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Foreword

While perhaps not as glamorous a job as being a gameplay programmer, a tools 
programmer can make your game development experience much more enjoyable. They 
truly are the unsung heroes of game development. In fact, AAA studios heavily rely on 
using tools to make aspects of game development easier to use for designers and artists. 
Tools also help to reduce tediousness in the creation of content for game projects.

While these tools were often created as separate programs to be run in conjunction 
with the game engine in the past, one of the things I love about working with the 
Unity game engine is the fact that with some fairly trivial scripting, you can extend 
the editor. This allows users to tailor the editor to suit their project's needs and 
requirements. Additionally, just as Unity was originally created for a game project 
but grew into a lot more, the custom tools readers will go on to create applications 
that have the possibility to be extraordinarily successful on Unity's Asset Store, much 
like NGUI, Playmaker, ProBuilder, and UFPS.

Since I started working with Unity in 2007, I have worked with a lot of tools and 
have done a fair bit of tools programming personally. While creating my own tools, 
I often needed to do extensive external research and come up with a lot of things on 
my own because most of the necessary information was not documented well. I am 
exuberant that someone has compiled the majority of this information into one place.

Over the course of this book, you will see how you can create your own custom tools 
starting with simple ones such as gizmos, then moving on to customize the Inspector 
for the different components you add, and learning how to create your very own 
Windows with their own custom GUI. Angelo has broken down the concepts and 
has made it quite easy to see when you would want to use these tools. Throughout 
this book, he shows practical examples of when you would want to use these 
particular features from their inception to getting published on the Asset Store. He 
has also included additional tips and tricks along the way, such as how to set up Git, 
easily make multiple builds of your projects, as well as get your project up on mobile 
devices in a flash.



Reading Angelo's work, I am not surprised by the range of content covered in 
this book. His work as a lead engineer for DeNA as well as his strong technical 
background, no doubt, gave him the knowledge needed to get this book out to 
the world. The breadth of content included in this book will give you a strong 
foundation on which you can build your own tools.

Gifted tools programmers can make all the difference in the world of game projects. 
This book provides a roadmap on how you can get there.

John P. Doran
Technical Game Designer
Author of Unity Game Development Blueprints and Mastering UDK Game 
Development
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Preface
Unity is a development platform for creating multiplatform 3D and 2D video games, 
which is adopted by several studios and indie developers who are looking for 
something simple, flexible, and powerful. One of its most interesting features is the 
extensible editor, allowing you to make Unity work for your video game using  
editor scripting.

If you are looking for a book that will show you how to deal with tasks that are 
beyond the implementation of Gameplay and are more related to automating 
and simplifying the creation of content, such as the assets that require a special 
configuration to make them usable in your levels, and how to enable pipelines to 
consume and create artifacts used by your video game, then this book is for you.

While improving the workflow of Run & Jump, a 2D platformer videogame, you will 
learn all the basics of editor scripting, creating an ad hoc tool that works as a level 
editor, customizing the way Unity imports assets, and getting control over the build 
creation process. As a bonus, you will also learn how to share the tools created inside 
your team or sell them at the Asset Store.

By the end of this book, you will be able to extend all the concepts that you learned 
to build your own tools and customize the Unity editor in future video game projects 
with confidence.

You can consider this as an entry point to make your development workflow easier.

Enjoy!
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What this book covers
Chapter 1, Getting Started with Editor Scripting, introduces you to Unity editor 
scripting and explains why this is useful to improve the development workflow.  
In this chapter, the video game, Run & Jump, which is used as a base for this book  
is presented.

Chapter 2, Using Gizmos in the Scene View, explains how to use gizmos to display 
debug information in the Scene View. Here, we implement a grid with gizmos  
to be used as guides in the level editor.

Chapter 3, Creating Custom Inspectors, discusses how to improve the way the Unity 
components and scripts are presented in the inspector window, creating custom 
inspectors and using property and decorator drawers. In addition to the this, you 
will learn how to start adding and using the editor GUI components. Here we go 
through the process of making a custom inspector for the class responsible for the 
level logic in Run & Jump.

Chapter 4, Creating Editor Windows, covers how to create an editor window to present 
information and interact with features in a custom tool. Using some of the editor GUI 
skills developed in the last chapter, we create a Palette window, which is a quick and 
visual way to access the prefabs used as building pieces for the video game levels, 
grouping them by categories.

Chapter 5, Customizing the Scene View, dives into how to add the editor GUI 
components directly to the Scene View and capture specific events to expand their 
capabilities. Step by step, we add GUI components to enable and disable different 
modes we are going to implement on the level editor, like View, Paint, Edit and 
Erase, changing the way how the user interacts with the tool.

Chapter 6, Changing the Look and Feel of the Editor with GUI Styles and GUI Skins, 
explains how to change the look and feel of the Unity editor custom tools. Here we 
finish the level editor investing our time modifying the appearance of it.

Chapter 7, Saving Data in a Persistent Way with Scriptable Objects, describes how to save 
data in Unity and manipulate it as a reusable asset using scriptable objects. We walk 
through the process of reallocate certain properties from the class responsible for the 
level logic to a scriptable object class, making them reusable across levels.
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Chapter 8, Controlling the Import Pipeline Using Asset Postprocessor Scripts, 
demonstrates how to improve and control the importing pipeline using Asset 
Postprocessor scripts. We work in automating the process of changing the import 
settings of the assets imported to the project to make them usable by the video game 
in an easy way.

Chapter 9, Improving the Build Pipeline, discusses how to automate and improve the 
build creation pipeline modifying the Unity player settings through code and calling 
scripts outside Unity. Here, we create a basic build pipeline for Run & Jump that 
publishes the mobile version of it in a distribution platform called AppBlade.

Chapter 10, Distributing Your Tools, concludes this book by showing how to use Unity 
packages and Git submodules for custom tools distribution, suitable for sharing 
inside a team, and how to sell content on the Asset Store.

What you need for this book
To follow this book, you will need to download a copy of Unity available at 
https://unity3d.com/get-unity.

You can use any version of Unity from version 5.0, but we recommend the latest  
5.x version, which at the time of writing this is version 5.1.2 (all screenshots have 
been updated to this version). Don't worry about the kind of license you have,  
the examples will work with the Personal and Professional Edition.

While working with this book, we will use as base project the video game  
Run & Jump, available at https://github.com/angelotadres/RunAndJump.

You must have the Run & Jump project in order to test the code in this book.

Who this book is for
This book is for anyone who has basic knowledge of Unity programming using 
C# and wants to learn how to extend and create custom tools using Unity Editor 
Scripting to improve the development workflow and make video game development 
easier.

https://unity3d.com/get-unity
https://github.com/angelotadres/RunAndJump
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Conventions
In this book, you will find a number of text styles that distinguish between different 
kinds of information. Here are some examples of these styles and an explanation of 
their meaning.

Code words in text, database table names, folder names, filenames, file extensions, 
pathnames, dummy URLs, user input, and Twitter handles are shown as follows: 
"Create a script called LevelInspector.cs inside the folder Editor"

A block of code is set as follows:

public override void OnInspectorGUI() {
    DrawLevelDataGUI();
    DrawLevelSizeGUI();
}

When we wish to draw your attention to a particular part of a code block, the 
relevant lines or items are set in bold:

public override void OnInspectorGUI() {
    DrawLevelDataGUI();
    DrawLevelSizeGUI();
}

Any command-line input or output is written as follows:

$ git submodule update

New terms and important words are shown in bold. Words that you see on the 
screen, for example, in menus or dialog boxes, appear in the text like this: "Select the 
category Misc and then click on the Sign piece"

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.
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Reader feedback
Feedback from our readers is always welcome. Let us know what you think about 
this book—what you liked or disliked. Reader feedback is important for us as it helps 
us develop titles that you will really get the most out of.

To send us general feedback, simply e-mail feedback@packtpub.com, and mention 
the book's title in the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing 
or contributing to a book, see our author guide at www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to 
help you to get the most from your purchase.

Downloading the example code
You can download the example code files from your account at http://www.
packtpub.com for all the Packt Publishing books you have purchased. If you 
purchased this book elsewhere, you can visit http://www.packtpub.com/support 
and register to have the files e-mailed directly to you.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes 
do happen. If you find a mistake in one of our books—maybe a mistake in the text or 
the code—we would be grateful if you could report this to us. By doing so, you can 
save other readers from frustration and help us improve subsequent versions of this 
book. If you find any errata, please report them by visiting http://www.packtpub.
com/submit-errata, selecting your book, clicking on the Errata Submission Form 
link, and entering the details of your errata. Once your errata are verified, your 
submission will be accepted and the errata will be uploaded to our website or added 
to any list of existing errata under the Errata section of that title.

To view the previously submitted errata, go to https://www.packtpub.com/books/
content/support and enter the name of the book in the search field. The required 
information will appear under the Errata section.

www.packtpub.com/authors
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com/support
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
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Getting Started with  
Editor Scripting

Unity is a powerful engine that enables creative people like you to build video  
games in different platforms.

After developing a few projects on it, you will realize that each of these could have 
been a better experience if you'd had a tool at that time to help you in the creation 
of content for your video game or in the automation of all those manual repetitive 
tasks that always end up generating a problem at the worst moment just because of 
Murphy's Law.

To create tools based on your video game requirements, Unity provides an 
editor scripting API to do it in a quick and fully integrated way. However, the 
documentation available for building such tools by yourself is not the best.

The main aim of this book is to give you a tour of some of the most important  
topics about editor scripting . We are going to explore its API when at the same time 
we implement custom tools to improve the development workflow in Run & Jump,  
a 2D platformer video game.

In this chapter, we will cover the following topics:

•	 Basics of editor scripting
•	 Run & Jump presentation and definition of the scope of the custom tools
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Overview
Probably, at this point, you are familiar with the basic concepts of Unity and we can 
safely assume that you know how to create a small video game from scratch without 
too many complications. You know, for projects of this size, almost everything is 
always under control and nothing takes too much time to be done. Basically, it is like  
a little paradise in the video game developer's land.

However, when the project starts increasing in size in terms of complexity, you will 
notice that certain tasks are repetitive or subject to error, generating a considerable 
amount of effort and waste of time. For example, the mechanics of your video game 
are quite unique and it is hard for the level designers to create content on time and 
without errors. This is because Unity, or the available third-party tool you use, 
doesn't satisfy all the required functionalities.

Sometimes, because you have more people working on the project, the lack of  
a mechanism to encourage people to follow standards makes your video game  
crash constantly.

In the same scenario, imagine that your project also requires a lot of art assets, 
so artists constantly add these to Unity. The problem appears later when one 
of the developers needs to constantly check whether the settings of these assets 
are configured properly to make these look right in the final build, consuming 
development time.

Finally, your project will be available on several platforms. However, owing to the 
specific characteristics of your video game, every time you make a production build, 
you must check whether all the settings are okay. You also need to check whether 
you removed all the cheat menus used by your testers and that the correct assets are 
loaded into each because you are preparing a trial version. Managing this becomes  
a huge task!

To solve all these issues, Unity provides an editor scripting API. Using this we can 
do the following tasks:

•	 Modify how the Unity editor behaves, triggering our code with specific events
•	 Improve the workflow assistance with a custom GUI that seamlessly 

integrates with the Unity editor GUI
•	 Automate repetitive tasks by accessing the Unity editor's main functionalities
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Understating how to use the editor scripting API to create editor scripts in your 
project will allow you to make Unity work for your video game and boost the 
productivity of the video game development.

Editor scripting basics
It's time to go hands on in the creation of editor scripts so in this section we are going 
to explore how to start them off.

What is an editor script?
An editor script is any piece of code that uses methods from the UnityEditor 
namespace, and its principal objective is to create or modify functionalities in the 
Unity editor.

To see this working, let's start with a basic example. Create a new project in Unity 
and then a new script called HelloWorld.cs. Don't worry about where to place the 
script, we'll talk about that in a bit. Copy the following code:

using UnityEngine;
using UnityEditor;

public class HelloWorld {
    
    [MenuItem ("GameObject/Create HelloWorld")]
    private static void CreateHelloWorldGameObject () {
        if(EditorUtility.DisplayDialog(
            "Hello World", 
            "Do you really want to do this?", 
            "Create", 
            "Cancel")) {
            new GameObject("HelloWorld");
        }
    }
}     
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Wait for the compiler to finish and then go to the Unity editor menu and click 
on GameObject. At the end of the menu, you will see an item called Create 
HelloWorld, as shown in the following screenshot:

Click on this item, then a dialog window asks whether you really want to create this 
game object:

After clicking on Create, a new game object with the name HelloWorld is added to 
the current scene. You can check this in the Hierarchy window:


