into those tables as well as modify these data. We will also read the data back
out from the MySQL server into our GUI.

Chapter 8, Internationalization and Testing, shows how to internationalize our GUI by
displaying text on labels, buttons, tabs, and other widgets in different languages. We will
start simple and then explore how we can prepare our GUI for internationalization at the
design level. We will also explore several ways to automatically test our GUI using Python's
built-in unit testing framework.

Chapter 9, Extending Our GUI with the wxPython Library, introduces another Python GUI
toolkit that currently does not ship with Python. It is called wxPython, and we will be using
the Phoenix version of wxPython which was designed to work well with Python 3.

Chapter 10, Creating Amazing 3D GUIs with PyOpenGL and PyGLet, shows how to transform
our GUI by giving it true three-dimensional capabilities. We will use two Python third-party
packages. PyOpenGL is a Python binding to the OpenGL standard, which is a graphics library
that comes built-in with all major operating systems. This gives the resulting widgets a native
look and feel. PyGLet is one such binding that we will explore in this chapter.

Chapter 11, Best Practices, explores different best practices that can help us to build our
GUI in an efficient way and keep it both maintainable and extendible. Best practices are
applicable to any good code and our GUI is no exception to designing and implementing
good software practices.

Preface

vii

What you need for this book
All required software for this book is available online and is free of charge. This starts with
Python 3 itself, and then extends to Python's add-on modules. In order to download any
required software, you will need a working Internet connection.

Who this book is for
This book is for programmers who wish to create a graphical user interface (GUI). You might
be surprised by what we can achieve by creating beautiful, functional, and powerful GUIs
using the Python programming language. Python is a wonderful, intuitive programming
language, and is very easy to learn.

I like to invite you to start on this journey now. It will be a lot of fun!

Conventions
In this book, you will find a number of styles of text that distinguish between different kinds of
information. Here are some examples of these styles, and an explanation of their meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, and user input are shown as follows: "Using Python, we can create our own
classes using the class keyword instead of the def keyword."

A block of code is set as follows:

import tkinter as tk # 1
win = tk.Tk() # 2
win.title("Python GUI") # 3
win.mainloop() # 4

Any command-line input or output is written as follows:

pip install numpy-1.9.2+mkl-cp34-none-win_amd64.whl

New terms and important words are shown in bold. Words that you see on the screen, in
menus or dialog boxes for example, appear in the text like this: "Next, we will add functionality
to the menu items, for example, closing the main window when clicking the Exit menu item
and displaying a Help | About dialog."

Preface

viii

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about this
book—what you liked or disliked. Reader feedback is important for us as it helps us develop
titles that you will really get the most out of.

To send us general feedback, simply e-mail feedback@packtpub.com, and mention the
book's title in the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing or
contributing to a book, see our author guide at www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to help you to
get the most from your purchase.

Downloading the example code
You can download the example code files from your account at http://www.packtpub.com
for all the Packt Publishing books you have purchased. If you purchased this book elsewhere,
you can visit http://www.packtpub.com/support and register to have the files e-mailed
directly to you.

www.packtpub.com/authors
http://www.packtpub.com
http://www.packtpub.com/support

Preface

ix

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes do happen.
If you find a mistake in one of our books—maybe a mistake in the text or the code—we would be
grateful if you could report this to us. By doing so, you can save other readers from frustration
and help us improve subsequent versions of this book. If you find any errata, please report them
by visiting http://www.packtpub.com/submit-errata, selecting your book, clicking on
the Errata Submission Form link, and entering the details of your errata. Once your errata are
verified, your submission will be accepted and the errata will be uploaded to our website or
added to any list of existing errata under the Errata section of that title.

To view the previously submitted errata, go to https://www.packtpub.com/books/
content/support and enter the name of the book in the search field. The required
information will appear under the Errata section.

