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Preface
Rust is the new open source and compiled programming language that finally 
promises software developers the utmost safety—not only type safety but memory 
safety as well. The compiler carefully checks all uses of variables and pointers so that 
common problems from C / C++ and other languages, such as pointers to wrong 
memory locations or null references, are a thing of the past. Potential problems 
are detected at compilation time so that Rust programs execute at speeds that are 
comparable with their C++ counterparts.

Rust runs with a very light runtime, which does not perform garbage collection. 
Again the compiler takes care of generating code that frees all resources at the right 
time. This means Rust can run in very constrained environments, such as embedded 
or real-time systems. When executing code concurrently no data races can occur, 
because the compiler imposes the same memory safety restrictions as when the  
code executes consecutively.

From the preceding description, it is clear that Rust is applicable in all use cases where 
C and C++ were the preferred languages until now and that it will do a better job.

Rust is a very rich language; it has concepts (such as immutability by default) and 
constructs (such as traits) that enable developers to write code in a highly functional 
and object-oriented style.

The original goal of Rust was to serve as the language to write a new safe browser 
engine that was devoid of the many security flaws that plague existing browsers. 
This is the Servo project from Mozilla Research.

The goal of this book is to give you a firm foundation so that you can start to  
develop in Rust. Throughout the book, we emphasize the three pillars of Rust:  
safety, performance, and concurrency. We discuss the areas and the reasons why 
Rust differs from other programming languages. The code examples are not chosen 
ad hoc, but they are oriented as part of an ongoing project to build a game so that 
there is a sense of cohesion and evolution in the examples.
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Throughout the book, I will urge you to learn by doing things; you can follow along 
by typing in the code, making the requested modifications, compiling, testing, and 
working out the exercises.

What this book covers
Chapter 1, Starting with Rust, discusses the main reasons that led to the development 
of Rust. We compare Rust with other languages and indicate the areas in which it is 
most appropriate. Then, we guide you through the installation of all the necessary 
components for Rust's development environment.

Chapter 2, Using Variables and Types, looks at the basic structure of a Rust program. 
We discuss the primitive types, how to declare variables and whether they have  
to be typed, and the scope of variables. Immutability, which is one of the key 
cornerstones of Rust's safety strategy, is also illustrated. Then, we look at basic 
operations, how to do formatted printing, and the important difference between 
expressions and statements.

Chapter 3, Using Functions and Control Structures, shows you how to define functions 
and the different ways to influence program execution flow in Rust.

Chapter 4, Structuring Data and Matching Patterns, discusses the basic data types  
for programming, such as strings, vectors, slices, tuples, and enums. Then, we  
show you the powerful pattern matching that is possible in Rust and how values  
are extracted by de-structuring patterns.

Chapter 5, Generalizing Code with Higher-order Functions and Parametrization,  
explores the functional and object-oriented features of Rust. You will see how  
data structures and functions can be defined in a generic way and how traits  
can be used to define behavior.

Chapter 6, Pointers and Memory Safety, exposes the borrow checker, which is Rust's 
mechanism to ensure that only memory safe operations can occur. We discuss 
different kinds of pointers as well as how to handle runtime errors.

Chapter 7, Organizing Code and Macros, discusses the bigger code-organizing 
structures in Rust. We will also touch upon how to build macros in order  
to generate code and save time and effort.

Chapter 8, Concurrency and Parallelism, delves into Rust's concurrency model with its 
basic concepts of threads and channels. We also discuss a safe strategy for working 
with shared mutable data.
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Chapter 9, Programming at the Boundaries, looks at how Rust can take command-line 
parameters to process. Then, we go on to look at situations where we have to leave 
the safety boundaries, such as when we interface with C or use raw pointers, and 
how Rust minimizes potential dangers when we do so.

Appendix, Exploring Further, talks about the Rust ecosystem and where the reader  
can find more information about certain topics, such as working with files, databases, 
games, and web development.

What you need for this book
To run the code examples in the book, you will need the Rust system for your 
computer, which can be downloaded from http://www.rust-lang.org/install.
html. This also contains the Cargo project and the package manager. To work more 
comfortably with the Rust code, a development environment such as Sublime Text  
can also be of use. Chapter 1, Starting with Rust, contains detailed instructions on how  
to set up your Rust environment.

Who this book is for
This book is intended for developers who have some programming experience in  
C/C++, Java/C#, Python, Ruby, Dart, or a similar language and a basic knowledge 
of general programming concepts. It will get you up and running quickly, giving  
you all you need to start building your own Rust projects.

Conventions
In this book, you will find a number of styles of text that distinguish between 
different kinds of information. Here are some examples of these styles, and an 
explanation of their meaning.

Code words in text, database table names, folder names, filenames, file extensions, 
pathnames, dummy URLs, user input, and Twitter handles are shown as follows: 
"We can see that main() is a function declaration because it is preceded by the 
keyword fn, which is short and elegant like most Rust keywords."

A block of code is set as follows:

  let tricks = 10;
  let reftricks = &mut tricks;

http://www.rust-lang.org/install.html
http://www.rust-lang.org/install.html
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When we wish to draw your attention to a particular part of a code block, the 
relevant lines or items are set in bold:

let n1 = {
    let a = 2;
    let b = 5;
    a + b   // <-- no semicolon!
};

Any command-line input or output is written as follows:

[root]
name = "welcomec"
version = "0.0.1"

New terms and important words are shown in bold. Words that you see on the 
screen, in menus or dialog boxes for example, appear in the text like this: "When 
working with Rust code, select Tools | Build System | Rust."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about 
this book—what you liked or may have disliked. Reader feedback is important  
for us to develop titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com, 
and mention the book title via the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing 
or contributing to a book, see our author guide on www.packtpub.com/authors.

www.packtpub.com/authors
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Customer support
Now that you are the proud owner of a Packt book, we have a number of things  
to help you to get the most from your purchase.

Downloading the example code
You can download the example code files from your account at http://www.
packtpub.com for all the Packt Publishing books you have purchased. If you 
purchased this book elsewhere, you can visit http://www.packtpub.com/support 
and register to have the files e-mailed directly to you.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes 
do happen. If you find a mistake in one of our books—maybe a mistake in the text or 
the code—we would be grateful if you could report this to us. By doing so, you can 
save other readers from frustration and help us improve subsequent versions of this 
book. If you find any errata, please report them by visiting http://www.packtpub.
com/submit-errata, selecting your book, clicking on the Errata Submission Form 
link, and entering the details of your errata. Once your errata are verified, your 
submission will be accepted and the errata will be uploaded to our website or added 
to any list of existing errata under the Errata section of that title.

To view the previously submitted errata, go to https://www.packtpub.com/books/
content/support and enter the name of the book in the search field. The required 
information will appear under the Errata section.

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media. 
At Packt, we take the protection of our copyright and licenses very seriously. If you 
come across any illegal copies of our works, in any form, on the Internet, please 
provide us with the location address or website name immediately so that we can 
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected  
pirated material.

We appreciate your help in protecting our authors, and our ability to bring you 
valuable content.

http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com/support
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
mailto:copyright@packtpub.com
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Questions
You can contact us at questions@packtpub.com if you are having a problem with 
any aspect of the book, and we will do our best to address it.


