

Learning Android Application
Testing

Improve your Android applications through intensive
testing and debugging

Paul Blundell

Diego Torres Milano

BIRMINGHAM - MUMBAI

Learning Android Application Testing

Copyright © 2015 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the authors, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: June 2011

Second edition: March 2015

Production reference: 1240315

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78439-533-9

www.packtpub.com

Credits

Authors
Paul Blundell

Diego Torres Milano

Reviewers
BJ Peter DeLaCruz

Noureddine Dimachk

Miguel L Gonzalez

Henrik Kirk

Sérgio Lima

João Trindade

Commissioning Editor
Taron Pereira

Acquisition Editor
Rebecca Youé

Content Development Editor
Manasi Pandire

Technical Editor
Indrajit A. Das

Copy Editors
Khushnum Mistry

Alfida Paiva

Vikrant Phadke

Adithi Shetty

Project Coordinator
Suzanne Coutinho

Proofreaders
Simran Bhogal

Joanna McMahon

Indexer
Hemangini Bari

Graphics
Valentina D'silva

Production Coordinator
Alwin Roy

Cover Work
Alwin Roy

About the Authors

Paul Blundell is an aspiring software craftsman and senior Android developer
at Novoda. Before Novoda, he worked at AutoTrader and Thales, with apps that
he released racking up over one million downloads. A strong believer in software
craftsmanship, SOLID architecture, clean code, and testing, Paul has used this
methodology to successfully nurture and create many Android applications. These
include the Tesco launcher app, which was preinstalled for the recently released
Hudl2 tablet; MUBI, a unique film streaming service; and the AutoTrader UK car
search app.

If anyone wants to provide feedback, you can always tweet to him @blundell_
apps. He also likes to write, so you can find more material at http://blog.
blundellapps.com/.

I'd like to thank everyone at Novoda for being great guys/gals and
helping each other all the time to learn and develop. Without the
atmosphere of craftsmanship and constant learning, my skills and
this book would not have been possible. Also, I'd like to thank my
girlfriend for her endless patience. Every time she asked me to help
her out, I'd give her the excuse of writing my book. Well, no more
excuses because it is finished!

I'd like to acknowledge the legacy author of this book Diego Torres
Milano for doing a great job. The chapters outlined are down to your
insight into the world of testing on Android, and I hope my rewrite
lives up to your ideals.

Finally, I'd like to thank all the people who don't know me but from
whom I've learnt a lot. If you, as the reader, want a list of other
authors for further research, this is it: Kent Beck, Martin Fowler,
Robert C Martin, Romain Guy, Reto Meier, Mark Murphy, Eric
Evans, Joshua Block, Ward Cunningham, Kevin Rutherford, JB
Rainsberger, and Sandro Mancuso.

http://blog.blundellapps.com/
http://blog.blundellapps.com/

Diego Torres Milano has been involved with the Android platform since
its inception, by the end of 2007, when he started exploring and researching the
platform's possibilities, mainly in the areas of user interfaces, unit and acceptance
tests, and Test-driven Development.

This is reflected by a number of articles mainly published on his personal
blog (http://dtmilano.blogspot.com), and his participation as a lecturer in
some conferences and courses, such as Mobile Dev Camp 2008 in Amsterdam
(Netherlands) and Japan Linux Symposium 2009 (Tokyo), Droidcon London 2009,
and Skillsmatter 2009 (London, UK). He has also authored Android training courses
delivered to various companies in Europe.

Previously, he was the founder and developer of several open source projects,
mainly CULT Universal Linux Thin Project (http://cult-thinclient.sf.net) and
the very successful PXES Universal Linux Thin Client project (that was later acquired
by 2X Software, http://www.2x.com). PXES is a Linux-based operating system
specialized for thin clients, used by hundreds of thousands of thin clients all over
the world. This project has a popularity peak of 35 million hits and 400K downloads
from SourceForge in 2005. This project had a dual impact. Big companies in Europe
decided to use it because of improved security and efficiency; and organizations,
institutions, and schools in some development countries in South America, Africa,
and Asia decided to use it because of the minimal hardware requirements, having a
huge social impact of providing computers, sometimes recycled ones, to everyone.