Piracy
Piracy of copyrighted material on the Internet is an ongoing problem across all media. At
Packt, we take the protection of our copyright and licenses very seriously. If you come across
any illegal copies of our works in any form on the Internet, please provide us with the location
address or website name immediately so that we can pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors and our ability to bring you valuable content.

Questions
If you have a problem with any aspect of this book, you can contact us at questions@
packtpub.com, and we will do our best to address the problem.

http://www.packtpub.com/submit-errata
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support

1

1
Creating the GUI Form

and Adding Widgets

In this chapter, we start creating amazing GUIs using Python 3:

 f Creating our first Python GUI

 f Preventing the GUI from being resized

 f Adding a label to the GUI form

 f Creating buttons and changing their text property

 f Text box widgets

 f Setting the focus to a widget and disabling widgets

 f Combo box widgets

 f Creating a check button with different initial states

 f Using radio button widgets

 f Using scrolled text widgets

 f Adding several widgets in a loop

Introduction
In this chapter, we will develop our first GUI in Python. We start with the minimum code
required to build a running GUI application. Each recipe then adds different widgets to
the GUI form.

In the first two recipes, we show the entire code, consisting of only a few lines of code. In the
following recipes we only show the code to be added to the previous recipes.

Creating the GUI Form and Adding Widgets

2

By the end of this chapter, we will have created a working GUI application that consists of
labels, buttons, text boxes, combo boxes, and check buttons in various states, as well as radio
buttons that change the background color of the GUI.

Creating our first Python GUI
Python is a very powerful programming language. It ships with the built-in tkinter module.
In only a few lines of code (four, to be precise) we can build our first Python GUI.

Getting ready
To follow this recipe, a working Python development environment is a prerequisite. The IDLE
GUI that ships with Python is enough to start. IDLE was built using tkinter!

All the recipes in this book were developed using Python 3.4 on a Windows 7
64-bit OS. They have not been tested on any other configuration. As Python
is a cross-platform language, the code from each recipe is expected to run
everywhere.
If you are using a Mac, it does come built-in with Python, yet it might be missing
some modules such as tkinter, which we will use throughout this book.
We are using Python 3 and the creator of Python intentionally chose not to
make it backwards compatible with Python 2.
If you are using a Mac or Python 2, you might have to install Python 3 from
www.python.org in order to successfully run the recipes in this book.

How to do it...
Here are the four lines of Python code required to create the resulting GUI:

import tkinter as tk # 1
win = tk.Tk() # 2
win.title("Python GUI") # 3
win.mainloop() # 4

www.python.org

Chapter 1

3

Execute this code and admire the result:

How it works...
In line 1, we import the built-in tkinter module and alias it as tk to simplify our Python code.
In line 2, we create an instance of the Tk class by calling its constructor (the parentheses
appended to Tk turn the class into an instance). We are using the alias tk so we don't have to
use the longer word tkinter. We are assigning the class instance to a variable named win
(short for a window). As Python is a dynamically typed language, we did not have to declare
this variable before assigning to it and we did not have to give it a specific type. Python infers
the type from the assignment of this statement. Python is a strongly typed language, so every
variable always has a type. We just don't have to specify its type beforehand like in other
languages. This makes Python a very powerful and productive language to program in.

A little note about classes and types:
In Python every variable always has a type. We cannot create a variable
without assigning it a type. Yet, in Python, we do not have to declare the
type beforehand, as we have to do in the C programming language.
Python is smart enough to infer the type. At the time of writing, C# also
has this capability.
Using Python, we can create our own classes using the class keyword
instead of the def keyword.
In order to assign the class to a variable, we first have to create an
instance of our class. We create the instance and assign this instance
to our variable.

class AClass(object):

 print('Hello from AClass')

classInstance = AClass()

Now the variable classInstance is of the type AClass.
If this sounds confusing, do not worry. We will cover OOP in the
coming chapters.

Creating the GUI Form and Adding Widgets

4

In line 3, we use the instance variable of the class (win) to give our window a title via the
title property. In line 4, we start the window's event loop by calling the mainloop method
on the class instance win. Up to this point in our code, we created an instance and set one
property but the GUI will not be displayed until we start the main event loop.

An event loop is a mechanism that makes our GUI work. We can think of
it as an endless loop where our GUI is waiting for events to be sent to it. A
button click creates an event within our GUI or our GUI being resized also
creates an event.
We can write all of our GUI code in advance and nothing will be displayed on
the user's screen until we call this endless loop (win.mainloop() in the
code shown above).
The event loop ends when the user clicks the red X button or a widget that
we have programmed to end our GUI. When the event loop ends, our GUI
also ends.

There's more...
This recipe used a minimum amount of Python code to create our first GUI program. However,
throughout this book, we will use OOP when it makes sense.

Preventing the GUI from being resized

Getting ready
This recipe extends the previous one. Therefore, it is necessary to have typed Recipe 1
yourself into a project of your own or downloaded the code from https://www.packtpub.
com/support.

How to do it...
We are preventing the GUI from being resized.

import tkinter as tk # 1 imports

win = tk.Tk() # 2 Create instance
win.title("Python GUI") # 3 Add a title

win.resizable(0, 0) # 4 Disable resizing the GUI

win.mainloop() # 5 Start GUI

https://www.packtpub.com/support
https://www.packtpub.com/support

Chapter 1

5

Running the code creates this GUI:

How it works...
Line 4 prevents the Python GUI from being resized.

Running this code will result in a GUI similar to the one we created in Recipe 1. However, the
user can no longer resize it. Also, notice how the maximize button in the toolbar of the window
is grayed out.

Why is this important? Because, once we add widgets to our form, resizing can make our GUI
look not as good as we want it to be. We will add widgets to our GUI in the next recipes.

Resizable() is a method of the Tk() class and, by passing in (0, 0), we prevent the GUI
from being resized. If we pass in other values, we hard-code the x and y start up size of the
GUI, but that won't make it nonresizable.

We also added comments to our code in preparation for the recipes contained in this book.

In visual programming IDEs such as Visual Studio .NET, C# programmers
often do not think of preventing the user from resizing the GUI they
developed in this language. That creates inferior GUIs. Adding this one line
of Python code can make our users appreciate our GUI.

Creating the GUI Form and Adding Widgets

6

Adding a label to the GUI form

Getting ready
We are extending the first recipe. We will leave the GUI resizable, so don't use the code from
the second recipe (or comment the win.resizable line 4 out).

How to do it...
In order to add a Label widget to our GUI, we are importing the ttk module from tkinter.
Please note the two import statements.

imports # 1
import tkinter as tk # 2
from tkinter import ttk # 3

Add the following code just above win.mainloop() located at the bottom of recipes 1 and 2.

Adding a Label # 4
ttk.Label(win, text="A Label").grid(column=0, row=0) # 5

Running the code adds a label to our GUI:

How it works...
In line 3 of the above code, we are importing a separate module from tkinter. The ttk
module has some advanced widgets that make our GUI look great. In a sense, ttk is an
extension within tkinter.

We still need to import tkinter itself, but we have to specify that we now want to also use
ttk from tkinter.

ttk stands for 'themed tk". It improves our GUI look and feel.

Chapter 1

7

Line 5 above adds the label to the GUI, just before we call mainloop (not shown here to
preserve space. See recipes 1 or 2).

We are passing our window instance into the ttk.Label constructor and setting the text
property. This becomes the text our Label will display.

We are also making use of the grid layout manager, which we'll explore in much more depth
in Chapter 2, Layout Management.

Note how our GUI suddenly got much smaller than in previous recipes.

The reason why it became so small is that we added a widget to our form. Without a widget,
tkinter uses a default size. Adding a widget causes optimization, which generally means
using as little space as necessary to display the widget(s).

