
[1]

Extending Unity with Editor
Scripting

Put Unity to use for your video games by creating your
own custom tools with editor scripting

Angelo Tadres

BIRMINGHAM - MUMBAI

Extending Unity with Editor Scripting

Copyright © 2015 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the author, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: September 2015

Production reference: 1150915

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78528-185-3

www.packtpub.com

www.packtpub.com

Credits

Author
Angelo Tadres

Reviewers
J. Alberto Gandullo Avila

Jeremy Jones

Noah Johnson

Fernando Matarrubia

Hugo Ruivo

Eric Spevacek

Commissioning Editor
Veena Pagare

Acquisition Editor
Sonali Vernekar

Content Development Editor
Riddhi Tuljapurkar

Technical Editor
Vivek Pala

Copy Editor
Pranjali Chury

Project Coordinator
Kinjal Bari

Proofreader
Safis Editing

Indexer
Mariammal Chettiyar

Graphics
Jason Monteiro

Production Coordinator
Conidon Miranda

Cover Work
Conidon Miranda

Foreword

While perhaps not as glamorous a job as being a gameplay programmer, a tools
programmer can make your game development experience much more enjoyable. They
truly are the unsung heroes of game development. In fact, AAA studios heavily rely on
using tools to make aspects of game development easier to use for designers and artists.
Tools also help to reduce tediousness in the creation of content for game projects.

While these tools were often created as separate programs to be run in conjunction
with the game engine in the past, one of the things I love about working with the
Unity game engine is the fact that with some fairly trivial scripting, you can extend
the editor. This allows users to tailor the editor to suit their project's needs and
requirements. Additionally, just as Unity was originally created for a game project
but grew into a lot more, the custom tools readers will go on to create applications
that have the possibility to be extraordinarily successful on Unity's Asset Store, much
like NGUI, Playmaker, ProBuilder, and UFPS.

Since I started working with Unity in 2007, I have worked with a lot of tools and
have done a fair bit of tools programming personally. While creating my own tools,
I often needed to do extensive external research and come up with a lot of things on
my own because most of the necessary information was not documented well. I am
exuberant that someone has compiled the majority of this information into one place.

Over the course of this book, you will see how you can create your own custom tools
starting with simple ones such as gizmos, then moving on to customize the Inspector
for the different components you add, and learning how to create your very own
Windows with their own custom GUI. Angelo has broken down the concepts and
has made it quite easy to see when you would want to use these tools. Throughout
this book, he shows practical examples of when you would want to use these
particular features from their inception to getting published on the Asset Store. He
has also included additional tips and tricks along the way, such as how to set up Git,
easily make multiple builds of your projects, as well as get your project up on mobile
devices in a flash.

Reading Angelo's work, I am not surprised by the range of content covered in
this book. His work as a lead engineer for DeNA as well as his strong technical
background, no doubt, gave him the knowledge needed to get this book out to
the world. The breadth of content included in this book will give you a strong
foundation on which you can build your own tools.

Gifted tools programmers can make all the difference in the world of game projects.
This book provides a roadmap on how you can get there.

John P. Doran
Technical Game Designer
Author of Unity Game Development Blueprints and Mastering UDK Game
Development

About the Author

Angelo Tadres is a Chilean software engineer, living the dream of working in the
mobile video game industry.

Hailing from Santiago, Chile, he began his career doing research and development
for video games and applications that are designed to assist the blind and visually
impaired with their orientation and mobility skills. After passing quickly through
the telecommunications industry—working with value-added services and mobile
applications—he got the opportunity to join the Santiago studio of DeNA, one of the
world's largest mobile video game companies.

In 2013, Angelo was asked to move to Vancouver, Canada, to become a lead software
engineer, where he helped build the fledgling Canadian studio and, in particular,
championed Unity 3D, paving the way for other teams' adoption and use.

He's known for getting things done by shooting first and asking questions later.
When he is not coding and pushing content to GitHub, you'll find him playing table
tennis with his friends or running along the sea wall. To know more about him, visit
his website at http://angelotadres.com/.

This book is dedicated to my daughter, Antonia Tadres, and my
wife, María Jose Arcos, the person whom I love and who has always
supported me in all my crazy projects, including the time when I
said "You know what? I want to write a book!"

Thanks to my mom; dad; my whole family; and my friends Jorge
Bravo and Vartan Ishanoglu for always being there to push me
whenever I doubted myself.

I would also like to say thanks to all the people who work at DeNA
Studios Canada for making the past 2 years the most amazing ones
of my life.

Finally, I would like to thank the Packt Publishing staff for their
assistance through the process and the technical reviewers for their
feedback, especially Riddhi Tuljapurkar and Fernando Matarrubia.

http://angelotadres.com/

About the Reviewers

J. Alberto Gandullo Avila graduated from the University of Seville after a
5-year course in computer science (BA/MA). After this, he worked in Seville as
a software developer in the field of enterprise management tools for more than 3
years. However, he always liked other fields such as computer graphics and mobile
software more, so he began to self-train in the development of mobile apps and
mobile games, specifically in the new technology of augmented reality; this was his
first contact with the Unity game engine. Thanks to his proficiency in this field, in
2013, he was hired in London (UK) by a small start-up dedicated to the development
of educational video games for mobile devices based on augmented reality. At this
stage, he became an expert in developing games using technologies such as C#
and Unity. After one and a half years in London, Alberto was hired in Bangkok
(Thailand) by a company dedicated to developing F2P games for mobile devices.

Jeremy Jones is a game developer who graduated from Neumont University and
has a passion for making robust systems within games. He has created many games
and several tools in his own game engine and Unity. In his free time, he likes to go
hiking, work out, and draw road designs.

I would like to thank my friends at Neumont University for their
support and my family on the East Coast for always believing in me.

Noah Johnson is a technical artist currently working at InContext Solutions. He
specializes in pipeline tools and extensions between Unity, Maya, and standalone
Python apps. He teaches game engine scripting courses as an adjunct professor at
Columbia College Chicago and is currently working on an independent Unreal 4
horror game project. His background in game system scripting and 3D asset creation
has dovetailed into a skill set that focuses on tools that make content creation simpler
and easier to iterate.

Fernando Matarrubia is a passionate traveler and game maker. He completed
his bachelor's degree in computer engineering, for which he was required to
travel between three cities and two countries. After that, he got a master's degree
in video game development from the Complutense University of Madrid. He
has been working with Unity for almost 6 years and loves to create fun pieces of
entertainment. He has participated in several titles for platforms such as PS3, PC,
Mac, and mobile devices.

Fernando is currently living with his wife and working as a software engineer in
the San Francisco Bay Area.

Hugo Ruivo is a self-taught game programmer, who is currently making games for
both the mobile and desktop platforms. Alongside games, he also creates tools that
help him and his team in the making of their products. He even launched one
of his own tools for Unity 3D on the marketplace, Achievement Service Manager.

Ever since he found out how games were made, he couldn't stop learning about the
many disciplines of game development, trying to make his own engine, learning new
frameworks and technologies, and specializing in some of the best game engines in
the industry, such as Unity 3D and UE4.

I would like to thank to my brother and my best friends, who have
always given me the inspiration and strength to keep moving forward.
I would also like to thank Packt Publishing and Angelo Tadres for the
opportunity to contribute to this book and, at some point, to be able to
help others learn the same way as I have been learning.

Eric Spevacek, once an independent developer in Chicago, is now an industry
technical artist based out of Southern California. His holistic approach to game
development and independent experience have helped guide and shape his work
in tool development. At work, he is responsible for the creation and maintenance of
content creation tools with an emphasis on user experience and streamlined modern
workflows. The current trends of accessible commercial game engines and their
long-term impact on the industry excite him.

www.PacktPub.com

Support files, eBooks, discount offers,
and more
For support files and downloads related to your book, please visit www.PacktPub.com.

Did you know that Packt offers eBook versions of every book published, with PDF and ePub
files available? You can upgrade to the eBook version at www.PacktPub.com and as a print
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at
service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up for a
range of free newsletters and receive exclusive discounts and offers on Packt books and eBooks.

TM

https://www2.packtpub.com/books/subscription/packtlib

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital book
library. Here, you can search, access, and read Packt's entire library of books.

Why subscribe?
•	 Fully searchable across every book published by Packt
•	 Copy and paste, print, and bookmark content
•	 On demand and accessible via a web browser

Free access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access PacktLib
today and view 9 entirely free books. Simply use your login credentials for immediate access.

www.PacktPub.com
www.PacktPub.com
www.PacktPub.com
https://www2.packtpub.com/books/subscription/packtlib
www.PacktPub.com

[i]

Table of Contents
Preface	 vii
Chapter 1: Getting Started with Editor Scripting	 1

Overview	 2
Editor scripting basics	 3

What is an editor script?	 3
The Editor folder	 5

Introducing Run & Jump	 7
Playing the video game	 8
Creating a new level	 9

The Level Creator tool	 14
Defining the chapter goals	 15
Preparing the environment	 16
Performing automation	 17

Summary	 20
Chapter 2: Using Gizmos in the Scene View	 21

Overview	 22
Defining the chapter goals	 23

Creating gizmos through code	 24
The OnDrawGizmos and OnDrawGizmosSelected methods	 24
Adding gizmos using the DrawGizmo attribute	 27
The Gizmos class	 30

DrawCube	 30
DrawWireCube	 31
DrawSphere	 32
DrawWireSphere	 32
DrawRay	 33
DrawLine	 34
DrawIcon	 34
DrawGUITexture	 35
DrawFrustrum	 36

Table of Contents

[ii]

Adding a structure to our levels	 37
Implementing the gizmo grid	 38
Implementing the snap to grid behaviour	 44

Summary	 47
Chapter 3: Creating Custom Inspectors	 49

Overview	 50
Defining the chapter goals	 51

Upgrading the Level class	 52
Understanding how an inspector works	 53
Creating a custom inspector	 55

Using the CustomEditor attribute	 55
Playing with the inspector message methods and target variable	 56
Adding the GUI elements	 58
Implementing the resize feature	 61
Using buttons to trigger actions	 62

Working with layouts	 66
Creating complex layouts	 67

Improving the inspector without custom inspectors	 70
What is a Property Drawer?	 70
Built-in Property Drawers	 71

Range	 71
Multiline	 72
TextArea	 73
ContextMenu	 73
ContextMenuItem	 74

Built-in Decorator Drawers	 75
Header	 75
Space	 76
Tooltip	 76

Creating you own Property Drawers	 77
Using drawers inside a custom inspector	 81

Using SerializedObject and SerializedProperty	 82
Summary	 84

Chapter 4: Creating Editor Windows	 85
Overview	 86

Defining the chapter goals	 87
Creating the base for an editor window	 87

Using the EditorWindow class	 88
Playing with the EditorWindow message methods	 89
Using Hotkeys to trigger menu items	 91

Table of Contents

[iii]

Implementing the Palette	 92
Creating a category system	 93
Finding assets using the AssetDatabase class	 95

Implementing the GUI for the Palette	 97
Creating tabs	 97
Creating a scrollable area	 99

Integrating the Palette with the Level Creator tool	 105
Creating an event	 105
Subscribing to an event	 106

Summary	 111
Chapter 5: Customizing the Scene View	 113

Overview	 114
Defining the chapter goals	 114

Defining the Editor modes	 116
Customizing the Scene View	 117

Using the OnSeceneGUI message method	 117
Playing with the Scene View tools	 119
Controlling the focus over our game objects	 121

Detecting Scene View events	 122
Getting the mouse position	 123
Capturing mouse events	 126

Implementing the Level Creator modes	 128
The View mode	 128
The Paint mode	 129
The Erase mode	 131
The Edit mode	 132

Using the Handles class	 136
Adding the final details to Level Creator	 140

Using hiding flags	 140
Summary	 143

Chapter 6: Changing the Look and Feel of the Editor
with GUI Styles and GUI Skins	 145

Overview	 146
Defining the chapter goals	 146

Changing the look and feel of the Level Creator tool	 147
Using GUIStyles in our GUI components	 147
Working with the GUIStyleState instances	 152

Table of Contents

[iv]

Changing the look and feel using a simpler approach	 156
Creating a GUISkin asset	 156
Integrating and using a GUISkin	 159

Summary	 162
Chapter 7: Saving Data in a Persistent Way with
Scriptable Objects	 163

