
[1]

Mastering Scala Machine
Learning

Advance your skills in efficient data analysis and data
processing using the powerful tools of Scala, Spark,
and Hadoop

Alex Kozlov

BIRMINGHAM - MUMBAI

Mastering Scala Machine Learning

Copyright © 2016 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book
is sold without warranty, either express or implied. Neither the author nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: June 2016

Production reference: 1220616

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78588-088-9

www.packtpub.com

Credits

Author
Alex Kozlov

Reviewer
 Rok Kralj

Commissioning Editor
Dipika Gaonkar

Acquisition Editor
Kirk D'costa

Content Development Editor
Samantha Gonsalves

Technical Editor
Suwarna Patil

Copy Editor
Vibha Shukla

Project Coordinator
Sanchita Mandal

Proofreader
Safis Editing

Indexer
Mariammal Chettiyar

Graphics
Disha Haria

Production Coordinator
Arvindkumar Gupta

Cover Work
Arvindkumar Gupta

About the Author

Alex Kozlov is a multidisciplinary big data scientist. He came to Silicon Valley in
1991, got his Ph.D. from Stanford University under the supervision of Prof. Daphne
Koller and Prof. John Hennessy in 1998, and has been around a few computer and
data management companies since. His latest stint was with Cloudera, the leader
in Hadoop, where he was one of the early employees and ended up heading the
solution architects group on the West Coast. Before that, he spent time with an
online advertising company, Turn, Inc.; and before that, he had the privilege to
work with HP Labs researchers at HP Inc., and on data mining software at SGI, Inc.
Currently, Alexander is the chief solutions architect at an enterprise security startup,
E8 Security, where he came to understand the intricacies of catching bad guys in the
Internet universe.

On the non-professional side, Alexander lives in Sunnyvale, CA, together with
his beautiful wife, Oxana, and other important family members, including three
daughters, Lana, Nika, and Anna, and a cat and dog. His family also included a
hamster and a fish at one point.

Alex is an active participant in Silicon Valley technology groups and meetups, and
although he is not an official committer of any open source projects, he definitely
contributed to many of them in the form of code or discussions. Alexander is an
active coder and publishes his open source code at https://github.com/alexvk.
Other information can be looked up on his LinkedIn page at https://www.
linkedin.com/in/alexvk.

Acknowlegement

I had a few chances to write a book in the past, but when Packt called me shortly
before my 50th birthday, I agreed almost immediately. Scala? Machine learning?
Big data? What could be a worse combination of poorly understood and intensely
marketed topics? What followed was eight months of sleep deprived existence,
putting my ideas on paper—computer keyboard, actually—during which I was able
to experimentally find out that my body needs at least three hours of sleep each night
and a larger break once in a while. As a whole, the experience was totally worth it. I
really appreciate the help of everyone around me, first of all of my family, who had
to deal with a lot of sleepless nights and my temporary lack of attention.

I would like to thank my wife for putting up with a lot of extra load and late
night writing sessions. I know it's been very hard. I also give deep thanks to my
editors, specifically Samantha Gonsalves, who not only nagged me from time to
time to keep me on schedule, but also gave very sound advice and put up with my
procrastination. Not least, I am very grateful to my colleagues who filled in for me
during some very critical stages of E8 Security product releases—we did go through
the GA, and at least a couple of releases during this time. A lot of ideas percolated
into the E8 product. Particularly, I would like to thank Jeongho Park, Christophe
Briguet, Mahendra Kutare, Srinivas Doddi, and Ravi Devireddy. I am grateful to all
my Cloudera colleagues for feedback and discussions, specifically Josh Patterson,
Josh Wills, Omer Trajman, Eric Sammer, Don Brown, Phillip Zeyliger, Jonathan
Hsieh, and many others. Last, but not least, I would like to thank my Ph.D. mentors
Walter A. Harrison, Jaswinder Pal Singh, John Hennessy, and Daphne Koller for
bringing me into the world of technology and innovation.

www.PacktPub.com

eBooks, discount offers, and more
Did you know that Packt offers eBook versions of every book published, with PDF
and ePub files available? You can upgrade to the eBook version at www.PacktPub.com
and as a print book customer, you are entitled to a discount on the eBook copy. Get in
touch with us at customercare@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign
up for a range of free newsletters and receive exclusive discounts and offers on Packt
books and eBooks.

TM

https://www2.packtpub.com/books/subscription/packtlib

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital
book library. Here, you can search, access, and read Packt's entire library of books.