Among the other open source projects that he founded are Autoglade, Gnome-tla,
and JGlade, and he has contributed to various Linux distributions, such as RedHat,
Fedora, and Ubuntu.

He has also given presentations at the LinuxWorld, LinuxTag, GUADEC ES,
University of Buenos Aires, and so on.

Diego has also developed software, participated in open source projects, and advised
companies worldwide for more than 15 years.

He can be contacted at dtmilano@gmail.com.

http://dtmilano.blogspot.com
http://cult-thinclient.sf.net
http://www.2x.com

About the Reviewers

BJ Peter DeLaCruz graduated with a master's degree in computer science from
the University of Hawaii at Manoa. In 2011, he began his career as a software
developer at Referentia Systems Inc. in Honolulu, Hawaii. At Referentia, he assisted
in the development of the LiveAction product. After working at Referentia for 2.5
years, he was hired as a Java web developer by the University of Hawaii. Between
fall 2014 and spring 2015 semesters, he upgraded Laulima (http://laulima.
hawaii.edu), the learning management system that the university uses for
traditional face-to-face, online, and hybrid classes.

BJ holds three Java certifications, including the Oracle Certified Master, Java SE 6
Developer certification.

He is a successful Android developer. As of January 2015, he has published seven
Android apps on Google Play. His latest app, Chamorro Dictionary, is an excellent
learning tool for the Chamorro language. You can check out his apps at http://
tinyurl.com/google-play-bpd.

BJ really likes Gradle because it makes building applications very easy. He was a
reviewer for Gradle in Action.

His hobbies include learning the Japanese language, reading books about Japanese
culture, and making YouTube videos. You can contact him at bj.peter.delacruz@
gmail.com. You can also visit his website at http://www.bjpeter.com.

I want to thank God for giving me the opportunity to review this
book. I also want to thank Nikita Michael for inviting me to become
a reviewer and Suzanne Coutinho for sending all the chapters to
review. Arigatou gozaimasu!

http://laulima.hawaii.edu
http://laulima.hawaii.edu
http://tinyurl.com/google-play-bpd
http://tinyurl.com/google-play-bpd
http://www.bjpeter.com

Noureddine Dimachk is a passionate video gamer since birth. Noureddine
started building games using The Games Factory when he was just 10 years old.

Today, he leads a multinational team of 17 enthusiastic developers spread across
Lebanon, Argentina, and India to build cutting-edge applications that serve millions
of concurrent GSM subscribers, in addition to mobile applications.

A geek by nature, Noureddine likes to experiment with new technologies in his
spare time, and he's a passionate Dota 2 player.

I would like to thank my amazing wife for standing by me and
supporting me in my technical ventures.

Miguel L Gonzalez is a Spanish software engineer working in the United Kingdom
since 2010. He took his first programming course at the early age of eight, and it has
been his main passion and hobby since then. He soon became attracted to the Web and
Internet, which lead him to study telecommunications engineering.

He has worked as a researcher in the university, designing accessible hardware
and wireless sensor networks, teaching web development, developing a mixture
of Java hardware, desktops, and web apps, and is the head of development in an
agency. Since the time he arrived in the UK, he has mainly focused on web and
native development for mobiles, and he developed a few Android and iOS apps in
coANDcoUK. In 2013, he joined BBC to work on iPlayer, BBC's catch-up service. It
was here that he became more serious about unit testing, behavioral testing, and how
to drive success via continuous integration.

He tries to keep improving his projects, which can be found at http://github.
com/ktzar and maintain his personal website, http://mentadreams.com. Since his
son Alex was born, the spare time for side projects has been reduced, but his wife,
Dalia, helps him to find time for them. Nevertheless, he's looking forward to playing
Monkey Island, designing games, playing the guitar, and traveling the world with his
offspring in a few years time.

http://github.com/ktzar
http://github.com/ktzar
http://mentadreams.com

Henrik Kirk holds a master's degree in computer science from Aarhus University
and has over 5 years of experience in Android application development. He is
curious about new technologies and has been using Scala as well as Java for Android
development. He also enjoys optimizing the user experience through speed and
responsive design. He is currently employed as the lead developer at Lapio, creating
an awesome timing and race experience for athletes in the US and Europe. In his
spare time, he races his mountain bike.

