

Mastering Yii

Advance your modern web application development
skills with Yii Framework 2

Charles R. Portwood II

BIRMINGHAM - MUMBAI

Mastering Yii

Copyright © 2016 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the author, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: January 2016

Production reference: 1210116

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78588-242-5

www.packtpub.com

www.packtpub.com

Credits

Author
Charles R. Portwood II

Reviewer
Tomasz Trejderowski

Acquisition Editor
Divya Poojari

Content Development Editor
Anish Dhurat

Technical Editor
Edwin Moses

Copy Editor
Stuti Srivastava

Project Coordinator
Bijal Patel

Proofreader
Safis Editing

Indexer
Priya Sane

Production Coordinator
Shantanu N. Zagade

Cover Work
Shantanu N. Zagade

About the Author

Charles R. Portwood II has over 10 years of experience developing modern web
applications and is well versed in integrating PHP with native mobile applications.
An avid proponent of Yii Framework and open source software, Charles has
contributed multiple guides, extensions, and applications to the Yii community.
In addition to being a programmer, he is also a Linux system administrator.

About the Reviewer

Tomasz Trejderowski is a middle-aged developer from Poland who
has hands-on experience working with many programming languages and in
diverse IT-related areas. He has been programming computers since the very
first Commodore 64 and thus, he poses over 20 years of software development
experience. You can access repositories and contributions on his GitHub profile,
at http://github.com/trejder.

He is a full-time business analyst and free-time PhoneGap/Yii2 developer and
blogger. He is also a mobile market entrepreneur, constantly working on some
innovative projects. For more information, visit his company website at
http://www.gaman.pl or his blog network at http://www.acrid.pl/.

He is a happy husband of his wonderful wife and father of two beautiful daughters.

http://github.com/trejder
http://www.gaman.pl
http://www.acrid.pl/

www.PacktPub.com

Support files, eBooks, discount offers, and more
For support files and downloads related to your book, please visit www.PacktPub.com.

Did you know that Packt offers eBook versions of every book published, with PDF
and ePub files available? You can upgrade to the eBook version at www.PacktPub.com
and as a print book customer, you are entitled to a discount on the eBook copy. Get in
touch with us at service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign
up for a range of free newsletters and receive exclusive discounts and offers on Packt
books and eBooks.

TM

https://www2.packtpub.com/books/subscription/packtlib

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital
book library. Here, you can search, access, and read Packt's entire library of books.

Why subscribe?
•	 Fully searchable across every book published by Packt
•	 Copy and paste, print, and bookmark content
•	 On demand and accessible via a web browser

Free access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view 9 entirely free books. Simply use your login credentials for
immediate access.

www.PacktPub.com
www.PacktPub.com
www.PacktPub.com
https://www2.packtpub.com/books/subscription/packtlib
www.PacktPub.com

[i]

Table of Contents
Preface	 ix
Chapter 1: Composer, Configuration, Classes, and Path Aliases	 1

Composer	 1
Configuration	 7

Requirements checker	 7
Entry scripts	 8

Web entry script	 8
Configuration files	 10

Web and console configuration files	 10
Database configuration	 10
Parameter configuration	 11
Environment configuration	 11

Setting up our application environment	 13
Setting the web environment for NGINX	 13
Setting the web environment for Apache	 14

Components and objects	 14
Components	 15
Objects	 16

Path aliases	 16
Summary	 17

Chapter 2: Console Commands and Applications	 19
Configuration and usage	 19

Entry script	 19
Configuration	 21
Setting the console environment	 22
Running console commands	 22

Built-in console commands	 25
The help command	 25
The asset command	 26

Table of Contents

[ii]

The cache command	 26
The fixture command	 28
The Gii command	 29
The message command	 30
The migration command	 30

Creating console commands	 31
Generating help information	 32
Passing command-line arguments	 33
Exit codes	 37
Formatting	 38

Summary	 39
Chapter 3: Migrations, DAO, and Query Building	 41

Connecting to databases	 41
Additional configuration options	 44

Writing database migrations	 46
An overview of schema	 46
Writing migrations	 47
Running migrations	 50
Altering a database schema	 51

Database access objects	 55
Querying for data	 55

Quoting table and column names	 60
Executing queries	 61
Parameter binding	 62
Transactions	 64

Query Builder	 65
Query construction methods	 65
The select method	 66

The from method	 67
The where method	 67
Ordering results	 69
Limiting and offsetting data	 69
Grouping and having	 69
Joins and unions	 70
Executing queries	 71
Examining queries	 73
Iterating over query results	 73

Data providers and data widgets	 74
Data replication and load balancing	 78
Summary	 80

Table of Contents

[iii]

Chapter 4: Active Record, Models, and Forms	 81
Configuring Gii	 81

Gii for web applications	 82
Gii for console applications	 85

Active Record	 88
The Active Record pattern	 88
Creating Active Record classes	 89

Creating active record classes with Gii	 90
Working with Active Record	 94

Model validation rules	 96
Adding custom validators	 97
Customizing validator error messages	 100
Working with validation errors	 100
Manually executing validation rules	 100
Model attribute labels	 101
Active Record relationships	 102
Using multiple database connections with Active Record	 103
Behaviors in Active Record	 103

Working with Active Record	 104
Querying data	 105
Saving data	 108
Deleting data	 109
Active Record events	 110