If we make the text of the label longer, the GUI will expand automatically. We will cover this
automatic form size adjustment in a later recipe in Chapter 2, Layout Management.

There's more...
Try resizing and maximizing this GUI with a label and watch what happens.

Creating buttons and changing their text
property

Getting ready
This recipe extends the previous one. You can download the entire code from the Packt
Publishing website.

How to do it...
We are adding a button that, when clicked, performs an action. In this recipe, we will update
the label we added in the previous recipe, as well as updating the text property of the button.

Modify adding a Label # 1
aLabel = ttk.Label(win, text="A Label") # 2
aLabel.grid(column=0, row=0) # 3

Button Click Event Callback Function # 4

Creating the GUI Form and Adding Widgets

8

def clickMe(): # 5
 action.configure(text="** I have been Clicked! **")
 aLabel.configure(foreground='red')

Adding a Button # 6
action = ttk.Button(win, text="Click Me!", command=clickMe) # 7
action.grid(column=1, row=0) # 8

Before clicking the button:

After clicking the button, the color of the label has been changed, and so has the text of the
button. Action!

How it works...
In line 2 we are now assigning the label to a variable and in line 3 we use this variable to
position the label within the form. We will need this variable to change its properties in the
clickMe() function. By default, this is a module-level variable so we can access it inside
the function as long as we declare the variable above the function that calls it.

Line 5 is the event handler that is being invoked once the button gets clicked.

In line 7, we create the button and bind the command to the clickMe() function.

GUIs are event-driven. Clicking the button creates an event. We bind
what happens when this event occurs in the callback function using the
command property of the ttk.Button widget. Notice how we do not
use parentheses; only the name clickMe.

We also change the text of the label to include red as in the printed book, this might otherwise
not be obvious. When you run the code you can see that the color did indeed change.

Lines 3 and 8 both use the grid layout manager, which will be discussed in the following
chapter. This aligns both the label and the button.

Chapter 1

9

There's more...
We will continue to add more and more widgets to our GUI and we will make use of many
built-in properties in other recipes in the book.

Text box widgets
In tkinter, the typical textbox widget is called Entry. In this recipe, we will add such an
Entry to our GUI. We will make our label more useful by describing what the Entry is doing
for the user.

Getting ready
This recipe builds upon the Creating buttons and changing their text property recipe.

How to do it...
Modified Button Click Function # 1
def clickMe(): # 2
 action.configure(text='Hello ' + name.get())

Position Button in second row, second column (zero-based)
action.grid(column=1, row=1)

Changing our Label # 3
ttk.Label(win, text="Enter a name:").grid(column=0, row=0) # 4

Adding a Textbox Entry widget # 5
name = tk.StringVar() # 6
nameEntered = ttk.Entry(win, width=12, textvariable=name) # 7
nameEntered.grid(column=0, row=1) # 8

Now our GUI looks like this:

Creating the GUI Form and Adding Widgets

10

After entering some text and clicking the button, there is the following change in the GUI:

How it works...
In line 2 we are getting the value of the Entry widget. We are not using OOP yet, so how
come we can access the value of a variable that was not even declared yet?

Without using OOP classes, in Python procedural coding we have to physically place a name
above a statement that tries to use that name. So how come this works (it does)?

The answer is that the button click event is a callback function, and by the time the button
is clicked by a user, the variables referenced in this function are known and do exist.

Life is good.

Line 4 gives our label a more meaningful name, because now it describes the textbox below
it. We moved the button down next to the label to visually associate the two. We are still using
the grid layout manager, to be explained in more detail in Chapter 2, Layout Management.

Line 6 creates a variable name. This variable is bound to the Entry and, in our clickMe()
function, we are able to retrieve the value of the Entry box by calling get() on this variable.
This works like a charm.

Now we see that while the button displays the entire text we entered (and more), the textbox
Entry widget did not expand. The reason for this is that we had hard-coded it to a width of
12 in line 7.