Sérgio Lima is a software engineer and an airplane pilot. It's easy to see that he's
a very ambitious person with broad and, at the same time, specific interests. He
currently works at a Portuguese company that aims to revolutionize the world with
telecom and mobile applications. His curriculum started with a master's degree in
electronics and telecommunications and he specialized in computer programming
and computer vision. After working at some institutions in Portugal, he worked at
CERN in Switzerland, before returning to his home country.

He also loves to fly small planes, such as the Piper "Cherokee" and "Tomahawk",
from the nearby aerodrome, to see Portugal from above, admire the radiant sceneries
of the country, and experience the freedom of flying.

I would like to thank my family and specially my wonderful
princess, "Kika", for her patience, support, and love during the
process of reviewing this book.

João Trindade is a software developer who specializes in developing
Android apps.

Currently, he is part of a startup in Milan that tracks your mobile phone usage
and suggests the best tariff plan for your needs.

He completed his PhD in computer engineering at Lisbon Tech and is interested
in everything related to mobile development, software testing, docker containers,
or cloud computing.

For 6 years he was a researcher involved in multiple international research
projects and has published 18 peer reviewed articles.

His twitter handler is @joaotrindade and his personal web page is
http://joaoptrindade.com.

He contributes to various open source products on GitHub. You can see his
profile at http://github.com/joninvski.

www.PacktPub.com

Support files, eBooks, discount offers, and more
For support files and downloads related to your book, please visit www.PacktPub.com.

Did you know that Packt offers eBook versions of every book published, with PDF
and ePub files available? You can upgrade to the eBook version at www.PacktPub.
com and as a print book customer, you are entitled to a discount on the eBook copy.
Get in touch with us at service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign
up for a range of free newsletters and receive exclusive discounts and offers on Packt
books and eBooks.

TM

https://www2.packtpub.com/books/subscription/packtlib

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital
book library. Here, you can search, access, and read Packt's entire library of books.

Why subscribe?
• Fully searchable across every book published by Packt
• Copy and paste, print, and bookmark content
• On demand and accessible via a web browser

Free access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view 9 entirely free books. Simply use your login credentials for
immediate access.

[i]

Table of Contents
Preface vii
Chapter 1: Getting Started with Testing 1

Why, what, how, and when to test? 1
What to test 4

Activity lifecycle events 4
Database and filesystem operations 4
Physical characteristics of the device 4

Types of tests 5
Unit tests 6

The setUp() method 7
The tearDown() method 7
Outside the test method 7
Inside the test method 7

Integration tests 9
UI tests 10

Functional or acceptance tests 10
Test case scenario 12

Performance tests 12
System tests 13

Android Studio and other IDE support 13
Java testing framework 14
Android testing framework 14

Instrumentation 15
Gradle 16
Test targets 17

Creating the Android project 17
Package explorer 19
Creating a test case 20
Test annotations 22
Running the tests 23

Table of Contents

[ii]

Running all tests from Android Studio 23
Running a single test case from your IDE 25
Running from the emulator 25
Running tests from the command line 26
Running all tests 27
Running tests from a specific test case 28
Running a specific test by name 28
Running specific tests by category 29
Running tests using Gradle 29

Debugging tests 31
Other command-line options 31

Summary 32
Chapter 2: Understanding Testing with the Android SDK 33

The demonstration application 34
Assertions in depth 35

Custom messages 36
Static imports 37

View assertions 37
Even more assertions 39
The TouchUtils class 41
Mock objects 42

An overview of MockContext 43
The IsolatedContext class 43
Alternate route to file and database operations 44
The MockContentResolver class 44

The TestCase base class 45
The default constructor 45
The given name constructor 46
The setName() method 46

The AndroidTestCase base class 46
The assertActivityRequiresPermission() method 46

Description 47
Example 47

The assertReadingContentUriRequiresPermission method 47
Description 48
Example 48

The assertWritingContentUriRequiresPermission() method 48
Description 48
Example 49

Instrumentation 49
The ActivityMonitor inner class 50

Example 50

Table of Contents

[iii]

The InstrumentationTestCase class 51
The launchActivity and launchActivityWithIntent methods 52
The sendKeys and sendRepeatedKeys methods 52
The runTestOnUiThread helper method 54

The ActivityTestCase class 54
The scrubClass method 55

The ActivityInstrumentationTestCase2 class 56
The constructor 56
The setUp method 56
The tearDown method 57

The ProviderTestCase2<T> class 58
The constructor 58
An example 58

The ServiceTestCase<T> 59
The constructor 59

The TestSuiteBuilder.FailedToCreateTests class 59
Using libraries in test projects 60
Summary 62

Chapter 3: Baking with Testing Recipes 63
Android unit tests 63
Testing activities and applications 64

Mocking applications and preferences 64
The RenamingMockContext class 65
Mocking contexts 66

Testing activities 68
Testing files, databases, and content providers 71

The BrowserProvider tests 74
Testing exceptions 79
Testing local and remote services 80
Extensive use of mock objects 81

Importing libraries 83
Mockito usage example 83
The EditNumber filter tests 83

Testing views in isolation 87
Testing parsers 89

Android assets 89
The parser test 90
Testing for memory usage 91
Testing with Espresso 93
Summary 96

Table of Contents

[iv]

Chapter 4: Managing Your Android Testing Environment 97
Creating Android Virtual Devices 97
Running AVDs from the command line 99

Headless emulator 99
Disabling the keyguard 101
Cleaning up 101
Terminating the emulator 102

Additional emulator configurations 102
Simulating network conditions 103

Speeding up your AVD with HAXM 105
Alternatives to the AVD 106
Running monkey 106

The client-server monkey 107
Test scripting with monkeyrunner 109

Getting test screenshots 110
Record and playback 111

Summary 113
Chapter 5: Discovering Continuous Integration 115

Building Android applications manually using Gradle 116
Git – the fast version control system 119

Creating a local Git repository 120
Continuous integration with Jenkins 121

Installing and configuring Jenkins 121
Creating the jobs 122
Obtaining Android test results 126

Summary 129
Chapter 6: Practicing Test-driven Development 131

Getting started with TDD 131
Writing a test case 133
Running all tests 133
Refactoring the code 133
Advantages of TDD 134
Understanding the requirements 134

Creating a sample project – the temperature converter 135
List of requirements 135
User interface concept design 136

Creating the project 136
Creating a Java module 137
Creating the TemperatureConverterActivityTests class 139

Creating the fixture 140

Table of Contents

[v]

Creating the user interface 141
Testing the existence of the user interface components 142
Getting the IDs defined 142
Translating requirements to tests 144

Empty fields 144
View properties 145

Screen layout 150
Adding functionality 151

Temperature conversion 151
The EditNumber class 152
The TemperatureConverter unit tests 155
The EditNumber tests 160
The TemperatureChangeWatcher class 165
More TemperatureConverter tests 169
The InputFilter tests 171

Viewing our final application 172
Summary 174

Chapter 7: Behavior-driven Development 175
Given, When, and Then 176
FitNesse 176

Running FitNesse from the command line 177
Creating a TemperatureConverterTests subwiki 178

Adding child pages to the subwiki 179
Adding the acceptance test fixture 180
Adding the supporting test classes 181

GivWenZen 184
Creating the test scenario 185

Summary 192
Chapter 8: Testing and Profiling Performance 193

Ye Olde Logge method 194
Timing logger 196
Performance tests in Android SDK 198

Launching the performance test 198
Creating the LaunchPerformanceBase instrumentation 198
Creating the TemperatureConverterActivityLaunchPerformance class 199

Running the tests 200
Using the Traceview and dmtracedump platform tools 202
Dmtracedump 206
Microbenchmarks 209

Caliper microbenchmarks 209

Table of Contents

[vi]

Benchmarking the temperature converter 210
Running Caliper 212

Summary 214
Chapter 9: Alternative Testing Tactics 215

Code coverage 215
Jacoco features 216

Temperature converter code coverage 217
Generating code coverage analysis report 218
Covering the exceptions 222

Introducing Robotium 224
Adding Robotium 224
Creating the test cases 224

The testFahrenheitToCelsiusConversion() test 225
Testing between Activities 226

Testing on the host's JVM 228
Comparing the performance gain 229
Adding Android to the picture 230

Introducing Robolectric 230
Installing Robolectric 231
Adding resources 232
Writing some tests 233

Google's march on shadows 235
Introducing Fest 235
Introducing Spoon 237
Introducing Fork 238
Summary 239

Index 241

[vii]

Preface
It doesn't matter how much time you invest in Android design, or even how careful
you are when programming, mistakes are inevitable and bugs will appear. This
book will help you minimize the impact of these errors in your Android project and
increase your development productivity. It will show you the problems that are
easily avoided, to help get you quickly to the testing stage.

Android Application Testing Guide is the first and only book providing a practical
introduction to the most commonly available techniques, frameworks, and tools
to improve the development of your Android applications. Clear, step-by-step
instructions show how to write tests for your applications and assure quality control
using various methodologies.

The author's experience in applying application testing techniques to real-world
projects enables him to share insights on creating professional Android applications.

The book covers the basics of framework support for tests to architectures and
techniques such as Test-driven Development, which is an agile component of the
software development process and a technique where you will tackle bugs early
on. From the most basic unit tests applied to a sample project to more sophisticated
performance tests, this book provides a detailed description of the most widely used
techniques in the Android testing world in a recipe-based approach.

The author has extensive experience of working on various development projects
throughout his professional career. All this research and knowledge has helped
create a book that will serve as a useful resource to any developer navigating the
world of Android testing.

Preface

[viii]

What this book covers
Chapter 1, Getting Started with Testing, introduces the different types of testing and
their applicability to software development projects in general and to Android in
particular. It then goes on to cover testing on the Android platform, unit testing and
JUnit, creating an Android test project and running tests.

Chapter 2, Understanding Testing with the Android SDK, starts digging a bit deeper
to recognize the building blocks available to create the tests. It covers Assertions,
TouchUtils, which are intended to test user interfaces, mock objects, instrumentation,
and TestCase class hierarchies.

Chapter 3, Baking with Testing Recipes, provides practical examples of different
situations you will commonly encounter while applying the disciplines and
techniques described before. The examples are presented in a cookbook style so
you can adapt and use them for your projects. The recipes cover Android unit tests,
activities, applications, databases and ContentProviders, services, UIs, exceptions,
parsers, memory leaks, and a look at testing with Espresso.

Chapter 4, Managing Your Android Testing Environment, provides different conditions
to run the tests. It starts with the creation of the Android Virtual Devices (AVD) to
provide different conditions and configurations for the application under test and
runs the tests using the available options. Finally, it introduces monkey as a way to
generate simulated events used for testing.

Chapter 5, Discovering Continuous Integration, introduces this agile technique for
software engineering and automation that aims to improve the software quality and
reduce the time taken to integrate changes by continuously applying integration and
testing frequently.

Chapter 6, Practicing Test-driven Development, introduces the Test-driven Development
discipline. It starts with a general revision and later on moves to the concepts and
techniques closely related to the Android platform. This is a code-intensive chapter.

Chapter 7, Behavior-driven Development, introduces Behavior-driven Development and
some concepts, such as the use of a common vocabulary to express the tests and the
inclusion of business participants in the software development project.

Chapter 8, Testing and Profiling Performance, introduces a series of concepts related to
benchmarking and profiles from traditional logging statement methods to creating
Android performance tests and using profiling tools.

Preface

[ix]

Chapter 9, Alternative Testing Tactics, covers adding code coverage to ensure you
know what is tested and what isn't, as well as testing on the host's Java Virtual
Machine, investigating Fest, Spoon, and the future of Android testing to build upon
and expand your Android testing range.

What you need for this book
To be able to follow the examples in the different chapters, you need a common set
of software and tools installed and several other components that are described in
every chapter in particular, including their respective download locations.

All the examples are based on the following:

• Mac OSX 10.9.4, fully updated
• Java SE version 1.6.0_24 (build 1.6.0_24-b07)
• Android SDK tools, revision 24
• Android SDK platform-tools, revision 21
• SDK platform Android 4.4, API 20
• Android support library, revision 21
• Android Studio IDE, Version: 1.1.0
• Gradle version 2.2.1
• Git version 1.8.5.2

Who this book is for
If you are an Android developer looking to test your applications or optimize your
application development process, then this book is for you. No previous experience
in application testing is required.

Conventions
In this book, you will find a number of styles of text that distinguish between
different kinds of information. Here are some examples of these styles, and an
explanation of their meaning.

Code words in text are shown as follows: "To invoke the am command we will be
using the adb shell command".

Preface

[x]

A block of code is set as follows:

dependencies {
 compile project(':dummylibrary')
}

When we wish to draw your attention to a particular part of a code block, the
relevant lines or items are set in bold:

fahrenheitEditNumber
.addTextChangedListener(
newFehrenheitToCelciusWatcher(fahrenheitEditNumber,
 celsiusEditNumber));
}

Any command-line input or output is written as follows:

junit.framework.ComparisonFailure: expected:<[]> but was:<[123.45]>

at com.blundell.tut.EditNumberTests.testClear(EditNumberTests.java:31)

at java.lang.reflect.Method.invokeNative(Native Method)

at android.test.AndroidTestRunner.runTest(AndroidTestRunner.java:191)

New terms and important words are shown in bold. Words that you see on the
screen, in menus or dialog boxes for example, appear in the text like this: "The first
test performs a click on the Go button of the Forwarding Activity."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or disliked. Reader feedback is important for us as it helps
us develop titles that you will really get the most out of.

To send us general feedback, simply e-mail feedback@packtpub.com, and mention
the book's title in the subject of your message.

Preface

[xi]

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide at www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Downloading the example code
You can download the example code files from your account at http://www.
packtpub.com for all the Packt Publishing books you have purchased. If you
purchased this book elsewhere, you can visit http://www.packtpub.com/support
and register to have the files e-mailed directly to you.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in the text or
the code—we would be grateful if you could report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
book. If you find any errata, please report them by visiting http://www.packtpub.
com/submit-errata, selecting your book, clicking on the Errata Submission Form
link, and entering the details of your errata. Once your errata are verified, your
submission will be accepted and the errata will be uploaded to our website or added
to any list of existing errata under the Errata section of that title.

To view the previously submitted errata, go to https://www.packtpub.com/books/
content/support and enter the name of the book in the search field. The required
information will appear under the Errata section.

www.packtpub.com/authors
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com/support
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support

Preface

[xii]

Piracy
Piracy of copyrighted material on the Internet is an ongoing problem across all
media. At Packt, we take the protection of our copyright and licenses very seriously.
If you come across any illegal copies of our works in any form on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors and our ability to bring you
valuable content.

Questions
If you have a problem with any aspect of this book, you can contact us at
questions@packtpub.com, and we will do our best to address the problem.

Questions
You can contact us at questions@packtpub.com if you are having a problem with
any aspect of the book, and we will do our best to address it.

[1]

Getting Started with Testing
Firstly, I will avoid introductions to Android since it is covered in many books
already, and I am inclined to believe that if you are reading a book that covers this
more advanced topic, you will have already started with Android development.

I will be reviewing the main concepts behind testing, and the techniques,
frameworks, and tools available to deploy your testing strategy on Android.

After this overview, we can put the concepts learned into practice. In this chapter we
will cover:

• Setting up the infrastructure to test on Android
• Running unit tests using JUnit
• Creating an Android instrumentation test project
• Running multiple tests

We will be creating a simple Android project and its companion tests. The main
project will be bare bones so that you can concentrate on the testing components.

I would suggest that new developers with no Android testing experience read
this book. If you have more experience with Android projects and have been
using testing techniques for them, you might read this chapter as a revision or
reaffirmation of the concepts.

Why, what, how, and when to test?
You should understand that early bug detection saves a huge amount of project
resources and reduces software maintenance costs. This is the best known reason to
write tests for your software development project. Increased productivity will soon
be evident.

Getting Started with Testing

[2]

Additionally, writing tests will give you a deeper understanding of the requirements
and the problem to be solved. You will not be able to write tests for a piece of
software you don't understand.

This is also the reason behind the approach of writing tests to clearly understand
legacy or third-party code and having the testing infrastructure to confidently
change or update the codebase.

The more the code is covered by your tests, the higher the likelihood of discovering
hidden bugs.

If, during this coverage analysis, you find that some areas of your code are not
exercised, additional tests should be added to cover this code as well.

To help in this request, enter Jacoco (http://www.eclemma.org/jacoco/), an open
source toolkit that measures and reports Java code coverage. It supports various
coverage types, as follows:

• Class
• Method
• Block
• Line

Coverage reports can also be obtained in different output formats. Jacoco is
supported to some degree by the Android framework, and it is possible to build a
Jacoco instrumented version of an Android app.

We will be analyzing the use of Jacoco on Android to guide us to full test coverage of
our code in Chapter 9, Alternative Testing Tactics.

This screenshot shows how a Jacoco code coverage report is displayed as an HTML
file that shows green lines when the code has been tested:

http://www.eclemma.org/jacoco/

Chapter 1

[3]

By default, the Jacoco gradle plugin isn't supported in Android Studio; therefore,
you cannot see code coverage in your IDE, and so code coverage has to be viewed as
separate HTML reports. There are other options available with other plugins such as
Atlassian's Clover or Eclipse with EclEmma.

Tests should be automated, and you should run some or all tests every time you
introduce a change or addition to your code in order to ensure that all the conditions
that were met before are still met, and that the new code satisfies the tests as
expected.

This leads us to the introduction of Continuous Integration, which will be discussed
in detail in Chapter 5, Discovering Continuous Integration, enabling the automation of
tests and the building process.

If you don't use automated testing, it is practically impossible to adopt Continuous
Integration as part of the development process, and it is very difficult to ensure that
changes would not break existing code.

Having tests stops you from introducing new bugs into already completed features
when you touch the code base. These regressions are easily done, and tests are a
barrier to this happening. Further, you can now catch and find problems at compile
time, that is, when you are developing, rather than receiving them as feedback when
your users start complaining.

Getting Started with Testing

[4]

What to test
Strictly speaking, you should test every statement in your code, but this also depends
on different criteria and can be reduced to testing the main path of execution or just
some key methods. Usually, there's no need to test something that can't be broken;
for example, it usually makes no sense to test getters and setters as you probably
won't be testing the Java compiler on your own code, and the compiler would have
already performed its tests.

In addition to your domain-specific functional areas that you should test, there are
some other areas of an Android application that you should consider. We will be
looking at these in the following sections.

Activity lifecycle events
You should test whether your activities handle lifecycle events correctly.

If your activity should save its state during the onPause() or onDestroy() events
and later be able to restore it in onCreate(Bundle savedInstanceState), then you
should be able to reproduce and test all these conditions and verify that the state was
correctly saved and restored.

Configuration change events should also be tested as some of these events cause
the current Activity to be recreated. You should test whether the handling of the
event is correct and that the newly created Activity preserves the previous state.
Configuration changes are triggered even by a device rotation, so you should test
your application's ability to handle these situations.

Database and filesystem operations
Database and filesystem operations should be tested to ensure that the operations
and any errors are handled correctly. These operations should be tested in isolation
at the lower system level, at a higher level through ContentProviders, or from the
application itself.

To test these components in isolation, Android provides some mock objects in the
android.test.mock package. A simple way to think of a mock is as a drop-in
replacement for the real object, where you have more control of the object's behavior.

Physical characteristics of the device
Before shipping your application, you should be sure that all of the different devices
it can be run on are supported, or at least you should detect the unsupported
situation and take pertinent measures.

Chapter 1

[5]

The characteristics of the devices that you should test are:

• Network capabilities
• Screen densities
• Screen resolutions
• Screen sizes
• Availability of sensors
• Keyboard and other input devices
• GPS
• External storage

In this respect, an Android emulator can play an important role because it is
practically impossible to have access to all of the devices with all of the possible
combinations of features, but you can configure emulators for almost every situation.
However, as mentioned before, leave your final tests for actual devices where the
real users will run the application so you get feedback from a real environment.

Types of tests
Testing comes in a variety of frameworks with differing levels of support from the
Android SDK and your IDE of choice. For now, we are going to concentrate on how
to test Android apps using the instrumented Android testing framework, which has
full SDK and ASide support, and later on, we will discuss the alternatives.

Testing can be implemented at any time in the development process, depending on
the test method employed. However, we will be promoting testing at an early stage
of the development cycle, even before the full set of requirements has been defined
and the coding process has been started.

There are several types of tests depending on the code being tested. Regardless of
its type, a test should verify a condition and return the result of this evaluation as a
single Boolean value that indicates its success or failure.