Models	 110
Model attributes	 111

Scenarios	 111
Forms	 113

Generating forms with Gii	 113
Generating forms with Gii's web interface	 113
Generating forms with Gii's console interface	 116

Using forms	 117
ActiveForm and input types	 118

Summary	 121
Chapter 5: Modules, Widgets, and Helpers	 123

Modules	 123
Module components	 124

The module class structure	 124
Controllers	 125
Views and layouts	 126
Registering modules	 128

Accessing modules	 132
Managing modules with Composer	 133
Modules in summary	 135

Table of Contents

[iv]

Widgets	 135
Using widgets	 136
Commonly used built-in widgets	 137

Bootstrap widgets	 137
jQuery UI widgets	 138
Yii-specific widgets	 139

Creating custom widgets	 140
A summary of widgets	 143

Helpers	 143
The URL helper	 143
The HTML helper	 145
The JSON helper	 147
The Markdown helper	 147
Variable dumping	 148
Inflector	 148
FileHelper	 149

Summary	 150
Chapter 6: Asset Management	 151

Asset bundles	 151
Using asset bundles	 153
Configuration	 153

Asset mapping	 155
Asset types and locations	 156
Asset options	 156
Asset publication	 157
Client cache management with asset bundles	 159
Using preprocessor with asset bundles	 160
The asset command line tool	 161

Third-party asset tools	 165
NodeJS	 166
Bower	 167
Grunt	 168

Summary	 171
Chapter 7: Authenticating and Authorizing Users	 173

Authentication of users	 173
Implementing the user identity interface	 174

Cookie-based authentication	 177
Working with user identities	 178

Authenticating users with forms	 179

Table of Contents

[v]

Authorization	 184
Access control filters	 184
Role-based access control	 189
Configuring RBAC	 189
Creating permissions and permission relationships	 191
Custom authorization rules	 193
Checking if a user has access to a role	 194

Flash messages	 195
Hashing and encryption	 197

Hashing and verifying passwords	 197
Data encryption and decryption	 198
Data hashing	 199

Summary	 199
Chapter 8: Routing, Responses, and Events	 201

Routing	 201
Default and catch all routes	 203
Custom routes and URL rules	 203

Parameterizing routes	 205
URL suffixes	 206
HTTP method-specific URL rules	 206

Custom URL rule classes	 207
Dynamic rule generation	 208

Requests	 209
Retrieving request parameters and data	 209
Request headers and cookies	 211
Retrieving client and URL information	 212

Responses	 213
Setting status codes	 214

Web exceptions	 214
Setting response headers	 215
The response body	 215
Redirection	 217
The file output	 218

Events	 219
Event handlers	 219
Triggering events	 220
Class-level events	 222
Global events	 223

Summary	 223

Table of Contents

[vi]

Chapter 9: RESTful APIs	 225
ActiveController	 225

Configuring ActiveController display fields	 229
Data serialization within responses	 231
Disabling ActiveController actions	 233
Customizing ActiveController actions	 234

Authentication filters	 235
HTTP basic authentication	 236
Query parameter authentication	 238
OAuth2 authentication	 239
Composite authentication	 240
Custom authentication filters	 241
Action-specific authentication	 243
Checking access	 243

Verb filters	 244
Cross-origin resource headers	 245
Rate Limiting	 246
Error handling	 249
Custom API controllers	 250

Returning data	 251
Response Formatting	 252

Summary	 254
Chapter 10: Testing with Codeception	 255

Reasons for testing	 256
How to approach testing	 256

Testing manually	 257
Testing a few core components	 257

Test-driven development	 257
Configuring Codeception with Yii2	 258
Unit testing	 262

Generating unit tests	 263
Unit test examples	 266

Testing User model methods	 266
Functional testing	 272

Setting up functional tests	 273
Generating functional tests	 276
Examples of functional tests	 277

Acceptance testing	 282
Setting up acceptance testing	 282
Examples of acceptance tests	 285

Table of Contents

[vii]

Fixtures	 286
Creating fixtures	 287
Defining fixtures	 288
Using fixtures in unit tests	 290

Automatic change testing	 292
Summary	 295

Chapter 11: Internationalization and Localization	 297
Configuring Yii2 and PHP	 298

The intl extension	 298
The application language	 299

Programmatically setting the application language	 300
Dynamically setting the application language	 300

Message translations	 301
Message sources	 302
Default translations	 303
Framework messages	 303
Handling missing translations	 304
Generating message files	 305
Message formatting	 308

Viewing file translations	 308
Module translations	 309
Widget translations	 310
Summary	 312

Chapter 12: Performance and Security	 313
Caching	 313

Caching data	 313
Caching dependencies	 317
Database query caching	 318

Fragment caching	 320
Page caching	 321
HTTP caching	 322
Caching database schema	 323

General performance enhancements	 324
Enabling OPCache	 324
Optimizing Composer dependencies	 325
Upgrading to PHP 7	 326
Switch to Facebook's HHVM	 326

Security considerations	 327
Certificates	 327
Cookies	 328

Table of Contents

[viii]

Protecting against cross-site scripting	 328
Enabling cross-site request forgery protection	 329

Summary	 330
Chapter 13: Debugging and Deploying	 331

Debugging	 331
Logging	 332
Benchmarking	 336
Error handling	 336

Handling errors within non HTML responses	 339
Debugging with the Yii2 debug extension	 341

Deploying	 344
Summary	 345

Index	 347

[ix]

Preface
Yii Framework 2 (Yii2) is the successor to the popular Yii framework. Like its
successor, Yii2 is an open source, high-performance rapid development framework
designed to create modern, scalable, and performant web applications and APIs.