Why subscribe?
• Fully searchable across every book published by Packt
• Copy and paste, print, and bookmark content
• On demand and accessible via a web browser

[i]

Table of Contents
Preface v
Chapter 1: Exploratory Data Analysis 1

Getting started with Scala 2
Distinct values of a categorical field 4
Summarization of a numeric field 7

Grepping across multiple fields 7
Basic, stratified, and consistent sampling 8
Working with Scala and Spark Notebooks 11
Basic correlations 17
Summary 20

Chapter 2: Data Pipelines and Modeling 21
Influence diagrams 22
Sequential trials and dealing with risk 25
Exploration and exploitation 31
Unknown unknowns 33
Basic components of a data-driven system 34

Data ingest 35
Data transformation layer 38
Data analytics and machine learning 39
UI component 39
Actions engine 42
Correlation engine 43
Monitoring 43

Optimization and interactivity 44
Feedback loops 44

Summary 45

Table of Contents

[ii]

Chapter 3: Working with Spark and MLlib 47
Setting up Spark 48
Understanding Spark architecture 49

Task scheduling 50
Spark components 55
MQTT, ZeroMQ, Flume, and Kafka 55
HDFS, Cassandra, S3, and Tachyon 57
Mesos, YARN, and Standalone 58

Applications 58
Word count 59
Streaming word count 62
Spark SQL and DataFrame 66

ML libraries 68
SparkR 70
Graph algorithms – GraphX and GraphFrames 71

Spark performance tuning 72
Running Hadoop HDFS 74
Summary 80

Chapter 4: Supervised and Unsupervised Learning 81
Records and supervised learning 82

Iris dataset 83
Labeled point 85
SVMWithSGD 86
Logistic regression 89
Decision tree 92
Bagging and boosting – ensemble learning methods 97

Unsupervised learning 97
Problem dimensionality 104
Summary 107

Chapter 5: Regression and Classification 109
What regression stands for? 109
Continuous space and metrics 110
Linear regression 115
Logistic regression 121
Regularization 123
Multivariate regression 124
Heteroscedasticity 124
Regression trees 126
Classification metrics 128
Multiclass problems 129

Table of Contents

[iii]

Perceptron 130
Generalization error and overfitting 133
Summary 133

Chapter 6: Working with Unstructured Data 135
Nested data 136
Other serialization formats 147
Hive and Impala 151
Sessionization 154
Working with traits 160
Working with pattern matching 161
Other uses of unstructured data 164
Probabilistic structures 165
Projections 165
Summary 166

Chapter 7: Working with Graph Algorithms 167
A quick introduction to graphs 168
SBT 169
Graph for Scala 172

Adding nodes and edges 175
Graph constraints 177
JSON 179

GraphX 181
Who is getting e-mails? 186
Connected components 187
Triangle counting 188
Strongly connected components 189
PageRank 191
SVD++ 192

Summary 198
Chapter 8: Integrating Scala with R and Python 199

Integrating with R 200
Setting up R and SparkR 200

Linux 200
Mac OS 202
Windows 203
Running SparkR via scripts 203
Running Spark via R's command line 204

DataFrames 205
Linear models 213
Generalized linear model 216
Reading JSON files in SparkR 221

Table of Contents

[iv]

Writing Parquet files in SparkR 222
Invoking Scala from R 223

Using Rserve 225
Integrating with Python 226

Setting up Python 227
PySpark 228
Calling Python from Java/Scala 229

Using sys.process._ 229
Spark pipe 232
Jython and JSR 223 232

Summary 235
Chapter 9: NLP in Scala 237

Text analysis pipeline 239
Simple text analysis 240

MLlib algorithms in Spark 248
TF-IDF 248
LDA 250

Segmentation, annotation, and chunking 258
POS tagging 259
Using word2vec to find word relationships 263

A Porter Stemmer implementation of the code 266
Summary 267

Chapter 10: Advanced Model Monitoring 269
System monitoring 271
Process monitoring 273
Model monitoring 281

Performance over time 281
Criteria for model retiring 281
A/B testing 282

Summary 282
Index 283

[v]

Preface
This book is about machine learning, the functional approach to programming with
Scala being the focus, and big data with Spark being the target. When I was offered
to write the book about nine months ago, my first reaction was that, while each of
the mentioned subjects have been thoroughly investigated and written about, I've
definitely taken part in enough discussions to know that combining any pair of them
presents challenges, not to mention combining all three of them in one book. The
challenge piqued my interest, and the result is this book. Not every chapter is as
smooth as I wished it to be, but in the world where technology makes huge strides
every day, this is probably expected. I do have a real job and writing is only one way
to express my ideas.

Let's start with machine learning. Machine learning went through a head-spinning
transformation; it was an offspring of AI and statistics somewhere in the 1990s and
later gave birth to data science in or slightly before 2010. There are many definitions
of data science, but the most popular one is probably from Josh Wills, with whom I
had the privilege to work at Cloudera, which is depicted in Figure 1. While the details
may be argued about, the truth is that data science is always on the intersection
of a few disciplines, and a data scientist is not necessarily is an expert on any one
of them. Arguably, the first data scientists worked at Facebook, according to Jeff
Hammerbacher, who was also one of the Cloudera founders and an early Facebook
employee. Facebook needed interdisciplinary skills to extract value from huge
amounts of social data at the time. While I call myself a big data scientist, for the
purposes of this book, I'd like to use the term machine learning or ML to keep the
focus, as I am mixing too much already here.

One other aspect of ML that came about recently and is actively discussed is that
the quantity of data beats the sophistication of the models. One can see this in this
book in the example of some Spark MLlib implementations, and word2vec for NLP
in particular. Speedier ML models that can respond to new environments faster also
often beat the more complex models that take hours to build. Thus, ML and big data
make a good match.

Preface

[vi]

Last but not least is the emergence of microservices. I spent a great deal of time on
the topic of machine and application communication in this book, and Scala with the
Akka actors model comes very naturally here.

Functional programming, at least for a good portion of practical programmers, is
more about the style of programming than a programming language itself. While
Java 8 started having lambda expressions and streams, which came out of functional
programming, one can still write in a functional style without these mechanisms
or even write a Java-style code in Scala. The two big ideas that brought Scala to
prominence in the big data world are lazy evaluation, which greatly simplifies data
processing in a multi-threaded or distributed world, and immutability. Scala has two
different libraries for collections: one is mutable and another is immutable. While
the distinction is subtle from the application user point of view, immutability greatly
increases the options from a compiler perspective, and lazy evaluation cannot be
a better match for big data, where REPL postpones most of the number crunching
towards later stages of the pipeline, increasing interactivity.

Figure 1: One of the possible definitions of a data scientist

Finally, big data. Big data has definitely occupied the headlines for a couple of years
now, and a big reason for this is that the amount of data produced by machines
today greatly surpasses anything that a human cannot even produce, but even
comprehend, without using the computers. The social network companies, such as
Facebook, Google, Twitter, and so on, have demonstrated that enough information
can be extracted from these blobs of data to justify the tools specifically targeted
towards processing big data, such as Hadoop, MapReduce, and Spark.

Preface

[vii]

We will touch on what Hadoop does later in the book, but originally, it was a
Band-Aid on top of commodity hardware to be able to deal with a vast amount of
information, which the traditional relational DBs at the time were not equipped
to handle (or were able, but at a prohibitive price). While big data is probably
too big a subject for me to handle in this book, Spark is the focus and is another
implementation of Hadoop MapReduce that removes a few inefficiencies of having
to deal with persisting data on disk. Spark is a bit more expensive as it consumes
more memory in general and the hardware has to be more reliable, but it is more
interactive. Furthermore, Spark works on top of Scala—other languages such as
Java and Python too—but Scala is the primary API language, and it found certain
synergies in how it expresses data pipelines in Scala.

What this book covers
Chapter 1, Exploratory Data Analysis, covers how every data analyst begins with an
exploratory data analysis. There is nothing new here, except that the new tools
allow you to look into larger datasets—possibly spread across multiple computers,
as easily as if they were just on a local machine. This, of course, does not prevent
you from running the pipeline on a single machine, but even then, the laptop I am
writing this on has four cores and about 1,377 threads running at the same time.
Spark and Scala (parallel collections) allow you to transparently use this entire
dowry, sometimes without explicitly specifying the parallelism. Modern servers may
have up to 128 hyper-threads available to the OS. This chapter will show you how to
start with the new tools, maybe by exploring your old datasets.

Chapter 2, Data Pipelines and Modeling, explains that while data-driven processes
existed long before Scala/Spark, the new age demonstrated the emergence of
a fully data-driven enterprise where the business is optimized by the feedback
from multiple data-generating machines. Big data requires new techniques and
architectures to accommodate the new decision making process. Borrowing from a
number of academic fields, this chapter proceeds to describe a generic architecture
of a data-driven business, where most of the workers' task is monitoring and
tuning the data pipelines (or enjoying the enormous revenue per worker that these
enterprises can command).

Chapter 3, Working with Spark and MLlib, focuses on the internal architecture of Spark,
which we mentioned earlier as a replacement for and/or complement to Hadoop
MapReduce. We will specifically stop on a few ML algorithms, which are grouped
under the MLlib tag. While this is still a developing topic and many of the algorithms
are being moved using a different package now, we will provide a few examples
of how to run standard ML algorithms in the org.apache.spark.mllib package.
We will also explain the modes that Spark can be run under and touch on Spark
performance tuning.