Python is a dynamically-typed language and infers the type from the
assignment. What this means is if we assign a string to the variable name,
the variable will be of the type string, and if we assign an integer to name,
this variable's type will be integer.
Using tkinter, we have to declare the variable name as the type
tk.StringVar() before we can use it successfully. The reason is this
that Tkinter is not Python. We can use it from Python but it is not the
same language.

Chapter 1

11

Setting the focus to a widget and disabling
widgets

While our GUI is nicely improving, it would be more convenient and useful to have the cursor
appear in the Entry widget as soon as the GUI appears. Here we learn how to do this.

Getting ready
This recipe extends the previous recipe.

How to do it...
Python is truly great. All we have to do to set the focus to a specific control when the GUI
appears is call the focus() method on an instance of a tkinter widget we previously
created. In our current GUI example, we assigned the ttk.Entry class instance to a
variable we named nameEntered. Now we can give it the focus.

Place the following code just above the bottom of the module that starts the main windows
event loop, just like in previous recipes. If you get some errors, make sure you are placing
calls to variables below the code where they are declared. We are not using OOP as of yet,
so this is still necessary. Later, it will no longer be necessary to do this.

nameEntered.focus() # Place cursor into name Entry

On a Mac, you might have to set the focus to the GUI window first before being able to set the
focus to the Entry widget in this window.

Adding this one line of Python code places the cursor into our text Entry box, giving the
text Entry box the focus. As soon as the GUI appears, we can type into this text box without
having to click it first.

Note how the cursor now defaults to residing inside the text Entry box.

Creating the GUI Form and Adding Widgets

12

We can also disable widgets. To do that, we set a property on the widget. We can make the
button disabled by adding this one line of Python code:

action.configure(state='disabled') # Disable the Button Widget

After adding the above line of Python code, clicking the button no longer creates any action!

How it works...
This code is self-explanatory. We set the focus to one control and disable another widget.
Good naming in programming languages helps to eliminate lengthy explanations. Later in
this book, there will be some advanced tips on how to do this while programming at work or
practicing our programming skills at home.

There's more...
Yes. This is only the first chapter. There is much more to come.

Combo box widgets
In this recipe, we will improve our GUI by adding drop-down combo boxes that can have initial
default values. While we can restrict the user to only certain choices, at the same time, we
can allow the user to type in whatever they wish.

Getting ready
This recipe extends the previous recipes.

How to do it...
We are inserting another column between the Entry widget and the Button using the grid
layout manager. Here is the Python code.

ttk.Label(win, text="Choose a number:").grid(column=1, row=0) # 1
number = tk.StringVar() # 2
numberChosen = ttk.Combobox(win, width=12, textvariable=number) #3

Chapter 1

13

numberChosen['values'] = (1, 2, 4, 42, 100) # 4
numberChosen.grid(column=1, row=1) # 5
numberChosen.current(0) # 6

This code, when added to previous recipes, creates the following GUI. Note how, in line 4 in
the preceding code, we assign a tuple with default values to the combo box. These values
then appear in the drop-down box. We can also change them if we like (by typing in different
values when the application is running).

How it works...
Line 1 adds a second label to match the newly created combo box (created in line 3). Line 2
assigns the value of the box to a variable of a special tkinter type (StringVar), as we did
in a previous recipe.

Line 5 aligns the two new controls (label and combo box) within our previous GUI layout, and
line 6 assigns a default value to be displayed when the GUI first becomes visible. This is the
first value of the numberChosen['values'] tuple, the string "1". We did not place quotes
around our tuple of integers in line 4, but they got casted into strings because, in line 2, we
declared the values to be of type tk.StringVar.

The screenshot shows the selection made by the user (42). This value gets assigned to the
number variable.

There's more...
If we want to restrict the user to only be able to select the values we have programmed into
the Combobox, we can do that by passing the state property into the constructor. Modify line
3 in the previous code to:

numberChosen = ttk.Combobox(win, width=12, textvariable=number,
state='readonly')

Creating the GUI Form and Adding Widgets

14

Now users can no longer type values into the Combobox. We can display the value chosen by
the user by adding the following line of code to our Button Click Event Callback function:

Modified Button Click Callback Function

def clickMe():

 action.configure(text='Hello ' + name.get()+ ' ' +
 numberChosen.get())

After choosing a number, entering a name, and then clicking the button, we get the following
GUI result, which now also displays the number selected:

Creating a check button with different initial
states

In this recipe, we will add three Checkbutton widgets, each with a different initial state.

Getting ready
This recipe extends the previous recipes.

How to do it...
We are creating three Checkbutton widgets that differ in their states. The first is disabled
and has a checkmark in it. The user cannot remove this checkmark as the widget is disabled.

The second Checkbutton is enabled and, by default, has no checkmark in it, but the user
can click it to add a checkmark.

The third Checkbutton is both enabled and checked by default. The users can uncheck
and recheck the widget as often as they like.

Creating three checkbuttons # 1
chVarDis = tk.IntVar() # 2
check1 = tk.Checkbutton(win, text="Disabled", variable=chVarDis, state
='disabled') # 3
check1.select() # 4

Chapter 1

15

check1.grid(column=0, row=4, sticky=tk.W) # 5

chVarUn = tk.IntVar() # 6
check2 = tk.Checkbutton(win, text="UnChecked", variable=chVarUn)
check2.deselect() # 8
check2.grid(column=1, row=4, sticky=tk.W) # 9

chVarEn = tk.IntVar() # 10
check3 = tk.Checkbutton(win, text="Enabled", variable=chVarEn)
check3.select() # 12
check3.grid(column=2, row=4, sticky=tk.W) # 13

Running the new code results in the following GUI:

How it works...
In lines 2, 6, and 10, we create three variables of type IntVar. In the following line, for each
of these variables we create a Checkbutton, passing in these variables. They will hold the
state of the Checkbutton (unchecked or checked). By default, that is either 0 (unchecked)
or 1 (checked) so the type of the variable is a tkinter integer.

We place these Checkbutton widgets in our main window so the first argument passed into
the constructor is the parent of the widget; in our case win. We give each Checkbutton a
different label via its text property.

Setting the sticky property of the grid to tk.W means that the widget will be aligned to the
west of the grid. This is very similar to Java syntax and it means that it will be aligned to the
left. When we resize our GUI, the widget will remain on the left side and not be moved towards
the center of the GUI.

Lines 4 and 12 place a checkmark into the Checkbutton widget by calling the select()
method on these two Checkbutton class instances.

We continue to arrange our widgets using the grid layout manager, which will be explained in
more detail in Chapter 2, Layout Management.

Creating the GUI Form and Adding Widgets

16

Using radio button widgets
In this recipe, we will create three tkinter Radiobutton widgets. We will also add
some code that changes the color of the main form depending upon which Radiobutton
is selected.

Getting ready
This recipe extends the previous recipes.

How to do it...
We are adding the following code to the previous recipe:

Radiobutton Globals # 1
COLOR1 = "Blue" # 2
COLOR2 = "Gold" # 3
COLOR3 = "Red" # 4

Radiobutton Callback # 5
def radCall(): # 6
 radSel=radVar.get()
 if radSel == 1: win.configure(background=COLOR1)
 elif radSel == 2: win.configure(background=COLOR2)
 elif radSel == 3: win.configure(background=COLOR3)

create three Radiobuttons # 7
radVar = tk.IntVar() # 8
rad1 = tk.Radiobutton(win, text=COLOR1, variable=radVar, value=1,
command=radCall) # 9
rad1.grid(column=0, row=5, sticky=tk.W) # 10

rad2 = tk.Radiobutton(win, text=COLOR2, variable=radVar, value=2, comm
and=radCall) # 11
rad2.grid(column=1, row=5, sticky=tk.W) # 12

rad3 = tk.Radiobutton(win, text=COLOR3, variable=radVar, value=3, comm
and=radCall) # 13
rad3.grid(column=2, row=5, sticky=tk.W) # 14

Chapter 1

17

Running this code and selecting the Radiobutton named Gold creates the following window:

How it works...
In lines 2-4 we create some module-level global variables, which we will use in the creation of
each radio button as well as in the callback function that creates the action of changing the
background color of the main form (using the instance variable win).

We are using global variables to make it easier to change the code. By assigning the name of
the color to a variable and using this variable in several places, we can easily experiment with
different colors. Instead of doing a global search-and-replace of a hard-coded string (which is
prone to errors), we just need to change one line of code and everything else will work. This is
known as the DRY principle, which stands for Don't Repeat Yourself. This is an OOP concept
that we will use in later recipes of the book.

The names of the colors we are assigning to the variables (COLOR1, COLOR2
…) are tkinter keywords (technically, they are symbolic names). If we use
names that are not tkinter color keywords, then the code will not work.

Line 6 is the callback function that changes the background of our main form (win)
depending upon the user's selection.

In line 8 we are creating a tk.IntVar variable. What is important about this is that we are
creating only one variable to be used by all three radio buttons. As can be seen from the
above screenshot, no matter which Radiobutton we select, all the others will automatically
be unselected for us.

Lines 9 to 14 create the three radio buttons, assign them to the main form, and pass in
the variable to be used in the callback function that creates the action of changing the
background of our main window.

While this is the first recipe that changes the color of a widget, quite
honestly, it looks a bit ugly. A large portion of the following recipes in
this book explain how to make our GUI look truly amazing.

Creating the GUI Form and Adding Widgets

18

There's more...
Here is a small sample of the available symbolic color names that you can look up at the
official tcl manual page:

http://www.tcl.tk/man/tcl8.5/TkCmd/colors.htm

Name Red Green Blue
alice blue 240 248 255
AliceBlue 240 248 255
Blue 0 0 255
Gold 255 215 0
Red 255 0 0

Some of the names create the same color, so alice blue creates the same color as
AliceBlue. In this recipe we used the symbolic names Blue, Gold, and Red.

Using scrolled text widgets
ScrolledText widgets are much larger than simple Entry widgets and span multiple lines.
They are widgets like Notepad and wrap lines, automatically enabling vertical scrollbars when
the text gets larger than the height of the ScrolledText widget.

Getting ready
This recipe extends the previous recipes. You can download the code for each chapter of this
book from the Packt Publishing website.

How to do it...
By adding the following lines of code, we create a ScrolledText widget:

Add this import to the top of the Python Module # 1
from tkinter import scrolledtext # 2

Using a scrolled Text control # 3
scrolW = 30 # 4
scrolH = 3 # 5

http://www.tcl.tk/man/tcl8.5/TkCmd/colors.htm

Chapter 1

19

scr = scrolledtext.ScrolledText(win, width=scrolW, height=scrolH,
wrap=tk.WORD) # 6
scr.grid(column=0, columnspan=3) # 7

We can actually type into our widget, and if we type enough words, the lines will automatically
wrap around!

Once we type in more words than the height of the widget can display, the vertical scrollbar
becomes enabled. This all works out-of-the-box without us needing to write any more code
to achieve this.

How it works...
In line 2 we are importing the module that contains the ScrolledText widget class.
Add that to the top of the module, just below the other two import statements.

Lines 4 and 5 define the width and height of the ScrolledText widget we are about
to create. These are hard-coded values we are passing into the ScrolledText widget
constructor in line 6.

These values are magic numbers found by experimentation to work well. You might
experiment by changing srcolW from 30 to 50 and observe the effect!