Designed for both developers with no exposure to Yii and Yii2 and for Yii framework
developers looking to become experts with Yii2, this book will serve as your guide
to becoming a master of Yii. From initialization and configuration to debugging and
deployment, this book will be your guide to becoming a master of all aspects of this
powerful framework.

What this book covers
Chapter 1, Composer, Configuration, Classes, and Path Aliases, covers the basics of a
Yii2 application. In this chapter, you'll learn the core conventions of Yii2 and how
to configure it as a multi-environment application. You'll also discover how to use
Composer, a dependency management tool for managing your applications'
software dependencies.

Chapter 2, Console Commands and Applications, focuses on how to use the built-in Yii2
console commands as it guides you through creating your own commands.

Chapter 3, Migrations, DAO, and Query Building, teaches you how to create migrations
in Yii2 and how to interact with your database using database access objects (DAO)
and how to use Yii2's query builder.

Chapter 4, Active Record, Models, and Forms, teaches you how to create and use Active
Record to effortlessly interact with a database. Furthermore, you'll also discover how
to create models to represent information not stored in databases and how to create
web forms based upon Active Record models and normal models.

Preface

[x]

Chapter 5, Modules, Widgets, and Helpers, covers how to incorporate modules inside of
our application. This chapter will also cover how to create and use dynamic widgets
and will additionally cover Yii2's powerful helper classes.

Chapter 6, Asset Management, focuses on how to create and manage our assets using
asset bundles and how to manage our assets using the asset command. This chapter
also covers several strategies to build and generate our asset library using powerful
tools such as Node Package Manage and Bower.

Chapter 7, Authenticating and Authorizing Users, teaches you how to verify the
authenticity of users in Yii2 using several common authentication schemes (such as
OAuth authentication, basic HTTP authentication, and header authentication) as well
as shows you how to grant them access to specific sections of your applications.

Chapter 8, Routing, Responses, and Events, focuses on how Yii2's routing and response
classes work in Yii2. In this chapter, we'll cover how to handle data both in and out
of our application and discover how to tap into Yii2's powerful event system.

Chapter 9, RESTful APIs, talks about how to quickly and effortlessly extend your
application with a RESTful JSON and XML API using Yii2's ActiveController class.

Chapter 10, Testing with Codeception, helps you learn how to create unit, functional,
and acceptance tests for your applications using a powerful testing tool called
Codeception. In this chapter, you'll also learn how to create fixtures to represent
your data for testing purposes.

Chapter 11, Internationalization and Localization, covers how to localize our applications
and build them to support multiple languages. Additionally, you will master how to
create and manage translation files using Yii2 console commands.

Chapter 12, Performance and Security, covers many ways to improve the performance
of your Yii2 application and how to keep it secure against modern day attacks on
web applications.

Chapter 13, Debugging and Deploying, helps you become well-versed in how to debug
your Yii2 applications using both application logging and the Yii2 debug tool.
Furthermore, you will discover the fundamentals of deploying your Yii2 applications
in a seamless and non-disruptive fashion.

Preface

[xi]

What you need for this book
To ensure a consistent development environment and prevent unnecessary
alterations to your host operation system, it is highly recommended that you run all
commands within a Linux virtual machine. This will ensure that your output both in
your web browser and from your command line matches the output that is presented
in this book. As setting up this environment on your own can be a daunting task,
prebuilt virtual machines that use VirtualBox and Vagrant are provided to make this
setup process easy.

To get started with this book, you should be running the latest version of either
Microsoft Windows 7, 8, 8.1 or 10, Apple OS X 10.9 or higher, or a Linux operating
system that can run virtual machines, such as Ubuntu 14.04 LTS. Additionally,
you will need to install the latest version of VirtualBox (available at https://
www.virtualbox.org/wiki/Downloads) and Vagrant (available at https://www.
vagrantup.com/downloads.html).

After installing these software dependencies, you may need to restart
your computer for the changes to take effect.

After installing VirtualBox and Vagrant, you can then create a new dedicated
development environment by opening a new command line or terminal window,
creating a new directory for the chapter, and then running the following command
to create your virtual machine development environment. These commands will
download a prebuilt virtual machine containing all the software required to get you
started and start your new development environment:

vagrant init charlesportwoodii/php56_trusty64

vagrant up --provider virtualbox

vagrant ssh

More information on this specific Vagrant box can be found at https://
atlas.hashicorp.com/charlesportwoodii/boxes/php56_
trusty64.
Note that if you are on Windows, you may need a tool such as PuTTy
to connect to your virtual machine over SSH. More information on how
to connect to your new virtual machine over SSH on Windows can be
found at http://docs-v1.vagrantup.com/v1/docs/getting-
started/ssh.html.

https://www.virtualbox.org/wiki/Downloads
https://www.virtualbox.org/wiki/Downloads
https://www.vagrantup.com/downloads.html
https://www.vagrantup.com/downloads.html
https://atlas.hashicorp.com/charlesportwoodii/boxes/php56_trusty64
https://atlas.hashicorp.com/charlesportwoodii/boxes/php56_trusty64
https://atlas.hashicorp.com/charlesportwoodii/boxes/php56_trusty64
http://docs-v1.vagrantup.com/v1/docs/getting-started/ssh.html
http://docs-v1.vagrantup.com/v1/docs/getting-started/ssh.html

Preface

[xii]

Once your new Vagrant box has started, you can access the files of this virtual
machine over SSH and access your webroot directory by opening a new browser
window and navigating to http://localhost:8080. By default, when you open
this web page, you will see the output of phpino().

Depending upon your operating system security settings, your computer
may prompt or block you from accessing port 8080 on your computer.
Ensure that you configure your firewall settings if you are facing issues
and ensure that port 8080 is open on your computer and that VirtualBox
can forward connections from your host operating system to your guest
operating system.

As Yii2 is fully compatible with PHP7, it is strongly suggested that you develop and
test your web applications against PHP7 as well. The following commands will allow
you to provision a PHP7 Vagrant box:

vagrant init charlesportwoodii/php7_trusty64

vagrant up --provider virtualbox

vagrant ssh

As these virtual machines automatically configure port forwarding, it
is recommended that you only run a single virtual machine at a time.
Refer to the Vagrant documentation for a complete list of commands and
configuration options at https://docs.vagrantup.com/v2.

Who this book is for
Mastering Yii is for intermediate to experienced software developers who want to
quickly master Yii2. This book assumes some familiarity with PHP 5, HTML5, and
rudimentary software development practices and methodologies.

Conventions
In this book, you will find a number of text styles that distinguish between different
kinds of information. Here are some examples of these styles and an explanation of
their meaning.

https://docs.vagrantup.com/v2

Preface

[xiii]

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows: "
This script tells Composer that when the create-project command is run, it should
run the postCreateProject static function."

A block of code is set as follows:

"scripts": {
 "post-create-project-cmd": [
 "yii\\composer\\Installer::postCreateProject"
]
}

When we wish to draw your attention to a particular part of a code block,
the relevant lines or items are set in bold:

// Define our application_env variable as provided by nginx/apache
if (!defined('APPLICATION_ENV'))
{
 if (getenv('APPLICATION_ENV') != false)
 define('APPLICATION_ENV', getenv('APPLICATION_ENV'));
 else
 define('APPLICATION_ENV', 'prod');
}

$env = require(__DIR__ . '/config/env.php');

Any command-line input or output is written as follows:

$./yii fixture/load <FixtureName>

$./yii fixture/unload <FixtureName>

New terms and important words are shown in bold. Words that you see on the
screen, for example, in menus or dialog boxes, appear in the text like this: " Once
we have specified all the necessary attributes, we can click on the Preview button
to preview our form, and then we can click on the Generate button to generate the
source code."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Preface

[xiv]

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or disliked. Reader feedback is important for us as it helps
us develop titles that you will really get the most out of.

To send us general feedback, simply e-mail feedback@packtpub.com, and mention
the book's title in the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide at www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Downloading the example code
The latest and most up to date copies of source code for this book is maintained on
the Packt website: http://www.packtpub.com and on GitHub at https://github.
com/masteringyii, for each chapter where applicable.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in the text or
the code—we would be grateful if you could report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
book. If you find any errata, please report them by visiting http://www.packtpub.
com/submit-errata, selecting your book, clicking on the Errata Submission Form
link, and entering the details of your errata. Once your errata are verified, your
submission will be accepted and the errata will be uploaded to our website or added
to any list of existing errata under the Errata section of that title.

To view the previously submitted errata, go to https://www.packtpub.com/books/
content/support and enter the name of the book in the search field. The required
information will appear under the Errata section.

www.packtpub.com/authors
 http://www.packtpub.com
https://github.com/masteringyi
https://github.com/masteringyi
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support

Preface

[xv]

Piracy
Piracy of copyrighted material on the Internet is an ongoing problem across all
media. At Packt, we take the protection of our copyright and licenses very seriously.
If you come across any illegal copies of our works in any form on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors and our ability to bring
you valuable content.

Questions
If you have a problem with any aspect of this book, you can contact us at
questions@packtpub.com, and we will do our best to address the problem.

[1]

Composer, Configuration,
Classes, and Path Aliases

Before diving into Yii Framework 2, we need to take a look at how it is installed,
how it is configured, and what the core building blocks of the framework are. In this
chapter, we'll go over how to install the framework itself and prebuilt applications
via a package management tool called Composer. We'll also cover some common
configurations of both Yii Framework 2 and our web server, including making
our applications aware of the environment they are running on and responding
appropriately to that environment.

The most common ways to reference Yii Framework 2 are
Yii Framework 2, YF2, and Yii2. We'll be using these terms
interchangeably throughout the book.

Composer
There are several different ways to install Yii2, ranging from downloading the
framework from source control (typically, from GitHub at https://github.com/
yiisoft/yii2) to using a package manager such as Composer. With modern web
applications, Composer is the preferred method to install Yii2 as it enables us to
install, update, and manage all dependencies and extensions for our application
in an automated fashion. Additionally, using Composer, we can ensure that Yii
Framework 2 is kept up to date with the latest security and bug fixes. Composer can
be installed by following the instructions on https://getcomposer.org. Typically,
this process looks as follows:

curl -sS https://getcomposer.org/installer | php

https://github.com/yiisoft/yii2
https://github.com/yiisoft/yii2
https://getcomposer.org

Composer, Configuration, Classes, and Path Aliases

[2]

Alternatively, if you don't have cURL available on your system, it can be installed
through PHP itself:

php -r "readfile('https://getcomposer.org/installer');" | php

Once installed, we should move Composer to a more centralized directory so that we
can call it from any directory on our system. Installing Composer from a centralized
directory rather than on a per-project basis has several advantages:

•	 It can be called anywhere from any project. When working with multiple
projects, we can ensure that we use the same dependency manager each time
and for every project.

•	 In a centralized directory, Composer only needs to be updated once rather
than in every project we are working on.

•	 Dependency managers are rarely considered code that should be pushed
to your DCVS repository. Keeping the composer.phar file out of your
repository reduces the amount of code you need to commit and push
and ensures that your source code remains isolated from your package
manager code.

•	 By installing Composer from a centralized directory, we can ensure that
Composer is always available, which saves us a step each time we clone a
project that depends on Composer.

A good directory to move Composer to is /usr/local/bin, as shown in the
following example:

mv composer.phar /usr/local/bin/composer

chmod a+x /usr/local/bin/composer

Throughout this book, we'll be using Unix-style commands
when referencing command-line arguments. Consequently, some
commands may not work on Windows. If you decide to set up
a Windows environment, you might need to use Composer-
Setup.exe (available at https://getcomposer.org/
Composer-Setup.exe) to get Composer configured for your
system. If you have any issues getting Composer to run on your
system, ensure that you check out the Composer documentation
available at https://getcomposer.org/doc/.

Alternatively, if you have Composer installed on your system already, ensure that
you update it to the latest version by running this:

composer self-update

https://getcomposer.org/Composer-Setup.exe
https://getcomposer.org/Composer-Setup.exe
https://getcomposer.org/doc/

Chapter 1

[3]

The commands that we use through this book are based on
the assumption that you have sufficient privileges to run
them. On Unix-like systems, you may need to preface some
commands with sudo in order to execute the command with
a high permissions set. Alternatively if you are running these
commands on Windows, you should ensure that you are running
the listed commands in a command prompt that has elevated
privileges. Ensure that you follow best practices when using
sudo and when using elevated command prompts in order to
ensure your system stays secure.

Once Composer is installed, we'll need to install a global plugin called The
Composer Asset Plugin (available at https://github.com/francoispluchino/
composer-asset-plugin). This plugin enables Composer to manage asset files for
us without the need to install additional software (these programs are Bower, an
asset dependency manager created by Twitter, and Node Package Manager, or NPM,
which is a JavaScript dependency manager).

composer global require "fxp/composer-asset-plugin:1.0.0"

Due to the GitHub API's rate limiting, during installation, Composer may
ask you to enter your GitHub credentials. After entering your credentials,
Composer will request a dedicated API key from GitHub that can be
used for future installations. Ensure that you check out the Composer
documentation at https://getcomposer.org/doc/ for more
information.

With Composer installed, we can now instantiate our application. If we want to
install an existing Yii2 package, we can simply run the following:

composer create-project --prefer-dist <package/name> <foldername>

Using the Yii2 basic app as an example, this command will look like this:

composer create-project --prefer-dist yiisoft/yii2-app-basic basic

After running the command, you should see output similar to the following:

Installing yiisoft/yii2-app-basic (2.0.6)

 - Installing yiisoft/yii2-app-basic (2.0.6)

 Downloading: 100%

Created project in basic

Loading composer repositories with package information

Installing dependencies (including require-dev)

https://github.com/francoispluchino/composer-asset-plugin
https://github.com/francoispluchino/composer-asset-plugin
https://getcomposer.org/doc/

Composer, Configuration, Classes, and Path Aliases

[4]

 - Installing yiisoft/yii2-composer (2.0.3)

 - Installing ezyang/htmlpurifier (v4.6.0)

 - Installing bower-asset/jquery (2.1.4)

 - Installing bower-asset/yii2-pjax (v2.0.4)

 - Installing bower-asset/punycode (v1.3.2)

 - Installing bower-asset/jquery.inputmask (3.1.63)

 - Installing cebe/markdown (1.1.0)

 - Installing yiisoft/yii2 (2.0.6)

 - Installing swiftmailer/swiftmailer (v5.4.1)

 - Installing yiisoft/yii2-swiftmailer (2.0.4)

 - Installing yiisoft/yii2-codeception (2.0.4)

 - Installing bower-asset/bootstrap (v3.3.5)

 - Installing yiisoft/yii2-bootstrap (2.0.5)

 - Installing yiisoft/yii2-debug (2.0.5)

 - Installing bower-asset/typeahead.js (v0.10.5)

 - Installing phpspec/php-diff (v1.0.2)

 - Installing yiisoft/yii2-gii (2.0.4)

 - Installing fzaninotto/faker (v1.5.0)

 - Installing yiisoft/yii2-faker (2.0.3)

Writing lock file

Generating autoload files

> yii\composer\Installer::postCreateProject

chmod('runtime', 0777)...done.

chmod('web/assets', 0777)...done.

chmod('yii', 0755)...done.

Your output may differ slightly due to the data cached on your
system and versions of subpackages.

This command will install the Yii2 basic app to a folder called basic. When creating
a new Yii2 project, you'll typically want to use the create-project command to clone
"yii2-app-basic" and then develop your application from there as the basic app comes
prepopulated with just about everything you need to start a new project. However,
you can also create a Yii2 project from scratch that, while more complicated, gives
you more control over your application's structure.

Chapter 1

[5]

Let's take a look at the composer.json file that was created when we ran the
create-project command:

{
 "name": "yiisoft/yii2-app-basic",
 "description": "Yii 2 Basic Application Template",
 "keywords": ["yii2", "framework", "basic",
 "application template"],
 "homepage": "http://www.yiiframework.com/",
 "type": "project",
 "license": "BSD-3-Clause",
 "support": {
 "issues": "https://github.com/
 yiisoft/yii2/issues?state=open",
 "forum": "http://www.yiiframework.com/forum/",
 "wiki": "http://www.yiiframework.com/wiki/",
 "irc": "irc://irc.freenode.net/yii",
 "source": "https://github.com/yiisoft/yii2"
 },
 "minimum-stability": "stable",
 "require": {
 "php": ">=5.4.0",
 "yiisoft/yii2": "*",
 "yiisoft/yii2-bootstrap": "*",
 "yiisoft/yii2-swiftmailer": "*"
 },
 "require-dev": {
 "yiisoft/yii2-codeception": "*",
 "yiisoft/yii2-debug": "*",
 "yiisoft/yii2-gii": "*",
 "yiisoft/yii2-faker": "*"
 },
 "config": {
 "process-timeout": 1800
 },
 "scripts": {
 "post-create-project-cmd": [
 "yii\\composer\\Installer::postCreateProject"
]
 },
 "extra": {
 "yii\\composer\\Installer::postCreateProject": {
 "setPermission": [
 {
 "runtime": "0777",

Composer, Configuration, Classes, and Path Aliases

[6]

 "web/assets": "0777",
 "yii": "0755"
 }
],
 "generateCookieValidationKey": [
 "config/web.php"
]
 },
 "asset-installer-paths": {
 "npm-asset-library": "vendor/npm",
 "bower-asset-library": "vendor/bower"
 }
 }
}

While most of these items (such as the name, description, license, and require blocks)
are rather self-explanatory, there are a few Yii2-specific items in here that we should
take note of. The first section we want to look at is the "scripts" section:

"scripts": {
 "post-create-project-cmd": [
 "yii\\composer\\Installer::postCreateProject"
]
}

This script tells Composer that when the create-project command is run, it
should run the postCreateProject static function. Looking at the the framework
source code, we see that this file is referenced in the yii2-composer package (refer
to https://github.com/yiisoft/yii2-composer/blob/master/Installer.
php#L232). This command then runs several post-project creation actions, namely
setting the local disk permissions, generating a unique cookie validation key, and
setting some asset installer paths for composer-asset-plugin.

Next, we have the "extra" block:

"extra": {
 "yii\\composer\\Installer::postCreateProject": {
 "setPermission": [
 {
 "runtime": "0777",
 "web/assets": "0777",
 "yii": "0755"
 }
],
 "generateCookieValidationKey": [

https://github.com/yiisoft/yii2-composer/blob/master/Installer.php#L232
https://github.com/yiisoft/yii2-composer/blob/master/Installer.php#L232

Chapter 1

[7]

 "config/web.php"
]
 },
 "asset-installer-paths": {
 "npm-asset-library": "vendor/npm",
 "bower-asset-library": "vendor/bower"
 }
}

This section tells Composer to use these options when it runs the
postCreateProject command. These preconfigured options give us a
good starting point to create our applications.

Configuration
With our basic application now installed, let's take a look at a few basic configuration
and bootstrap files that Yii2 automatically generated for us.

Requirements checker
Projects created from yii2-app-basic now come with a built-in requirements script
called requirements.php. This script checks several different values in order to
ensure that Yii2 can run on our application server. Before running our application,
let's run the requirements checker:

php requirements.php

You'll get output similar to the following:

Yii Application Requirement Checker

This script checks if your server configuration meets the requirements
for running Yii application.

It checks if the server is running the right version of PHP, if
appropriate PHP extensions have been loaded, and if php.ini file settings
are correct.

Check conclusion:

PHP version: OK

[... more checks here ...]

Errors: 0 Warnings: 6 Total checks: 21

Composer, Configuration, Classes, and Path Aliases

[8]

In general, as long as the error count is set to 0, we'll be good to move forward. If
the requirements checker notices an error, it will report it in the Check conclusion
section for you to rectify.

As part of your deployment process, it is recommended that
your deployment tool runs the requirements checker. This helps
ensure that your application server meets all the requirements for
Yii2 and that your application doesn't get deployed to a server or
environment that doesn't support it.

Entry scripts
Like its predecessor, Yii Framework 2 comes with two separate entry scripts:
one for web applications and the other for console applications.

Web entry script
In Yii2, the entry script for web applications has been moved from the root (/) folder
to the web/ folder. In Yii1, our PHP files were stored in the protected/ directory.
By moving our entry scripts to the web/ directory, Yii2 has increased the security
of our application by reducing the amount of web server configuration we need to
run our application. Furthermore, all public asset (JavaScript and CSS) files are now
completely isolated from our source code directories. If we open up web/index.php,
our entry script now looks as follows:

<?php

// comment out the following two lines when deployed to production
defined('YII_DEBUG') or define('YII_DEBUG', true);
defined('YII_ENV') or define('YII_ENV', 'dev');

require(__DIR__ . '/../vendor/autoload.php');
require(__DIR__ . '/../vendor/yiisoft/yii2/Yii.php');

$config = require(__DIR__ . '/../config/web.php');

(new yii\web\Application($config))->run();

Downloading the example code
The latest and most up to date copies of source code for this book is
maintained on the Packt Publishing website, http://www.packtpub.
com, and on GitHub at https://github.com/masteringyii, for
each chapter where applicable.

http://www.packtpub.com
http://www.packtpub.com
GitHub at https://github.com/masteringyii

Chapter 1

[9]

While suitable for basic applications, the default entry script requires us to manually
comment out and change the code when moving to different environments. Since
changing the code in a nondevelopment environment doesn't follow best practices,
we should change this code block so that we don't have to touch our code to move it
to a different environment.

We'll start by creating a new application-wide constant called APPLICATION_ENV.
This variable will be defined by either our web server or our console environment
and will allow us to dynamically load different configuration files depending upon
the environment that we're working in:

1.	 After the opening <?php tag in web/index.php, add the following
code block:
// Define our application_env variable as provided by nginx/
apache/console
if (!defined('APPLICATION_ENV'))
{
 if (getenv('APPLICATION_ENV') != false)
 define('APPLICATION_ENV',
 getenv('APPLICATION_ENV'));
 else
 define('APPLICATION_ENV', 'prod');
}

Our application now knows how to read the APPLCATTION_ENV variable from
the environment variable, which will be passed either though our command
line or our web server configuration. By default, if no environment is set, the
APPLICATION_ENV variable will be set to prod.
Next, we'll want to load a separate environment file that contains several
environmental constants that we'll use to dynamically change how our
application runs in different environments:
$env = require(__DIR__ . '/../config/env.php');

Next, we'll configure Yii to set the YII_DEBUG and YII_ENV variables
according to our application:

defined('YII_DEBUG') or define('YII_DEBUG', $env['debug']);
defined('YII_ENV') or define('YII_ENV', APPLICATION_ENV);

2.	 Then, follow the rest of our index.php file under web/:

require(__DIR__ . '/../vendor/autoload.php');
require(__DIR__ . '/../vendor/yiisoft/yii2/Yii.php');
(new yii\web\Application($config))->run();

Composer, Configuration, Classes, and Path Aliases

[10]

With these changes, our web application is now configured to be aware of its
environment and load the appropriate configuration files.

Don't worry; later in the chapter, we'll cover how to define the
APPLICATION_ENV variable for both our web server (either
Apache or NGINX) and our command line.

Configuration files
In Yii2, configuration files are still split into console- and web-specific configurations.
As there are many commonalities between these two files (such as our database and
environment configuration), we'll store common elements in their own files and
include those files in both our web and console configurations. This will help us
follow the DRY standard, and reduce duplicate code within our application.

The DRY (don't repeat yourself) principle in software development
states that we should avoid having the same code block appear in
multiple places in our application. By keeping our application DRY,
we can ensure that our application is performant and can reduce
bugs in our application. By moving our database and parameters'
configuration to their own file, we can reuse that same code in both
our web and console configuration files.

Web and console configuration files
Yii2 supports two different kinds of configuration files: one for web applications
and another for console applications. In Yii2, our web configuration file is stored in
config/web.php and our console configuration file is stored in config/console.
php. If you're familiar with Yii1, you'll see that the basic structure of both of these
files hasn't changed all that much.

Database configuration
The next file we'll want to look at is our database configuration file stored in config/
db.php. This file contains all the information our web and console applications will
need in order to connect to the database.

In our basic application, this file looks as follows:

<?php

return [
 'class' => 'yii\db\Connection',

Chapter 1

[11]

 'dsn' => 'mysql:host=localhost;dbname=yii2basic',
 'username' => 'root',
 'password' => '',
 'charset' => 'utf8',
];

For an application that is aware of its environment, however, we should replace
this file with a configuration that will use the APPLICATION_ENV variable that we
defined earlier:

<?php return require __DIR__ . '/env/' . APPLICATION_ENV .
'/db.php';

Right now, we're just setting things up. We'll cover how to set up
our directories in the next section.

With this change, our application now knows that it needs to look in a file called
db.php under config/env/<APPLICATION_ENV>/ to pull the correct configuration
environment for that file.

Parameter configuration
In a manner similar to our database configuration file, Yii also lets us use a parameter
file where we can store all of the noncomponent parameters for our application.
This file is located at config/params.php. Since the basic app doesn't make this file
aware of its environment, we'll change it to do that as follows:

<?php return require __DIR__ . '/env/' . APPLICATION_ENV .
'/params.php';

Environment configuration
Finally, we have the environment configuration that we defined earlier when
working with our entry scripts. We'll store this file in config/env.php, and it
should be written as follows:

<?php return require __DIR__ . '/env/' . APPLICATION_ENV .
'/env.php';

Composer, Configuration, Classes, and Path Aliases

[12]

Most modern applications have several different environments depending
upon their requirements. Typically, we'd break them down into four distinct
environments:

•	 The first environment we typically have is called DEV. This environment
is where all of our local development occurs. Typically, developers have
complete control over this environment and can change it, as required, to
build their applications.

•	 The second environment that we typically have is a testing environment
called TEST. Normally, we'd deploy our application to this environment
in order to make sure that our code works in a production-like setting;
however, we normally would still have high log levels and debug
information available to us when using this environment.

•	 The third environment we typically have is called UAT, or the User
Acceptance Testing environment. This is a separate environment that we'd
provide to our client or business stakeholders for them to test the application
to verify that it does what they want it to do.

•	 Finally, in our typical setup, we'd have our PROD or production
environment. This is where our code finally gets deployed to and
where all of our users ultimately interact with our application.

As outlined in the previous sections, we've been pointing all of our environment
configuration files to the config/env/<env> folder. Since our local environment is
going to be called DEV, we'll create it first:

1.	 We'll start by creating our DEV environment folder from the command line:
mkdir –p config/env/dev

2.	 Next, we'll create our dev database configuration file in db.php under
config/env/dev/. For now, we'll stick with a basic SQLite database:
<?php return [
 'dsn' => 'sqlite:/' . __DIR__ .
 '/../../../runtime/db.sqlite',
 'class' => 'yii\db\Connection',
 'charset' => 'utf8'
];

3.	 Next, we'll create our environment configuration file in env.php under
config/env/dev. If you recall from earlier in the chapter, this is where our
debug flag was stored, so this file will look as follows:
<?php return [
 'debug' => true
];

Chapter 1

[13]

4.	 Finally, we'll create our params.php file under config/env/dev/. As of now,
this file will simply return an empty array:

<?php return [];

Now, for simplicity, let's copy over this configuration to our other environments.
From the command line, we can do that as follows:

cp –R config/env/dev config/env/test

cp –R config/env/dev config/env/uat

cp –R config/env/dev config/env/prod

Setting up our application environment
Now that we've told Yii what files and configurations it needs to use for each
environment, we need to tell it what environment to use. To do this, we'll set custom
variables in our web server configuration that will pass this option to Yii.

Setting the web environment for NGINX
With our console application properly configured, we now need to configure our
web server to pass the APPLICATION_ENV variable to our application. In a typical
NGINX configuration, we have a location block that looks as follows:

location ~ \.php$ {
 include fastcgi_params;
 fastcgi_param SCRIPT_FILENAME $document_root/
 $fastcgi_script_name;
 fastcgi_pass 127.0.0.1:9000;
 #fastcgi_pass unix:/var/run/php5-fpm.sock;
 try_files $uri =404;
 }

To pass the APPLICATION_ENV variable to our application, all we need to do is define
a new fastcgi_param as follows:

fastcgi_param APPLICATION_ENV "dev";

After making this change, simply restart NGINX.

Composer, Configuration, Classes, and Path Aliases

[14]

Setting the web environment for Apache
We can also easily configure Apache to pass the APPLICATION_ENV variable to
our application. With Apache, we typically have a VirtualHost block that looks
as follows:

Set document root to be "basic/web"
DocumentRoot "path/to/basic/web"

<Directory "path/to/basic/web">
 # use mod_rewrite for pretty URL support
 RewriteEngine on
 # If a directory or a file exists, use the request directly
 RewriteCond %{REQUEST_FILENAME} !-f
 RewriteCond %{REQUEST_FILENAME} !-d
 # Otherwise forward the request to index.php
 RewriteRule . index.php

 # ...other settings...
</Directory>

To pass the APPLICATION_ENV variable to our application, all we need to do is
use the SetEnv command as follows, which can be placed anywhere in our
VirtualHost block:

SetEnv APPLICATION_ENV dev

After making this change, simply restart Apache and navigate to your application.

At the most basic level, our application isn't doing anything different from what
it was when we first ran the composer create-project command. Despite not
doing anything different, our application is now significantly more powerful and
flexible than it was before our changes. Later on in the book, we'll take a look at how
these changes in particular can make automated deployments of our application a
seamless and simple process.

Components and objects
There are two base classes that almost everything in Yii2 extends from: the
Component class and the Object class.

Chapter 1

[15]

Components
In Yii2, the Component class has replaced the CComponent class from Yii1. In Yii1,
components act as service locators that host a specific set of application components
that provide different services for the processing of requests. Each component in Yii2
can be accessed using the following syntax:

Yii::$app->componentID

For example, the database component can be accessed using this:

Yii::$app->db

The cache component can be accessed using this:

Yii::$app->cache

Yii2 automatically registers each component at runtime via the application
configuration that we mentioned in the previous section by name.

To improve performance in Yii2 applications, components are lazy-loaded or only
instantiated the first time they are accessed. This means that if the cache component
is never used in your application code, the cache component will never be loaded.
At times, however, this can be nonideal, so to force load a component, you can
bootstrap it by adding it to the bootstrap configuration option in either config/
web.php or config/console.php. For instance, if we want to bootstrap the log
component, we can do that as follows:

<?php return [
 'bootstrap' => [
 'log'
],
 […]
]

The bootstrap option behaves in a manner similar to the preload option in
Yii1—any component that you want or need to be instantiated on bootstrap
will be loaded if it is in the bootstrap section of your configuration file.

For more information on service locators and components, ensure
that you read the Definitive Guide to Yii guide located at http://
www.yiiframework.com/doc-2.0/guide-concept-service-
locator.html and http://www.yiiframework.com/doc-2.0/
guide-structure-application-components.html.

http://www.yiiframework.com/doc-2.0/guide-concept-service-locator.html
http://www.yiiframework.com/doc-2.0/guide-concept-service-locator.html
http://www.yiiframework.com/doc-2.0/guide-concept-service-locator.html
http://www.yiiframework.com/doc-2.0/guide-structure-application-components.html
http://www.yiiframework.com/doc-2.0/guide-structure-application-components.html