Preface

[viii]

Chapter 4, Supervised and Unsupervised Learning, explains that while Spark MLlib
may be a moving target, general ML principles have been solidly established.
Supervised/unsupervised learning is a classical division of ML algorithms that work
on row-oriented data—most of the data, really. This chapter is a classic part of any
ML book, but we spiced it up a bit to make it more Scala/Spark-oriented.

Chapter 5, Regression and Classification, introduces regression and classification, which
is another classic subdivision of the ML algorithms, even if it has been shown that
classification can be used to regress, and regression to classify, still these are the
two classes that use different techniques, precision metrics, and ways to regularize
the models. This chapter will take a practical approach while showing you practical
examples of regression and classification analysis

Chapter 6, Working with Unstructured Data, covers how one of the new features that
social data brought with them and brought traditional DBs to their knees is nested
and unstructured data. Working with unstructured data requires new techniques
and formats, and this chapter is dedicated to the ways to present, store, and evolve
these types of data. Scala becomes a big winner here, as it has a natural way to deal
with complex data structures in the data pipelines.

Chapter 7, Working with Graph Algorithms, explains how graphs present another
challenge to the traditional row-oriented DBs. Lately, there has been a resurgence of
graph DBs. We will cover two different libraries in this chapter: one is Scala-graph
from Assembla, which is a convenient tool to represent and reason with graphs, and
the other is Spark's graph class with a few graph algorithms implemented on top
of it.

Chapter 8, Integrating Scala with R and Python, covers how even though Scala is cool,
many people are just too cautious to leave their old libraries behind. In this chapter,
I will show how to transparently refer to the legacy code written in R and Python,
a request I hear too often. In short, there are too mechanisms: one is using Unix
pipelines and another way is to launch R or Python in JVM.

Chapter 9, NLP in Scala, focuses on how natural language processing has deal with
human-computer interaction and computer's understanding of our often-substandard
ways to communicate. I will focus on a few tools that Scala specifically provide for
NLP, topic association, and dealing with large amounts of textual information (Spark).

Preface

[ix]

Chapter 10, Advanced Model Monitoring, introduces how developing data pipelines
usually means that someone is going to use and debug them. Monitoring is
extremely important not only for the end user data pipeline, but also for the
developer or designer who is looking for the ways to either optimize the execution
or further the design. We cover the standard tools for monitoring systems and
distributed clusters of machines as well as how to design a service that has enough
hooks to look into its functioning without attaching a debugger. I will also touch on
the new emerging field of statistical model monitoring.

What you need for this book
This book is based on open source software. First, it's Java. One can download Java
from Oracle's Java Download page. You have to accept the license and choose an
appropriate image for your platform. Don't use OpenJDK—it has a few problems
with Hadoop/Spark.

Second, Scala. If you are using Mac, I recommend installing Homebrew:

$ ruby -e "$(curl -fsSL https://raw.githubusercontent.com/Homebrew/
install/master/install)"

Multiple open source packages will also be available to you. To install Scala, run
brew install scala. Installation on a Linux platform requires downloading an
appropriate Debian or RPM package from the http://www.scala-lang.org/
download/ site. We will use the latest version at the time, that is, 2.11.7.

Spark distributions can be downloaded from http://spark.apache.org/
downloads.html. We use pre-build for Hadoop 2.6 and later image. As it's Java, you
need to just unzip the package and start using the scripts from the bin subdirectory.

R and Python packages are available at http://cran.r-project.org/bin and
http://python.org/ftp/python/$PYTHON_VERSION/Python-$PYTHON_VERSION.
tar.xz sites respectively. The text has specific instruction on how to configure them.
Although our use of the packages should be version agnostic, I used R version 3.2.3
and Python version 2.7.11 in this book.

Who this book is for
Professional and emerging data scientists who want to sharpen their skills and see
practical examples of working with big data: a data analyst who wants to effectively
extract actionable information from large amounts of data and an aspiring statistician
who is willing to get beyond the existing boundaries and become a data scientist.

http://www.scala-lang.org/download/
http://www.scala-lang.org/download/
http://spark.apache.org/downloads.html
http://spark.apache.org/downloads.html
http://cran.r-project.org/bin
http://python.org/ftp/python/$PYTHON_VERSION/Python-$PYTHON_VERSION.tar.xz
http://python.org/ftp/python/$PYTHON_VERSION/Python-$PYTHON_VERSION.tar.xz

Preface

[x]

The book style is pretty much hands-on, I don't delve into mathematical proofs
or validations, with a few exceptions, and there are more in-depth texts that I
recommend throughout the book. However, I will try my best to provide code
samples and tricks that you can start using for the standard techniques and libraries
as soon as possible.

Conventions
In this book, you will find a number of text styles that distinguish between different
kinds of information. Here are some examples of these styles and an explanation of
their meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows:
"We can include other contexts through the use of the include directive."

A block of code is set as follows:

import scala.util.hashing.MurmurHash3._

val markLow = 0
val markHigh = 4096
val seed = 12345

def consistentFilter(s: String): Boolean = {
 val hash = stringHash(s.split(" ")(0), seed) >>> 16
 hash >= markLow && hash < markHigh
}

val w = new java.io.FileWriter(new java.io.File("out.txt"))
val lines = io.Source.fromFile("chapter01/data/iris/in.txt").getLines
lines.filter(consistentFilter).foreach { s =>
 w.write(s + Properties.lineSeparator)
}

Preface

[xi]

Any command-line input or output is written as follows:

akozlov@Alexanders-MacBook-Pro]$ scala

Welcome to Scala version 2.11.7 (Java HotSpot(TM) 64-Bit Server VM, Java
1.8.0_40).

Type in expressions to have them evaluated.

Type :help for more information.

scala> import scala.util.Random

import scala.util.Random

New terms and important words are shown in bold. Words that you see on the
screen, for example, in menus or dialog boxes, appear in the text like this: "Run all
cells at once by navigating to Cell | Run All."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or disliked. Reader feedback is important for us as it helps
us develop titles that you will really get the most out of.

To send us general feedback, simply e-mail feedback@packtpub.com, and mention
the book's title in the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide at www.packtpub.com/authors.

www.packtpub.com/authors

Preface

[xii]

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Downloading the example code
You can download the example code files for this book from your account at
http://www.packtpub.com. If you purchased this book elsewhere, you can visit
http://www.packtpub.com/support and register to have the files e-mailed directly
to you.

You can download the code files by following these steps:

1. Log in or register to our website using your e-mail address and password.
2. Hover the mouse pointer on the SUPPORT tab at the top.
3. Click on Code Downloads & Errata.
4. Enter the name of the book in the Search box.
5. Select the book for which you're looking to download the code files.
6. Choose from the drop-down menu where you purchased this book from.
7. Click on Code Download.

Once the file is downloaded, please make sure that you unzip or extract the folder
using the latest version of:

• WinRAR / 7-Zip for Windows
• Zipeg / iZip / UnRarX for Mac
• 7-Zip / PeaZip for Linux

The code bundle for the book is also hosted on GitHub at https://github.com/
PacktPublishing/Mastering-Scala-Machine-Learning. We also have other code
bundles from our rich catalog of books and videos available at. https://github.
com/PacktPublishing/ Check them out!

Downloading the color images of this book
We also provide you with a PDF file that has color images of the screenshots/diagrams
used in this book. The color images will help you better understand the changes in
the output. You can download this file from https://www.packtpub.com/sites/
default/files/downloads/MasteringScalaMachineLearning_ColorImages.pdf.

http://www.packtpub.com
http://www.packtpub.com/support
https://github.com/PacktPublishing/Mastering-Scala-Machine-Learning
https://github.com/PacktPublishing/Mastering-Scala-Machine-Learning
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://www.packtpub.com/sites/default/files/downloads/MasteringScalaMachineLearning_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringScalaMachineLearning_ColorImages.pdf

Preface

[xiii]

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in the text or
the code—we would be grateful if you could report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
book. If you find any errata, please report them by visiting http://www.packtpub.
com/submit-errata, selecting your book, clicking on the Errata Submission Form
link, and entering the details of your errata. Once your errata are verified, your
submission will be accepted and the errata will be uploaded to our website or added
to any list of existing errata under the Errata section of that title.

To view the previously submitted errata, go to https://www.packtpub.com/books/
content/support and enter the name of the book in the search field. The required
information will appear under the Errata section.

Piracy
Piracy of copyrighted material on the Internet is an ongoing problem across all
media. At Packt, we take the protection of our copyright and licenses very seriously.
If you come across any illegal copies of our works in any form on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors and our ability to bring you
valuable content.

Questions
If you have a problem with any aspect of this book, you can contact us at
questions@packtpub.com, and we will do our best to address the problem.

http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support

[1]

Exploratory Data Analysis
Before I dive into more complex methods to analyze your data later in the book, I
would like to stop at basic data exploratory tasks on which almost all data scientists
spend at least 80-90% of their productive time. The data preparation, cleansing,
transforming, and joining the data alone is estimated to be a $44 billion/year
industry alone (Data Preparation in the Big Data Era by Federico Castanedo and Best
Practices for Data Integration, O'Reilly Media, 2015). Given this fact, it is surprising
that people only recently started spending more time on the science of developing
best practices and establishing good habits, documentation, and teaching materials
for the whole process of data preparation (Beautiful Data: The Stories Behind Elegant
Data Solutions, edited by Toby Segaran and Jeff Hammerbacher, O'Reilly Media, 2009 and
Advanced Analytics with Spark: Patterns for Learning from Data at Scale by Sandy Ryza et
al., O'Reilly Media, 2015).

Few data scientists would agree on specific tools and techniques—and there
are multiple ways to perform the exploratory data analysis, ranging from Unix
command line to using very popular open source and commercial ETL and
visualization tools. The focus of this chapter is how to use Scala and a laptop-based
environment to benefit from techniques that are commonly referred as a functional
paradigm of programming. As I will discuss, these techniques can be transferred to
exploratory analysis over distributed system of machines using Hadoop/Spark.

Exploratory Data Analysis

[2]

What has functional programming to do with it? Spark was developed in
Scala for a good reason. Many basic principles that lie at the foundation of
functional programming, such as lazy evaluation, immutability, absence of side
effects, list comprehensions, and monads go really well with processing data in
distributed environments, specifically, when performing the data preparation and
transformation tasks on big data. Thanks to abstractions, these techniques work
well on a local workstation or a laptop. As mentioned earlier, this does not preclude
us from processing very large datasets up to dozens of TBs on modern laptops
connected to distributed clusters of storage/processing nodes. We can do it one topic
or focus area at the time, but often we even do not have to sample or filter the dataset
with proper partitioning. We will use Scala as our primary tool, but will resort to
other tools if required.

While Scala is complete in the sense that everything that can be implemented in other
languages can be implemented in Scala, Scala is fundamentally a high-level, or even a
scripting, language. One does not have to deal with low-level details of data structures
and algorithm implementations that in their majority have already been tested by a
plethora of applications and time, in, say, Java or C++—even though Scala has its own
collections and even some basic algorithm implementations today. Specifically, in this
chapter, I'll be focusing on using Scala/Spark only for high-level tasks.

In this chapter, we will cover the following topics:

• Installing Scala
• Learning simple techniques for initial data exploration
• Learning how to downsample the original dataset for faster turnover
• Discussing the implementation of basic data transformation and aggregations

in Scala
• Getting familiar with big data processing tools such as Spark and

Spark Notebook
• Getting code for some basic visualization of datasets

Getting started with Scala
If you have already installed Scala, you can skip this paragraph. One can get the
latest Scala download from http://www.scala-lang.org/download/. I used Scala
version 2.11.7 on Mac OS X El Capitan 10.11.5. You can use any other version you
like, but you might face some compatibility problems with other packages such
as Spark, a common problem in open source software as the technology adoption
usually lags by a few released versions.

http://www.scala-lang.org/download/

Chapter 1

[3]

In most cases, you should try to maintain precise match between the
recommended versions as difference in versions can lead to obscure
errors and a lengthy debugging process.

If you installed Scala correctly, after typing scala, you should see something similar
to the following:

[akozlov@Alexanders-MacBook-Pro ~]$ scala

Welcome to Scala version 2.11.7 (Java HotSpot(TM) 64-Bit Server VM, Java
1.8.0_40).

Type in expressions to have them evaluated.

Type :help for more information.

scala>

This is a Scala read-evaluate-print-loop (REPL) prompt. Although Scala programs
can be compiled, the content of this chapter will be in REPL, as we are focusing on
interactivity with, maybe, a few exceptions. The :help command provides a some
utility commands available in REPL (note the colon at the start):

Exploratory Data Analysis

[4]

Distinct values of a categorical field
Now, you have a dataset and a computer. For convenience, I have provided you a
small anonymized and obfuscated sample of clickstream data with the book repository
that you can get at https://github.com/alexvk/ml-in-scala.git. The file in the
chapter01/data/clickstream directory contains lines with timestamp, session ID,
and some additional event information such as URL, category information, and so on
at the time of the call. The first thing one would do is apply transformations to find out
the distribution of values for different columns in the dataset.

Figure 01-1 shows screenshot shows the output of the dataset in the terminal window
of the gzcat chapter01/data/clickstream/clickstream_sample.tsv.gz |
less –U command. The columns are tab (^I) separated. One can notice that, as in
many real-world big data datasets, many values are missing. The first column of
the dataset is recognizable as the timestamp. The file contains complex data such as
arrays, structs, and maps, another feature of big data datasets.

Unix provides a few tools to dissect the datasets. Probably, less, cut, sort, and uniq
are the most frequently used tools for text file manipulations. Awk, sed, perl, and tr
can do more complex transformations and substitutions. Fortunately, Scala allows
you to transparently use command-line tools from within Scala REPL, as shown in
the following screenshot:

https://github.com/alexvk/ml-in-scala.git

Chapter 1

[5]

Figure 01-1. The clickstream file as an output of the less -U Unix command

Fortunately, Scala allows you to transparently use command-line tools from within
Scala REPL:

[akozlov@Alexanders-MacBook-Pro]$ scala

…

scala> import scala.sys.process._

import scala.sys.process._

Exploratory Data Analysis

[6]

scala> val histogram = ("gzcat chapter01/data/clickstream/clickstream_
sample.tsv.gz" #| "cut -f 10" #| "sort" #| "uniq -c" #| "sort -k1nr"
).lineStream

histogram: Stream[String] = Stream(7731 http://www.mycompany.com/us/en_
us/, ?)

scala> histogram take(10) foreach println

7731 http://www.mycompany.com/us/en_us/

3843 http://mycompanyplus.mycompany.com/plus/

2734 http://store.mycompany.com/us/en_us/?l=shop,men_shoes

2400 http://m.mycompany.com/us/en_us/

1750 http://store.mycompany.com/us/en_us/?l=shop,men_mycompanyid

1556 http://www.mycompany.com/us/en_us/c/mycompanyid?sitesrc=id_redir

1530 http://store.mycompany.com/us/en_us/

1393 http://www.mycompany.com/us/en_us/?cp=USNS_KW_0611081618

1379 http://m.mycompany.com/us/en_us/?ref=http%3A%2F%2Fwww.mycompany.
com%2F

1230 http://www.mycompany.com/us/en_us/c/running

I used the scala.sys.process package to call familiar Unix commands from Scala
REPL. From the output, we can immediately see the customers of our Webshop are
mostly interested in men's shoes and running, and that most visitors are using the
referral code, KW_0611081618.

One may wonder when we start using complex Scala types and
algorithms. Just wait, a lot of highly optimized tools were created before
Scala and are much more efficient for explorative data analysis. In the
initial stage, the biggest bottleneck is usually just the disk I/O and slow
interactivity. Later, we will discuss more iterative algorithms, which
are usually more memory intensive. Also note that the UNIX pipeline
operations can be implicitly parallelized on modern multi-core computer
architectures, as they are in Spark (we will show it in the later chapters).
It has been shown that using compression, implicit or explicit, on input
data files can actually save you the I/O time. This is particularly true
for (most) modern semi-structured datasets with repetitive values
and sparse content. Decompression can also be implicitly parallelized
on modern fast multi-core computer architectures, removing the
computational bottleneck, except, maybe in cases where compression
is implemented implicitly in hardware (SSD, where we don't need to
compress the files explicitly). We also recommend using directories
rather than files as a paradigm for the dataset, where the insert operation
is reduced to dropping the data file into a directory. This is how the
datasets are presented in big data Hadoop tools such as Hive and Impala.

Chapter 1

[7]

Summarization of a numeric field
Let's look at the numeric data, even though most of the columns in the dataset
are either categorical or complex. The traditional way to summarize the numeric
data is a five-number-summary, which is a representation of the median or mean,
interquartile range, and minimum and maximum. I'll leave the computations of the
median and interquartile ranges till the Spark DataFrame is introduced, as it makes
these computations extremely easy; but we can compute mean, min, and max in
Scala by just applying the corresponding operators:

scala> import scala.sys.process._

import scala.sys.process._

scala> val nums = ("gzcat chapter01/data/clickstream/clickstream_sample.
tsv.gz" #| "cut -f 6").lineStream

nums: Stream[String] = Stream(0, ?)

scala> val m = nums.map(_.toDouble).min

m: Double = 0.0

scala> val m = nums.map(_.toDouble).sum/nums.size

m: Double = 3.6883642764024662

scala> val m = nums.map(_.toDouble).max

m: Double = 33.0

Grepping across multiple fields
Sometimes one needs to get an idea of how a certain value looks across multiple
fields—most common are IP/MAC addresses, dates, and formatted messages.
For examples, if I want to see all IP addresses mentioned throughout a file or a
document, I need to replace the cut command in the previous example by grep -o
-E [1-9][0-9]{0,2}(?:\\.[1-9][0-9]{0,2}){3}, where the –o option instructs
grep to print only the matching parts—a more precise regex for the IP address
should be grep –o –E (?:(?:25[0-5]|2[0-4][0-9]|[01]?[0-9][0-9]?)\.){3}
(?:25[0-5]|2[0-4][0-9]|[01]?[0-9][0-9]?), but is about 50% slower on my
laptop and the original one works in most practical cases. I'll leave it as an excursive
to run this command on the sample file provided with the book.

Exploratory Data Analysis

[8]

Basic, stratified, and consistent sampling
I've met quite a few data practitioners who scorn sampling. Ideally, if one can
process the whole dataset, the model can only improve. In practice, the tradeoff
is much more complex. First, one can build more complex models on a sampled
set, particularly if the time complexity of the model building is non-linear—and in
most situations, if it is at least N* log(N). A faster model building cycle allows you
to iterate over models and converge on the best approach faster. In many situations,
time to action is beating the potential improvements in the prediction accuracy due to
a model built on complete dataset.

Sampling may be combined with appropriate filtering—in many practical situation,
focusing on a subproblem at a time leads to better understanding of the whole
problem domain. In many cases, this partitioning is at the foundation of the
algorithm, like in decision trees, which are considered later. Often the nature of the
problem requires you to focus on the subset of original data. For example, a cyber
security analysis is often focused around a specific set of IPs rather than the whole
network, as it allows to iterate over hypothesis faster. Including the set of all IPs in the
network may complicate things initially if not throw the modeling off the right track.

When dealing with rare events, such as clickthroughs in ADTECH, sampling the
positive and negative cases with different probabilities, which is also sometimes
called oversampling, often leads to better predictions in short amount of time.

Fundamentally, sampling is equivalent to just throwing a coin—or calling a random
number generator—for each data row. Thus it is very much like a stream filter
operation, where the filtering is on an augmented column of random numbers.
Let's consider the following example:

import scala.util.Random
import util.Properties

val threshold = 0.05

val lines = scala.io.Source.fromFile("chapter01/data/iris/in.txt").
getLines
val newLines = lines.filter(_ =>
 Random.nextDouble() <= threshold
)

val w = new java.io.FileWriter(new java.io.File("out.txt"))
newLines.foreach { s =>
 w.write(s + Properties.lineSeparator)
}
w.close

Chapter 1

[9]

This is all good, but it has the following disadvantages:

• The number of lines in the resulting file is not known beforehand—even
though on average it should be 5% of the original file

• The results of the sampling is non-deterministic—it is hard to rerun this
process for either testing or verification

To fix the first point, we'll need to pass a more complex object to the function, as we
need to maintain the state during the original list traversal, which makes the original
algorithm less functional and parallelizable (this will be discussed later):

import scala.reflect.ClassTag
import scala.util.Random
import util.Properties

def reservoirSample[T: ClassTag](input: Iterator[T],k: Int): Array[T]
= {
 val reservoir = new Array[T](k)
 // Put the first k elements in the reservoir.
 var i = 0
 while (i < k && input.hasNext) {
 val item = input.next()
 reservoir(i) = item
 i += 1
 }

 if (i < k) {
 // If input size < k, trim the array size
 reservoir.take(i)
 } else {
 // If input size > k, continue the sampling process.
 while (input.hasNext) {
 val item = input.next
 val replacementIndex = Random.nextInt(i)
 if (replacementIndex < k) {
 reservoir(replacementIndex) = item
 }
 i += 1
 }
 reservoir
 }
}

val numLines=15

Exploratory Data Analysis

[10]

val w = new java.io.FileWriter(new java.io.File("out.txt"))
val lines = io.Source.fromFile("chapter01/data/iris/in.txt").getLines
reservoirSample(lines, numLines).foreach { s =>
 w.write(s + scala.util.Properties.lineSeparator)
}
w.close

This will output numLines lines. Similarly to reservoir sampling, stratified sampling
is guaranteed to provide the same ratios of input/output rows for all strata defined
by levels of another attribute. We can achieve this by splitting the original dataset
into N subsets corresponding to the levels, performing the reservoir sampling,
and merging the results afterwards. However, MLlib library, which will be
covered in Chapter 3, Working with Spark and MLlib, already has stratified sampling
implementation:

val origLinesRdd = sc.textFile("file://...")
val keyedRdd = origLines.keyBy(r => r.split(",")(0))
val fractions = keyedRdd.countByKey.keys.map(r => (r, 0.1)).toMap
val sampledWithKey = keyedRdd.sampleByKeyExact(fractions)
val sampled = sampledWithKey.map(_._2).collect

The other bullet point is more subtle; sometimes we want a consistent subset of
values across multiple datasets, either for reproducibility or to join with another
sampled dataset. In general, if we sample two datasets, the results will contain
random subsets of IDs which might have very little or no intersection. The
cryptographic hashing functions come to the help here. The result of applying a hash
function such as MD5 or SHA1 is a sequence of bits that is statistically uncorrelated,
at least in theory. We will use the MurmurHash function, which is part of the scala.
util.hashing package:

import scala.util.hashing.MurmurHash3._

val markLow = 0
val markHigh = 4096
val seed = 12345

def consistentFilter(s: String): Boolean = {
 val hash = stringHash(s.split(" ")(0), seed) >>> 16
 hash >= markLow && hash < markHigh
}

val w = new java.io.FileWriter(new java.io.File("out.txt"))
val lines = io.Source.fromFile("chapter01/data/iris/in.txt").getLines
lines.filter(consistentFilter).foreach { s =>
 w.write(s + Properties.lineSeparator)
}
w.close