Overview	 163
Defining the chapter goals	 164

Preparing the environment	 164
Updatable gravity in levels	 164
Playing with gravity	 165

Implementing a Scriptable Object	 166
Creating the data class	 166
Generating an asset to contain the data class	 167

Integrating the Scriptable Object with the level	 171
Updating the Level and the LevelInspector class	 171
Tweaking the level settings in the play mode	 174

Summary	 175
Chapter 8: Controlling the Import Pipeline Using
AssetPostprocessor Scripts	 177

Overview	 178
Defining the chapter goals	 178
Using the AssetPostprocessor class	 178

Improving the import pipeline	 181
Overwriting the background and level piece assets settings	 181

Using a DLL file for the AssetPostprocessors	 184
Creating and setting up a DLL project	 185
Integrating the DLL file to the main project	 189

Summary	 192
Chapter 9: Improving the Build Pipeline	 193

Overview	 193
Defining the chapter goals	 194
Preparing the environment	 194

Automating the BuildPipeline class	 194
Adjusting the player settings	 195
Using the BuildPipeline class	 196
Creating an editor window and learning about EditorPrefs
to persist data	 199

Adding version control to your project	 204

Table of Contents

[v]

Interacting with external scripts	 206
Displaying the build information in the video game	 206
Using the bash script in our pipeline	 208

Distributing your video game using AppBlade	 211
Creating an AppBlade account	 212
Uploading the build	 213

Summary	 216
Chapter 10: Distributing Your Tools	 217

Overview	 217
Defining the chapter goals	 218

Preparing the environment	 218
Sharing code using a Unity Package	 219

Creating a package	 219
Importing a package	 221

Sharing code using Git submodules	 222
Creating a submodule	 222
Using a submodule	 223

Publishing in the Asset Store	 225
Installing the Asset Store Tools	 225
Becoming a publisher	 227
Uploading the package	 229
Using the Mass Labeler	 232
Uploading and submitting the project	 234

Summary	 236
Index	 239

[vii]

Preface
Unity is a development platform for creating multiplatform 3D and 2D video games,
which is adopted by several studios and indie developers who are looking for
something simple, flexible, and powerful. One of its most interesting features is the
extensible editor, allowing you to make Unity work for your video game using
editor scripting.

If you are looking for a book that will show you how to deal with tasks that are
beyond the implementation of Gameplay and are more related to automating
and simplifying the creation of content, such as the assets that require a special
configuration to make them usable in your levels, and how to enable pipelines to
consume and create artifacts used by your video game, then this book is for you.

While improving the workflow of Run & Jump, a 2D platformer videogame, you will
learn all the basics of editor scripting, creating an ad hoc tool that works as a level
editor, customizing the way Unity imports assets, and getting control over the build
creation process. As a bonus, you will also learn how to share the tools created inside
your team or sell them at the Asset Store.

By the end of this book, you will be able to extend all the concepts that you learned
to build your own tools and customize the Unity editor in future video game projects
with confidence.

You can consider this as an entry point to make your development workflow easier.

Enjoy!

Preface

[viii]

What this book covers
Chapter 1, Getting Started with Editor Scripting, introduces you to Unity editor
scripting and explains why this is useful to improve the development workflow.
In this chapter, the video game, Run & Jump, which is used as a base for this book
is presented.

Chapter 2, Using Gizmos in the Scene View, explains how to use gizmos to display
debug information in the Scene View. Here, we implement a grid with gizmos
to be used as guides in the level editor.

Chapter 3, Creating Custom Inspectors, discusses how to improve the way the Unity
components and scripts are presented in the inspector window, creating custom
inspectors and using property and decorator drawers. In addition to the this, you
will learn how to start adding and using the editor GUI components. Here we go
through the process of making a custom inspector for the class responsible for the
level logic in Run & Jump.

Chapter 4, Creating Editor Windows, covers how to create an editor window to present
information and interact with features in a custom tool. Using some of the editor GUI
skills developed in the last chapter, we create a Palette window, which is a quick and
visual way to access the prefabs used as building pieces for the video game levels,
grouping them by categories.

Chapter 5, Customizing the Scene View, dives into how to add the editor GUI
components directly to the Scene View and capture specific events to expand their
capabilities. Step by step, we add GUI components to enable and disable different
modes we are going to implement on the level editor, like View, Paint, Edit and
Erase, changing the way how the user interacts with the tool.

Chapter 6, Changing the Look and Feel of the Editor with GUI Styles and GUI Skins,
explains how to change the look and feel of the Unity editor custom tools. Here we
finish the level editor investing our time modifying the appearance of it.

Chapter 7, Saving Data in a Persistent Way with Scriptable Objects, describes how to save
data in Unity and manipulate it as a reusable asset using scriptable objects. We walk
through the process of reallocate certain properties from the class responsible for the
level logic to a scriptable object class, making them reusable across levels.

Preface

[ix]

Chapter 8, Controlling the Import Pipeline Using Asset Postprocessor Scripts,
demonstrates how to improve and control the importing pipeline using Asset
Postprocessor scripts. We work in automating the process of changing the import
settings of the assets imported to the project to make them usable by the video game
in an easy way.

Chapter 9, Improving the Build Pipeline, discusses how to automate and improve the
build creation pipeline modifying the Unity player settings through code and calling
scripts outside Unity. Here, we create a basic build pipeline for Run & Jump that
publishes the mobile version of it in a distribution platform called AppBlade.

Chapter 10, Distributing Your Tools, concludes this book by showing how to use Unity
packages and Git submodules for custom tools distribution, suitable for sharing
inside a team, and how to sell content on the Asset Store.

What you need for this book
To follow this book, you will need to download a copy of Unity available at
https://unity3d.com/get-unity.

You can use any version of Unity from version 5.0, but we recommend the latest
5.x version, which at the time of writing this is version 5.1.2 (all screenshots have
been updated to this version). Don't worry about the kind of license you have,
the examples will work with the Personal and Professional Edition.

While working with this book, we will use as base project the video game
Run & Jump, available at https://github.com/angelotadres/RunAndJump.

You must have the Run & Jump project in order to test the code in this book.

Who this book is for
This book is for anyone who has basic knowledge of Unity programming using
C# and wants to learn how to extend and create custom tools using Unity Editor
Scripting to improve the development workflow and make video game development
easier.

https://unity3d.com/get-unity
https://github.com/angelotadres/RunAndJump

Preface

[x]

Conventions
In this book, you will find a number of text styles that distinguish between different
kinds of information. Here are some examples of these styles and an explanation of
their meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows:
"Create a script called LevelInspector.cs inside the folder Editor"

A block of code is set as follows:

public override void OnInspectorGUI() {
 DrawLevelDataGUI();
 DrawLevelSizeGUI();
}

When we wish to draw your attention to a particular part of a code block, the
relevant lines or items are set in bold:

public override void OnInspectorGUI() {
 DrawLevelDataGUI();
 DrawLevelSizeGUI();
}

Any command-line input or output is written as follows:

$ git submodule update

New terms and important words are shown in bold. Words that you see on the
screen, for example, in menus or dialog boxes, appear in the text like this: "Select the
category Misc and then click on the Sign piece"

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Preface

[xi]

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or disliked. Reader feedback is important for us as it helps
us develop titles that you will really get the most out of.

To send us general feedback, simply e-mail feedback@packtpub.com, and mention
the book's title in the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide at www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Downloading the example code
You can download the example code files from your account at http://www.
packtpub.com for all the Packt Publishing books you have purchased. If you
purchased this book elsewhere, you can visit http://www.packtpub.com/support
and register to have the files e-mailed directly to you.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in the text or
the code—we would be grateful if you could report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
book. If you find any errata, please report them by visiting http://www.packtpub.
com/submit-errata, selecting your book, clicking on the Errata Submission Form
link, and entering the details of your errata. Once your errata are verified, your
submission will be accepted and the errata will be uploaded to our website or added
to any list of existing errata under the Errata section of that title.

To view the previously submitted errata, go to https://www.packtpub.com/books/
content/support and enter the name of the book in the search field. The required
information will appear under the Errata section.

www.packtpub.com/authors
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com/support
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support

Piracy
Piracy of copyrighted material on the Internet is an ongoing problem across all
media. At Packt, we take the protection of our copyright and licenses very seriously.
If you come across any illegal copies of our works in any form on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected pirated
material.

We appreciate your help in protecting our authors and our ability to bring you
valuable content.

Questions
If you have a problem with any aspect of this book, you can contact us at
questions@packtpub.com, and we will do our best to address the problem.

[1]

Getting Started with
Editor Scripting

Unity is a powerful engine that enables creative people like you to build video
games in different platforms.

After developing a few projects on it, you will realize that each of these could have
been a better experience if you'd had a tool at that time to help you in the creation
of content for your video game or in the automation of all those manual repetitive
tasks that always end up generating a problem at the worst moment just because of
Murphy's Law.

To create tools based on your video game requirements, Unity provides an
editor scripting API to do it in a quick and fully integrated way. However, the
documentation available for building such tools by yourself is not the best.

The main aim of this book is to give you a tour of some of the most important
topics about editor scripting . We are going to explore its API when at the same time
we implement custom tools to improve the development workflow in Run & Jump,
a 2D platformer video game.

In this chapter, we will cover the following topics:

•	 Basics of editor scripting
•	 Run & Jump presentation and definition of the scope of the custom tools

Getting Started with Editor Scripting

[2]

Overview
Probably, at this point, you are familiar with the basic concepts of Unity and we can
safely assume that you know how to create a small video game from scratch without
too many complications. You know, for projects of this size, almost everything is
always under control and nothing takes too much time to be done. Basically, it is like
a little paradise in the video game developer's land.

However, when the project starts increasing in size in terms of complexity, you will
notice that certain tasks are repetitive or subject to error, generating a considerable
amount of effort and waste of time. For example, the mechanics of your video game
are quite unique and it is hard for the level designers to create content on time and
without errors. This is because Unity, or the available third-party tool you use,
doesn't satisfy all the required functionalities.

Sometimes, because you have more people working on the project, the lack of
a mechanism to encourage people to follow standards makes your video game
crash constantly.

In the same scenario, imagine that your project also requires a lot of art assets,
so artists constantly add these to Unity. The problem appears later when one
of the developers needs to constantly check whether the settings of these assets
are configured properly to make these look right in the final build, consuming
development time.

Finally, your project will be available on several platforms. However, owing to the
specific characteristics of your video game, every time you make a production build,
you must check whether all the settings are okay. You also need to check whether
you removed all the cheat menus used by your testers and that the correct assets are
loaded into each because you are preparing a trial version. Managing this becomes
a huge task!

To solve all these issues, Unity provides an editor scripting API. Using this we can
do the following tasks:

•	 Modify how the Unity editor behaves, triggering our code with specific events
•	 Improve the workflow assistance with a custom GUI that seamlessly

integrates with the Unity editor GUI
•	 Automate repetitive tasks by accessing the Unity editor's main functionalities

Chapter 1

[3]

Understating how to use the editor scripting API to create editor scripts in your
project will allow you to make Unity work for your video game and boost the
productivity of the video game development.

Editor scripting basics
It's time to go hands on in the creation of editor scripts so in this section we are going
to explore how to start them off.

What is an editor script?
An editor script is any piece of code that uses methods from the UnityEditor
namespace, and its principal objective is to create or modify functionalities in the
Unity editor.

To see this working, let's start with a basic example. Create a new project in Unity
and then a new script called HelloWorld.cs. Don't worry about where to place the
script, we'll talk about that in a bit. Copy the following code:

using UnityEngine;
using UnityEditor;

public class HelloWorld {

 [MenuItem ("GameObject/Create HelloWorld")]
 private static void CreateHelloWorldGameObject () {
 if(EditorUtility.DisplayDialog(
 "Hello World",
 "Do you really want to do this?",
 "Create",
 "Cancel")) {
 new GameObject("HelloWorld");
 }
 }
}

Getting Started with Editor Scripting

[4]

Wait for the compiler to finish and then go to the Unity editor menu and click
on GameObject. At the end of the menu, you will see an item called Create
HelloWorld, as shown in the following screenshot:

Click on this item, then a dialog window asks whether you really want to create this
game object:

After clicking on Create, a new game object with the name HelloWorld is added to
the current scene. You can check this in the Hierarchy window:

