

Learning Modular Java
Programming

Explore the power of modular programming for
building applications with Java and Spring!

Tejaswini Mandar Jog

BIRMINGHAM - MUMBAI

Learning Modular Java Programming

Copyright © 2016 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the author, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: June 2016

Production reference: 1270616

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78588-882-3

www.packtpub.com

www.packtpub.com

Credits

Author
Tejaswini Mandar Jog

Reviewer
Dionisios Petrakopoulos

Acquisition Editor
Larissa Pinto

Content Development Editor
Shali Deeraj

Technical Editor
Anushree Arun Tendulkar

Copy Editor
Safis Editing

Project Coordinator
Sanchita Mandal

Proofreader
Safis Editing

Indexer
Monica Ajmera Mehta

Graphics
Jason Monteiro

Production Coordinator
Aparna Bhagat

Cover Work
Aparna Bhagat

About the Author

Tejaswini Mandar Jog is a passionate and enthusiastic SCJP-certified trainer.
She has more than eight years' experience in the IT training field, specializing in
Java, J2EE, and relevant technologies. She has worked with many renowned
corporate companies on training and skill enhancement programs. She is also
involved in the development of projects using Java, Spring, and Hibernate.

I still remember the very first conversation with the editor about the
book. Before that day I was just a reader, I never thought of writing
a book. But now I had an opportunity to be an author! I was in a
dilemma, and confused—can I be? But then my personal guide and
philosopher Mandar gave me the confidence to go for it. Thank you
Mandar not just for providing strong support, but also for your
valuable suggestions, which helped me to improve the contents.

This book would not have been completed without the help of Shali,
the editor. Her suggestions and efforts made the difference. Aaron,
the acquisition editor, thank you for showing confidence in me, and
giving me the confidence to write this book.

Without the best wishes and support of my family, it is doubtful that
I would have completed this book.

It would be mean of me not to mention Ojas, my lovely son. I really
appreciate the way he supported me, so that I was able to write
peacefully. Love you a lot dear!!!

Finally, thank you to all who helped by supporting me directly
and indirectly to complete this book. Thank you all just for being
with me!!!

About the Reviewer

Dionisios Petrakopoulos has worked in several companies, using different
programming languages (C, C++, Java SE, Java EE, and Scala) and technologies,
as a senior software engineer for the past 15 years. His main interest is the Java
ecosystem and the various facets of it. His other area of interest is information
security, and especially cryptography. He holds a BSc in computer science and an
MSc in information security, both from Royal Holloway, University of London.

I would like to thank my wife, Anna, for her support and love.

www.PacktPub.com

eBooks, discount offers, and more
Did you know that Packt offers eBook versions of every book published, with PDF
and ePub files available? You can upgrade to the eBook version at www.PacktPub.
com and as a print book customer, you are entitled to a discount on the eBook copy.
Get in touch with us at customercare@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign
up for a range of free newsletters and receive exclusive discounts and offers on
Packt books and eBooks.

TM

https://www2.packtpub.com/books/subscription/packtlib

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital
book library. Here, you can search, access, and read Packt's entire library of books.

Why subscribe?
•	 Fully searchable across every book published by Packt
•	 Copy and paste, print, and bookmark content
•	 On demand and accessible via a web browser

Instant updates on new Packt books
Get notified! Find out when new books are published by following @PacktEnterprise
on Twitter or the Packt Enterprise Facebook page.

www.PacktPub.com
www.PacktPub.com
www.PacktPub.com
https://www2.packtpub.com/books/subscription/packtlib

[i]

Table of Contents
Preface	 v
Chapter 1: Introducing Modular Programming	 1

Software – the perspective	 1
Modules	 3

What is behind and in a module?	 3
The practical aspect	 3

The gang – modular programming	 4
The world of modules	 4

Tiers and layers in an enterprise application	 5
One-tier applications	 7
Two-tier applications	 7
Three-tier applications	 8
N-tier applications	 9
Java Enterprise architecture	 11

Sharing the work	 12
Coordinate with the team	 13

Versioning tools	 13
Centralized versioning	 14
The architecture of SVN	 15
Distributed versioning	 17

Summary	 17
Chapter 2: Saying Hello to Java EE	 19

The enterprise as an application	 19
The Java EE platform	 20

Features of the Java EE platform	 21
The world of dotcoms	 22
Servlet – the dynamicity	 23
MVC I architecture	 24
MVC II architecture	 25

Table of Contents

[ii]

The practical aspect	 25
What is a framework?	 29
Spring MVC	 30

The components	 31
The front controller	 32
Spring MVC controller	 32
ModelAndView	 32
ViewResolver	 33
The configuration file	 33

Summary	 39
Chapter 3: Implementing the Presentation Layer	 41

Presentation	 41
Data binding	 43

Case 1 – Reading request parameters for searching	 43
Case 2 – Reading multiple form fields	 46

Form validation	 53
Developing customized validators using Spring validators	 54
Annotation-based validations	 59

Summary	 65
Chapter 4: Talking to the Database	 67

Persistence	 67
Using object serialization	 68

Disadvantages of using object serialization	 68
Storing data in XML	 68

Disadvantages of storing data in XML	 68
Saving the data in a relational database	 68

Advantages of saving data in a relational database	 69
Interaction of Java with relational databases	 69

Types of JDBC drivers	 70
JDBC-ODBC bridge driver	 70
JDBC Native API Driver/Partly Java Driver	 71
JDBC Net Protocol Driver	 72
All Java drivers	 73

Spring-JDBC integration	 76
Configuring DataSource in Spring JDBC	 77

Types of integration of JDBC	 78
Integrating the DataSource to get a connection reference	 79
Integrating the JDBC template	 82
Integrating JDBC DAO support	 84

Problems with JDBC	 86
Introduction to ORM	 86

Advantages of using ORM	 86
Introduction to Hibernate	 86

Hibernate architecture	 87

Table of Contents

[iii]

Spring Hibernate integration	 93
Introduction to unit testing	 98

Unit testing using JUnit	 98
Steps for writing a TestCase using annotation	 98

Summary	 102
Chapter 5: Developing the Business Layer	 103

Business logic	 104
Domain knowledge	 106
Rules, formulas, and conditions	 107
Case studies	 107
Developing the business layer	 107

Transaction management	 111
JDBC and transaction management	 112
Spring and transaction management	 112

Programmatic transaction	 113
Declarative transaction	 113

Declarative transaction management	 117
Programmatic transaction management	 119

Summary	 121
Chapter 6: Testing Your Application	 123

Software testing	 123
The waterfall model	 124
The spiral model	 125
The V model	 125

Verification phases	 126
Validation phases	 126

Mock testing	 127
Spring testing framework	 127

Case1 – Inserting contact with correct values as per validation rules	 128
Case2 – Inserting a contact by violating validation rules for contacts	 130

Why integration testing?	 133
Mockito testing	 141

Arquillian	 146
Summary	 147

Chapter 7: Securing the Application	 149
Make it safe, make it secure	 149
Spring security framework	 151

Secure web request	 152
Way 1 – Spring Security for URL using servlet filters	 153

Case 1 – Basic authentication	 157
Case 2 – Login form authentication	 161
Case 3 – Authentication against database	 163

Table of Contents

[iv]

Case 4 – Remember me	 165
Case 5 – Logout	 167

Way 2 – Spring Security using AOP	 168
@Secured	 168
@RolesAllowed	 168
SpEL-enabled security annotations for securing the methods	 169
Spring Security using pointcut	 171

Way 3 – Custom security	 172
Summary	 172

Chapter 8: Versioning and Deploying	 173
Versioning	 173

Collabnet server	 174
Visual SVN server	 180

Adding SVN as a plugin to Eclipse	 188
Adding files in the project and committing them to the repository	 193
Importing the project in the workspace	 194
Updating and tracking the project for latest changes in the repository	 196

Project deployment	 198
Copying a WAR file into Tomcat without Tomcat manager	 198
Copying a WAR file into Tomcat with Tomcat manager	 201

Summary	 203
Index	 205

[v]

Preface
Welcome to the world of Java EE development! A huge world, with a large number
of things to learn and so many skills to adapt. It's actually difficult to decide what to
start with. When I started, I faced a similar problem. Now, also when I am in training
sessions or seminars, I find many people who want be professional developers,
but don't have much exposure to the processes, stages, and thinking involved
in application development. This book helps you by providing a path for web
development that can used to understand the process of Java modular development
through an easy-to-understand case study. Nowadays, in Java EE, there are many
technologies in the market. One such technology is Spring.

Spring is useful for developing independent Java modules that can then be combined
to create a complete application. We have used Spring, Spring MVC, and many of its
features throughout the book, while discussing the concepts of database, unit testing,
security, and many other topics.

What this book covers
Chapter 1, Introducing Modular Programming, starts with a discussion about Enterprise
application, its architecture, and its development. Enterprise application development
is a team that activity faces many problems concerning collaboration between team
members. We will introduce coordinated development and the tools involved in
this chapter.

Chapter 2, Saying Hello to Java EE, involves a short warm up by discussing and
developing a Java web application using Servlet-JSP. We will redevelop the
application using a Spring to get startup gear as Spring MVC developer.

Chapter 3, Implementing the Presentation Layer, discusses the points that need to be
taken care of when developing the most important layer of an application: the
presentation layer. We will discuss how to develop the pages to incorporate data
binding for business logic, as well as for presentation, using Spring MVC features.

Preface

[vi]

Chapter 4, Talking to the Database, discusses Spring JDBC connectivity. Data collected
from the user and data to be used in the business logic need to be persisted. We
will also cover Spring DAO support persistency. We will then move on a step and
introduce Hibernate, the ORM technology, and its integration with Spring. We will
also cover unit testing to make sure our code is working fine.

Chapter 5, Developing the Business Layer, discusses the development of the most
important layer of an application—the business layer—and the communication
between the layers. An application needs to be developed by following a number
of business rules.

Chapter 6, Testing Your Application, explains that the modules developed by the
developer should produce the correct result. To ensure the correctness of the code
in this chapter, we will cover the basics of testing with the help of the V module.
We will also cover integration testing with JUnit and Mockito.

Chapter 7, Securing the Application, discusses why and how to secure the application.
In an application, there are certain modules that are open and available to all, and
some that are restricted. We will apply the Spring security module to secure the
Spring MVC application with the help of basic and form based security.

Chapter 8, Versioning and Deploying, shows us how to collaborate on the application,
which has been developed in parts, or by different team members simultaneously.
In this chapter, we will set up and integrate Tortoise SVN as a versioning tool used
to collaborate on the code. We will also discuss the creation of repositories, users,
and setting access rules for Collabnet and Visual SVN servers.

What you need for this book
You will need to have sound knowledge and practical exposure of core Java to
understand this book. Along with this, knowledge of basic JDBC and the concepts
of object-oriented programming language is required. As we are using Eclipse
IDE throughout the book, you should be familiar with it. Those who have an
introductory knowledge of Spring beginner framework can refer to this book easily.
If you are beginner for Spring, we suggest you first go through the basic concepts
of Spring configuration and get some practical experience. A basic knowledge of
Hibernate and JUnit will be an added advantage.

Preface

[vii]

Who this book is for
The idea for this book is to give the reader experience of creating an application
step by step using Java modular programming step by step. The book is useful for
any novice developer who wants to get exposure of modular Java development.
The book is also useful for anyone who wants to have a roadmap for developing
an application in stages such as problem statement, UI development, business logic
development, database layer development, and so on. The book covers all the aspects
of application development required into a turn a the problem statement to product,
with coverage of security, maintaining versions, and the deployment process.

Conventions
In this book, you will find a number of text styles that distinguish between different
kinds of information. Here are some examples of these styles and an explanation of
their meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows:
"Every object created based on this type will inherit these default properties such
as toString, valueOf, hasOwnProperty, and so on."

A block of code is set as follows:
function doAddition(num1, num2){
 return num1 + num2;
}
function doSubtraction(num1, num2){
 var result = null;
 if(num1 > num2){
 result = num1 - num2;

 }else{
 result = num2 - num1;
 }
 return result;
}

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Preface

[viii]

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or disliked. Reader feedback is important for us as it helps
us develop titles that you will really get the most out of.

To send us general feedback, simply e-mail feedback@packtpub.com, and mention
the book's title in the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide at www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Downloading the example code
You can download the example code files for this book from your account at
http://www.packtpub.com. If you purchased this book elsewhere, you can
visit http://www.packtpub.com/support and register to have the files e-mailed
directly to you.

You can download the code files by following these steps:

1.	 Log in or register to our website using your e-mail address and password.
2.	 Hover the mouse pointer on the SUPPORT tab at the top.
3.	 Click on Code Downloads & Errata.
4.	 Enter the name of the book in the Search box.
5.	 Select the book for which you're looking to download the code files.
6.	 Choose from the drop-down menu where you purchased this book from.
7.	 Click on Code Download.

You can also download the code files by clicking on the Code Files button on the
book's webpage at the Packt Publishing website. This page can be accessed by
entering the book's name in the Search box. Please note that you need to be
logged in to your Packt account.

www.packtpub.com/authors
http://www.packtpub.com
http://www.packtpub.com/support

Preface

[ix]

Once the file is downloaded, please make sure that you unzip or extract the folder
using the latest version of:

•	 WinRAR / 7-Zip for Windows
•	 Zipeg / iZip / UnRarX for Mac
•	 7-Zip / PeaZip for Linux

The code bundle for the book is also hosted on GitHub at https://github.com/
PacktPublishing/Learning-Modular-Java-Programming. We also have other
code bundles from our rich catalog of books and videos available at https://
github.com/PacktPublishing/. Check them out!

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in the text or
the code—we would be grateful if you could report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
book. If you find any errata, please report them by visiting http://www.packtpub.
com/submit-errata, selecting your book, clicking on the Errata Submission Form
link, and entering the details of your errata. Once your errata are verified, your
submission will be accepted and the errata will be uploaded to our website or
added to any list of existing errata under the Errata section of that title.

To view the previously submitted errata, go to https://www.packtpub.com/books/
content/support and enter the name of the book in the search field. The required
information will appear under the Errata section.

Piracy
Piracy of copyrighted material on the Internet is an ongoing problem across all
media. At Packt, we take the protection of our copyright and licenses very seriously.
If you come across any illegal copies of our works in any form on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors and our ability to bring you
valuable content.

https://github.com/PacktPublishing/Learning-Modular-Java-Programming
https://github.com/PacktPublishing/Learning-Modular-Java-Programming
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support

Preface

[x]

Questions
If you have a problem with any aspect of this book, you can contact us at
questions@packtpub.com, and we will do our best to address the problem.

[1]

Introducing Modular
Programming

Software development is a complex, time-consuming process, where success
depends on teamwork. We keep on talking about software or software development.
Sometimes we are part of the process as well. But we will be in one of the roles as
architect, developer, tester, or deployer. Though we are always concentrating on a
role, knowing the overall process always benefits us.

In this chapter, we will be going through the following topics:

•	 What is software and software development?
•	 What are enterprise applications?
•	 The role of modular programming in enterprise applications
•	 Introduction to and the importance of versioning

Software – the perspective
A software application is a program which enables end users to perform a specific
task, for example, online money transfer, and withdrawal of money from an ATM
or the use of an Eclipse to develop an application. This application is complex,
scalable, and distributed, providing a complete solution to the end user. Applications
known as enterprise applications are needs-based, providing solutions to business
requirements rather than to an individual. The organization will use this application
or integrate it within an existing application.

Introducing Modular Programming

[2]

Enterprise applications may vary from business to business, for example, school or
employee management systems, banking applications, online shopping applications,
or e-commerce applications. All such enterprise applications provide displaying,
processing, and storing data as their basic feature. Along with these features, the
application can also provide transaction management and security services as
advanced features. We access such applications typically through a network
system rather than on an individual machine.

Let's briefly discuss the software development process before moving ahead:

•	 The software is always a solution or part of the solution to an enterprise
problem. A good start in the development process is knowing exactly
what the expectations are from the software, what types of solutions need
to be included, what the data input will be, and what the output from the
application is. This phase will be called the requirement collection phase.

•	 Once we get an idea about the requirements, now it's time to decide the
hardware specification, the system requirements, the architecture to use,
the design to follow, and so on. This phase is called designing.

•	 Using the design document, now developers will come in action to start
a very important phase called development, where the actual coding
takes place.

•	 Suppose we have developed a product; how do we prove that it is the right
solution for the requirements which we got in the first phase? Yes, with the
help of testing. We can carry out unit testing, integration testing, assembly
testing, and acceptance testing to ensure that the requirement has been met.

•	 After successful testing, now it's time for the user to use it. This is nothing
but the deployment phase, after which it is ready for use.

•	 Talking in terms of one phase after deployment, the work is over but what
if any runtime issue emerges? What if the client recommends some minor or
major changes? Or what if it has a bug? Because of this, post-deployment is
also a very important step, which we call maintenance.

Although these phases theoretically come one after another, there can be different
approaches called software development process models, such as the waterfall
model, iterative model, spiral model, v model, agile model, and so on.

Chapter 1

[3]

Modules
Application development is composed of many interconnected parts which interact
with each other. To withstand high market demand and increasing competition,
software should have a good look and feel, and ease of use. To develop a compatible
solution, the developer has to think about compound structure as well as user
perspective. It's quite difficult to develop such a product single-handed. It's
teamwork, where the development is running alongside. The team members
will build up separate small modules dedicated to part of the actual solution.
These small modules will be clubbed together and interact with each other to
form a complete solution.

What is behind and in a module?
Each module which has been developed will be performing a unique responsibility.
When a module is responsible for a single task, it will be called cohesive. The
cohesiveness will make the module more maintainable. Also, it will be less
frequently changed. A good design perspective is to try writing a module which
will be highly cohesive.

The two modules developed separately will now need to have interaction. To make
them interactive, we have to introduce them. This will be done by making them
dependent on each other. This dependency is termed coupling. When the code size
and number of modules are small, coupling won't be a problem. But in an enterprise
application, the code size is huge. Any little change makes a difference and then
all of its dependencies should be changed accordingly at a number of places.
This makes the code unmanageable. So it's always recommended to have loosely
coupled modules.

The practical aspect
Let's take the example of a desktop, the one which we use in our routine. A desktop
consists of a monitor, CPU, keyboard, and mouse. If a new monitor with some
advanced features is introduced in the market, what we will do? Will we buy
a new desktop or just replace the monitor?

As per the convenience and also the cost, it's feasible to just replace the monitor
and not the whole desktop; how come this is possible? It's possible because the
desktop is assembled with subunits, which are easily replaceable. Each subunit is
cohesive for the work and they are not tightly coupled. This happens when we use
modularization. When we write an application that uses similar concepts, it is called
modular programming.

Introducing Modular Programming

[4]

The gang – modular programming
Modular programming is the process of dividing a problem into smaller subunits and
then making them interact with each other. Each subunit will revolve around a part
of the problem. These subparts are quite easily reusable or replaceable. This designing
technique gives a helping hand to the developers to develop their individual units
and later combine them. Each subpart can be termed a module. The developers do
not need to know what the other modules are or how they have been developed.
Modularizing the problem will help the developers to achieve high cohesion.

The world of modules
The pluggable component which can be easily integrated into the application will
provide the solution to a particular problem. For example, we want an Eclipse to
support Subversion (SVN) (one of the versioning tools). Now, we have two choices.
One, to start the development of Eclipse again from scratch or, two, to develop an
SVN application. If we choose the first choice, it's very time-consuming and we
already have Eclipse in a working condition. Then why start it from scratch? Yes,
it's a very bad idea. But it would be great to have an SVN solution to be developed
separately which is an SVN plugin; this plug-in can be easily integrated into eclipse.
See how easily the two modules— eclipse, which was in working and the new SVN
module—have been integrated. As SVN is a separate module, it can be integrated
with NetBeans (one of the IDEs). If we had developed it in eclipse, then it would not
be possible to integrate it in any other IDE. When we develop any application, from
our point of view, it's always the best. But being a good developer, we need to be
sure of it. How to check whether the application we have developed is working fine
for the aspects or not? Yes, we need to test it, whether each part is working correctly
or not. But is it really so simple? No, it's not. Not just because of complicated logic
but due to its dependency. Dependency is a factor which is not under the control of
the developer. For example, we need to check whether my credentials are correct
or not when I am trying to login. We don't want to test the tables where the data is
stored, but we want to check whether the logic of tracking the data is correct or not.
As we have developed a separate data access module, the testing becomes easy. In
Java, a single functionality can be tested with JUnit.

Testing helps the developer to test an application which processes the data and
provides an output. If we are getting the correct result, we do not have a problem,
but what if the output is wrong? The process of finding bugs in a module is called
debugging. The debugging helps us to find defects in an application. That means we
need to track the flow and then find out where the problem started. It's quite difficult
to find the defect if the system is without modules or if the modules are tightly
coupled. So it's good programming practice to write an application which consists
of highly cohesive, loosely coupled modules.

Chapter 1

[5]

There is one more fact which we need to discuss here. Sometimes, when the actual
main development is progressing, we come across a point where we actually want
to add a new feature. This new feature was not added while the basic discussion
was going on; here, we want to do parallel development. In this case, we don't want
to replace the previous development but we want to support or enhance it. As our
application consists of modules, a developer can go ahead as most of these modules
are independent and can be reused.

Tiers and layers in an enterprise
application
An enterprise application is an application which has been developed to fulfill
the requirements of a business. Being an enterprise application, it normally has
huge code. Maintaining such huge code all together is a very complex task. Also,
developing the code takes lots of time. So the code is been divided into small,
maintainable modules which can be easily developed separately and later on
combined to give a final product. All modules which provide similar kind of
functionality will be grouped together to form a layer. These layers are the logical
separation of modules. But sometimes, for better performance, one layer can be
also spread over the network.

Layers are a logical separation of the code to increase maintainability. But when we
physically move one typical layer and deploy it on another machine, then it will be
called as a tier. At any one time, many users will be using the enterprise application
simultaneously, so the use of a tiered application provides good performance.

Let's consider a web module for login. The user will open the browser and the
login page will be rendered. The user will enter their credentials (username and
password). After submitting the form, a request will be sent to the server to perform
the authentication. Once the data is received on the server side, the business logic
layer will process the data and put the result in the response. The result depends
on whether the credentials are present in database or not.

Introducing Modular Programming

[6]

Finally, the response will be generated and the result will be sent back to the
browser. Here, the user interface, business logic, and database are the three distinct
features involved. These are called as the presentation layer, business logic layer,
and data storage layer, respectively.

Presentation layer Business logic layer Data storeClient

Response

Request

Layers in an enterprise application

Each of these layers will talk with the above layer and exchange data. The process
broadly takes place as follows:

•	 The user will open the browser and hit the URL.
•	 A login page will be rendered on the browser. The user will fill in the form

and submit it to be processed by the business logic layer.
•	 To check the data, the business logic layer will communicate with the data

storage layer.
•	 According to the result returned from the data storage layer, the business

logic layer will now send the result to the presentation layer and the client's
browser will render the results page.

Now we understand the difference between a tier and a layer, let's discuss tiers
in detail. Depending on how many physical separations one application is using,
it will be called a one-tier, two-tier, or multi-tier application.

