
[1]

Rust Essentials

Discover how to use Rust to write fast, secure,
and concurrent systems and applications

Ivo Balbaert

BIRMINGHAM - MUMBAI

Rust Essentials

Copyright © 2015 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the author, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: May 2015

Production reference: 1220515

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78528-576-9

www.packtpub.com

www.packtpub.com

Credits

Author
Ivo Balbaert

Reviewers
Alfie John

Anthony Miyaguchi

Bharadwaj Srigiriraju

Syed Omar Faruk Towaha

Tony Zou

Commissioning Editor
Akram Hussain

Acquisition Editor
Rebecca Youé

Content Development Editor
Manasi Pandire

Technical Editors
Tanmayee Patil

Shiny Poojary

Mohita Vyas

Copy Editor
Jasmine Nadar

Project Coordinator
Suzanne Coutinho

Proofreaders
Stephen Copestake

Safis Editing

Indexer
Tejal Soni

Production Coordinator
Aparna Bhagat

Cover Work
Aparna Bhagat

About the Author

Ivo Balbaert is currently a lecturer of (web) programming and databases at CVO
Antwerpen (www.cvoantwerpen.be), a community college in Belgium. He received
a PhD in applied physics from the University of Antwerp in 1986. He worked in the
software industry as a developer and consultant for several companies for 20 years
and as a project manager at the University Hospital of Antwerp for 10 years. From
2000 onwards, he switched to partly teaching and partly developing software
(KHM Mechelen, CVO Antwerp).

He wrote an introductory book in Dutch about developing in Ruby and Rails,
Programmeren met Ruby en Rails, Van Duuren Media.

In 2012, he authored a book on the Go programming language, The Way To Go,
iUniverse.

In 2013, in collaboration with Dzenan Ridzanovic, he wrote Learning Dart
and Dart Cookbook, both by Packt Publishing.

In 2014, he wrote Getting Started with Julia, Packt Publishing.

I would like to thank the technical reviewers, especially Brian
Anderson, Alfie John, and Anne-Marie Mission, for their many
useful remarks that improved the text, and my wife, Christiane,
for her support.

http://www.cvoantwerpen.be

About the Reviewers

Anthony Miyaguchi is a computer science and engineering student at UCLA.
He is active in the open source community and has worked on a variety of different
projects, from embedded programming to web technologies. If he finds free time,
he would like to make a dent in his collection of books.

Bharadwaj Srigiriraju is a computer science graduate from IIITDM, Jabalpur,
who now works as a software developer at Chumbak, Bangalore. He is a technology
enthusiast who loves to develop web apps and hack on (shiny) new technologies.
He specializes in Python and firmly believes that Rust will replace C very soon.
You can reach him at krishna.bharadwaj6@gmail.com or visit his GitHub to
know more github.com/bharadwaj6.

github.com/bharadwaj6

Syed Omar Faruk Towaha is a programmer and physicist from Shahjalal
University of Science and Technology, Sylhet, Bangladesh. He is involved with the
Rust development team and writes and reviews books on several programming
languages. He is an Oracle Certified Professional (OCP) developer and loves open
source technology. He has been working with several science projects and some
research projects at his university as well as in international laboratories. He enjoys
designing algorithms and circuit theory. He volunteers at Mozilla by arranging
events as a Mozilla representative (http://reps.mozilla.org/).

He is the president of a famous astronomical organization, CAM-SUST
(http://camsust.org/). He loves working in teams and being associated
with interesting projects.

His recent books include How You Should Design Algorithms, Easy Circuits for Kids,
Wonder in Quantum Physics, and Fundamentals of Ruby.

You can contact him at soft@hotmail.co.uk. To find out more details about him,
go to http://towaha.me/.

I would like to thank the author of this wonderful book and also
Suzanne Coutinho and Nikita Michael for their help. This is a pretty
good book on Rust, and I will recommend it to anyone who wants
to learn Rust. I hope that the author writes more books on Rust,
especially by developing games and some exciting things to let
the common people know how rich the rust language is.

Tony Zou is currently pursuing his undergraduate studies at the University of
Waterloo. He has been programming for 4 years and has worked on a few projects.
He enjoys competitive programming and working with exciting new languages
such as Rust.

http://reps.mozilla.org/
http://camsust.org/
mailto:soft@hotmail.co.uk
http://towaha.me/

www.PacktPub.com

Support files, eBooks, discount offers, and more
For support files and downloads related to your book, please visit www.PacktPub.com.

Did you know that Packt offers eBook versions of every book published, with PDF
and ePub files available? You can upgrade to the eBook version at www.PacktPub.
com and as a print book customer, you are entitled to a discount on the eBook copy.
Get in touch with us at service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign
up for a range of free newsletters and receive exclusive discounts and offers on Packt
books and eBooks.

https://www2.packtpub.com/books/subscription/packtlib

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital
book library. Here, you can search, access, and read Packt's entire library of books.

Why subscribe?
• Fully searchable across every book published by Packt
• Copy and paste, print, and bookmark content
• On demand and accessible via a web browser

Free access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view 9 entirely free books. Simply use your login credentials for
immediate access.

http://www.PacktPub.com
www.PacktPub.com
http://www.PacktPub.com
http://www.PacktPub.com
mailto:service@packtpub.com
http://www.PacktPub.com
https://www2.packtpub.com/books/subscription/packtlib
http://www.packtpub.com/

[i]

Table of Contents
Preface v
Chapter 1: Starting with Rust 1

The advantages of Rust 2
The trifecta of Rust – safety, speed, and concurrency 3

Comparison with other languages 5
Using Rust 5

Servo 6
Installing Rust 7
The Rust compiler – rustc 7
Our first program 8
Working with Cargo 10
The developer tools 13

Using Sublime Text 14
Other tools 15

Summary 16
Chapter 2: Using Variables and Types 17

Comments 17
Global constants 18

Printing with string interpolation 20
Values and primitive types 22

Consulting Rust documentation 23
Binding variables to values 23

Mutable and immutable variables 25
Scope of a variable and shadowing 26
Type checking and conversions 27

Aliasing 28
Expressions 29

Table of Contents

[ii]

The stack and the heap 30
Summary 34

Chapter 3: Using Functions and Control Structures 35
Branching on a condition 35
Looping 37
Functions 39

Documenting a function 41
Attributes 42

Conditional compilation 43
Testing 43

Testing with cargo 45
Summary 45

Chapter 4: Structuring Data and Matching Patterns 47
Strings 48
Arrays, vectors, and slices 50

Vectors 52
Slices 53
Strings and arrays 54

Tuples 55
Structs 56
Enums 58

Result and Option 59
Getting input from the console 60
Matching patterns 62
Summary 65

Chapter 5: Generalizing Code with Higher-order Functions
and Parametrization 67

Higher-order functions and closures 67
Iterators 70
Consumers and adapters 72
Generic data structures and functions 74
Error handling 77

Panics 78
Failures 78

Methods on structs 79
Traits 82
Using trait constraints 84
Built-in traits and operator overloading 87
Summary 87

Table of Contents

[iii]

Chapter 6: Pointers and Memory Safety 89
Pointers and references 89

The stack and the heap 89
Lifetimes 90
Copying values and the Copy trait 93
Pointers 95
References 96
Using ref in a match 98

Ownership and borrowing 99
Boxes 102
Reference counting 105
An overview of pointers 107
Summary 107

Chapter 7: Organizing Code and Macros 109
Modules and crates 109

Building crates 110
Defining a module 111
The visibility of items 112
Importing modules and file hierarchy 114
Importing external crates 115
Exporting a public interface 117
Adding external crates to a project 118
The test module 119

Macros 121
Why do we use macros? 121
Developing macros 122

Repetition 124
Creating a new function 124
Using macros from crates 127

Summary 127
Chapter 8: Concurrency and Parallelism 129

Concurrency and threads 129
Creating threads 130
Starting a number of threads 131
Panicking threads 133
Thread-safety 134

The shared mutable state 135
The Sync trait 137

Communication through channels 138
Sending and receiving data 139
Synchronous and asynchronous communication 141

Summary 142

Table of Contents

[iv]

Chapter 9: Programming at the Boundaries 143
Program arguments 143
Unsafe code 145
Raw pointers 146
Interfacing with C 147

Using a C library 149
Inlining assembly code 150

Calling Rust from other languages 151
Summary 152

Appendix: Exploring Further 153
Stability of Rust and the standard library 153
The ecosystem of crates 153
Other resources for learning Rust 154

Files and databases 154
Graphics and games 155
Web development 155

Index 157

[v]

Preface
Rust is the new open source and compiled programming language that finally
promises software developers the utmost safety—not only type safety but memory
safety as well. The compiler carefully checks all uses of variables and pointers so that
common problems from C / C++ and other languages, such as pointers to wrong
memory locations or null references, are a thing of the past. Potential problems
are detected at compilation time so that Rust programs execute at speeds that are
comparable with their C++ counterparts.

Rust runs with a very light runtime, which does not perform garbage collection.
Again the compiler takes care of generating code that frees all resources at the right
time. This means Rust can run in very constrained environments, such as embedded
or real-time systems. When executing code concurrently no data races can occur,
because the compiler imposes the same memory safety restrictions as when the
code executes consecutively.

From the preceding description, it is clear that Rust is applicable in all use cases where
C and C++ were the preferred languages until now and that it will do a better job.

Rust is a very rich language; it has concepts (such as immutability by default) and
constructs (such as traits) that enable developers to write code in a highly functional
and object-oriented style.

The original goal of Rust was to serve as the language to write a new safe browser
engine that was devoid of the many security flaws that plague existing browsers.
This is the Servo project from Mozilla Research.

The goal of this book is to give you a firm foundation so that you can start to
develop in Rust. Throughout the book, we emphasize the three pillars of Rust:
safety, performance, and concurrency. We discuss the areas and the reasons why
Rust differs from other programming languages. The code examples are not chosen
ad hoc, but they are oriented as part of an ongoing project to build a game so that
there is a sense of cohesion and evolution in the examples.

Preface

[vi]

Throughout the book, I will urge you to learn by doing things; you can follow along
by typing in the code, making the requested modifications, compiling, testing, and
working out the exercises.

What this book covers
Chapter 1, Starting with Rust, discusses the main reasons that led to the development
of Rust. We compare Rust with other languages and indicate the areas in which it is
most appropriate. Then, we guide you through the installation of all the necessary
components for Rust's development environment.

Chapter 2, Using Variables and Types, looks at the basic structure of a Rust program.
We discuss the primitive types, how to declare variables and whether they have
to be typed, and the scope of variables. Immutability, which is one of the key
cornerstones of Rust's safety strategy, is also illustrated. Then, we look at basic
operations, how to do formatted printing, and the important difference between
expressions and statements.

Chapter 3, Using Functions and Control Structures, shows you how to define functions
and the different ways to influence program execution flow in Rust.

Chapter 4, Structuring Data and Matching Patterns, discusses the basic data types
for programming, such as strings, vectors, slices, tuples, and enums. Then, we
show you the powerful pattern matching that is possible in Rust and how values
are extracted by de-structuring patterns.

Chapter 5, Generalizing Code with Higher-order Functions and Parametrization,
explores the functional and object-oriented features of Rust. You will see how
data structures and functions can be defined in a generic way and how traits
can be used to define behavior.

Chapter 6, Pointers and Memory Safety, exposes the borrow checker, which is Rust's
mechanism to ensure that only memory safe operations can occur. We discuss
different kinds of pointers as well as how to handle runtime errors.

Chapter 7, Organizing Code and Macros, discusses the bigger code-organizing
structures in Rust. We will also touch upon how to build macros in order
to generate code and save time and effort.

Chapter 8, Concurrency and Parallelism, delves into Rust's concurrency model with its
basic concepts of threads and channels. We also discuss a safe strategy for working
with shared mutable data.

Preface

[vii]

Chapter 9, Programming at the Boundaries, looks at how Rust can take command-line
parameters to process. Then, we go on to look at situations where we have to leave
the safety boundaries, such as when we interface with C or use raw pointers, and
how Rust minimizes potential dangers when we do so.

Appendix, Exploring Further, talks about the Rust ecosystem and where the reader
can find more information about certain topics, such as working with files, databases,
games, and web development.

What you need for this book
To run the code examples in the book, you will need the Rust system for your
computer, which can be downloaded from http://www.rust-lang.org/install.
html. This also contains the Cargo project and the package manager. To work more
comfortably with the Rust code, a development environment such as Sublime Text
can also be of use. Chapter 1, Starting with Rust, contains detailed instructions on how
to set up your Rust environment.

Who this book is for
This book is intended for developers who have some programming experience in
C/C++, Java/C#, Python, Ruby, Dart, or a similar language and a basic knowledge
of general programming concepts. It will get you up and running quickly, giving
you all you need to start building your own Rust projects.

Conventions
In this book, you will find a number of styles of text that distinguish between
different kinds of information. Here are some examples of these styles, and an
explanation of their meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows:
"We can see that main() is a function declaration because it is preceded by the
keyword fn, which is short and elegant like most Rust keywords."

A block of code is set as follows:

 let tricks = 10;
 let reftricks = &mut tricks;

http://www.rust-lang.org/install.html
http://www.rust-lang.org/install.html

Preface

[viii]

When we wish to draw your attention to a particular part of a code block, the
relevant lines or items are set in bold:

let n1 = {
 let a = 2;
 let b = 5;
 a + b // <-- no semicolon!
};

Any command-line input or output is written as follows:

[root]
name = "welcomec"
version = "0.0.1"

New terms and important words are shown in bold. Words that you see on the
screen, in menus or dialog boxes for example, appear in the text like this: "When
working with Rust code, select Tools | Build System | Rust."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or may have disliked. Reader feedback is important
for us to develop titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com,
and mention the book title via the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide on www.packtpub.com/authors.

www.packtpub.com/authors

Preface

[ix]

Customer support
Now that you are the proud owner of a Packt book, we have a number of things
to help you to get the most from your purchase.

Downloading the example code
You can download the example code files from your account at http://www.
packtpub.com for all the Packt Publishing books you have purchased. If you
purchased this book elsewhere, you can visit http://www.packtpub.com/support
and register to have the files e-mailed directly to you.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in the text or
the code—we would be grateful if you could report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
book. If you find any errata, please report them by visiting http://www.packtpub.
com/submit-errata, selecting your book, clicking on the Errata Submission Form
link, and entering the details of your errata. Once your errata are verified, your
submission will be accepted and the errata will be uploaded to our website or added
to any list of existing errata under the Errata section of that title.

To view the previously submitted errata, go to https://www.packtpub.com/books/
content/support and enter the name of the book in the search field. The required
information will appear under the Errata section.

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media.
At Packt, we take the protection of our copyright and licenses very seriously. If you
come across any illegal copies of our works, in any form, on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors, and our ability to bring you
valuable content.

http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com/support
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
mailto:copyright@packtpub.com

Preface

[x]

Questions
You can contact us at questions@packtpub.com if you are having a problem with
any aspect of the book, and we will do our best to address it.

