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Preface
It doesn't matter how much time you invest in Android design, or even how careful 
you are when programming, mistakes are inevitable and bugs will appear. This 
book will help you minimize the impact of these errors in your Android project and 
increase your development productivity. It will show you the problems that are 
easily avoided, to help get you quickly to the testing stage.

Android Application Testing Guide is the first and only book providing a practical 
introduction to the most commonly available techniques, frameworks, and tools 
to improve the development of your Android applications. Clear, step-by-step 
instructions show how to write tests for your applications and assure quality control 
using various methodologies.

The author's experience in applying application testing techniques to real-world 
projects enables him to share insights on creating professional Android applications.

The book covers the basics of framework support for tests to architectures and 
techniques such as Test-driven Development, which is an agile component of the 
software development process and a technique where you will tackle bugs early 
on. From the most basic unit tests applied to a sample project to more sophisticated 
performance tests, this book provides a detailed description of the most widely used 
techniques in the Android testing world in a recipe-based approach.

The author has extensive experience of working on various development projects 
throughout his professional career. All this research and knowledge has helped 
create a book that will serve as a useful resource to any developer navigating the 
world of Android testing.
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What this book covers
Chapter 1, Getting Started with Testing, introduces the different types of testing and 
their applicability to software development projects in general and to Android in 
particular. It then goes on to cover testing on the Android platform, unit testing and 
JUnit, creating an Android test project and running tests.

Chapter 2, Understanding Testing with the Android SDK, starts digging a bit deeper 
to recognize the building blocks available to create the tests. It covers Assertions, 
TouchUtils, which are intended to test user interfaces, mock objects, instrumentation, 
and TestCase class hierarchies.

Chapter 3, Baking with Testing Recipes, provides practical examples of different 
situations you will commonly encounter while applying the disciplines and 
techniques described before. The examples are presented in a cookbook style so 
you can adapt and use them for your projects. The recipes cover Android unit tests, 
activities, applications, databases and ContentProviders, services, UIs, exceptions, 
parsers, memory leaks, and a look at testing with Espresso.

Chapter 4, Managing Your Android Testing Environment, provides different conditions 
to run the tests. It starts with the creation of the Android Virtual Devices (AVD) to 
provide different conditions and configurations for the application under test and 
runs the tests using the available options. Finally, it introduces monkey as a way to 
generate simulated events used for testing.

Chapter 5, Discovering Continuous Integration, introduces this agile technique for 
software engineering and automation that aims to improve the software quality and 
reduce the time taken to integrate changes by continuously applying integration and 
testing frequently.

Chapter 6, Practicing Test-driven Development, introduces the Test-driven Development 
discipline. It starts with a general revision and later on moves to the concepts and 
techniques closely related to the Android platform. This is a code-intensive chapter.

Chapter 7, Behavior-driven Development, introduces Behavior-driven Development and 
some concepts, such as the use of a common vocabulary to express the tests and the 
inclusion of business participants in the software development project.

Chapter 8, Testing and Profiling Performance, introduces a series of concepts related to 
benchmarking and profiles from traditional logging statement methods to creating 
Android performance tests and using profiling tools.
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Chapter 9, Alternative Testing Tactics, covers adding code coverage to ensure you 
know what is tested and what isn't, as well as testing on the host's Java Virtual 
Machine, investigating Fest, Spoon, and the future of Android testing to build upon 
and expand your Android testing range.

What you need for this book
To be able to follow the examples in the different chapters, you need a common set 
of software and tools installed and several other components that are described in 
every chapter in particular, including their respective download locations.

All the examples are based on the following:

• Mac OSX 10.9.4, fully updated
• Java SE version 1.6.0_24 (build 1.6.0_24-b07)
• Android SDK tools, revision 24
• Android SDK platform-tools, revision 21
• SDK platform Android 4.4, API 20
• Android support library, revision 21
• Android Studio IDE, Version: 1.1.0
• Gradle version 2.2.1
• Git version 1.8.5.2

Who this book is for
If you are an Android developer looking to test your applications or optimize your 
application development process, then this book is for you. No previous experience 
in application testing is required.

Conventions
In this book, you will find a number of styles of text that distinguish between 
different kinds of information. Here are some examples of these styles, and an 
explanation of their meaning.

Code words in text are shown as follows: "To invoke the am command we will be 
using the adb shell command".
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A block of code is set as follows:

dependencies {
    compile project(':dummylibrary')
}

When we wish to draw your attention to a particular part of a code block, the 
relevant lines or items are set in bold:

fahrenheitEditNumber
.addTextChangedListener(
newFehrenheitToCelciusWatcher(fahrenheitEditNumber,  
  celsiusEditNumber));
}

Any command-line input or output is written as follows:

junit.framework.ComparisonFailure: expected:<[]> but was:<[123.45]>

at com.blundell.tut.EditNumberTests.testClear(EditNumberTests.java:31)

at java.lang.reflect.Method.invokeNative(Native Method)

at android.test.AndroidTestRunner.runTest(AndroidTestRunner.java:191)

New terms and important words are shown in bold. Words that you see on the 
screen, in menus or dialog boxes for example, appear in the text like this: "The first 
test performs a click on the Go button of the Forwarding Activity."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about 
this book—what you liked or disliked. Reader feedback is important for us as it helps 
us develop titles that you will really get the most out of.

To send us general feedback, simply e-mail feedback@packtpub.com, and mention 
the book's title in the subject of your message.
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If there is a topic that you have expertise in and you are interested in either writing 
or contributing to a book, see our author guide at www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to 
help you to get the most from your purchase.

Downloading the example code
You can download the example code files from your account at http://www.
packtpub.com for all the Packt Publishing books you have purchased. If you 
purchased this book elsewhere, you can visit http://www.packtpub.com/support 
and register to have the files e-mailed directly to you.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes 
do happen. If you find a mistake in one of our books—maybe a mistake in the text or 
the code—we would be grateful if you could report this to us. By doing so, you can 
save other readers from frustration and help us improve subsequent versions of this 
book. If you find any errata, please report them by visiting http://www.packtpub.
com/submit-errata, selecting your book, clicking on the Errata Submission Form 
link, and entering the details of your errata. Once your errata are verified, your 
submission will be accepted and the errata will be uploaded to our website or added 
to any list of existing errata under the Errata section of that title.

To view the previously submitted errata, go to https://www.packtpub.com/books/
content/support and enter the name of the book in the search field. The required 
information will appear under the Errata section.

www.packtpub.com/authors
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com/support
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
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Piracy
Piracy of copyrighted material on the Internet is an ongoing problem across all 
media. At Packt, we take the protection of our copyright and licenses very seriously. 
If you come across any illegal copies of our works in any form on the Internet, please 
provide us with the location address or website name immediately so that we can 
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected  
pirated material.

We appreciate your help in protecting our authors and our ability to bring you 
valuable content.

Questions
If you have a problem with any aspect of this book, you can contact us at 
questions@packtpub.com, and we will do our best to address the problem.

Questions
You can contact us at questions@packtpub.com if you are having a problem with 
any aspect of the book, and we will do our best to address it.
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Getting Started with Testing
Firstly, I will avoid introductions to Android since it is covered in many books 
already, and I am inclined to believe that if you are reading a book that covers this 
more advanced topic, you will have already started with Android development.

I will be reviewing the main concepts behind testing, and the techniques, 
frameworks, and tools available to deploy your testing strategy on Android.

After this overview, we can put the concepts learned into practice. In this chapter we 
will cover:

• Setting up the infrastructure to test on Android
• Running unit tests using JUnit
• Creating an Android instrumentation test project
• Running multiple tests

We will be creating a simple Android project and its companion tests. The main 
project will be bare bones so that you can concentrate on the testing components.

I would suggest that new developers with no Android testing experience read 
this book. If you have more experience with Android projects and have been 
using testing techniques for them, you might read this chapter as a revision or 
reaffirmation of the concepts.

Why, what, how, and when to test?
You should understand that early bug detection saves a huge amount of project 
resources and reduces software maintenance costs. This is the best known reason to 
write tests for your software development project. Increased productivity will soon 
be evident.
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Additionally, writing tests will give you a deeper understanding of the requirements 
and the problem to be solved. You will not be able to write tests for a piece of 
software you don't understand.

This is also the reason behind the approach of writing tests to clearly understand 
legacy or third-party code and having the testing infrastructure to confidently 
change or update the codebase.

The more the code is covered by your tests, the higher the likelihood of discovering 
hidden bugs.

If, during this coverage analysis, you find that some areas of your code are not 
exercised, additional tests should be added to cover this code as well.

To help in this request, enter Jacoco (http://www.eclemma.org/jacoco/), an open 
source toolkit that measures and reports Java code coverage. It supports various 
coverage types, as follows:

• Class
• Method
• Block
• Line

Coverage reports can also be obtained in different output formats. Jacoco is 
supported to some degree by the Android framework, and it is possible to build a 
Jacoco instrumented version of an Android app.

We will be analyzing the use of Jacoco on Android to guide us to full test coverage of 
our code in Chapter 9, Alternative Testing Tactics.

This screenshot shows how a Jacoco code coverage report is displayed as an HTML 
file that shows green lines when the code has been tested:

http://www.eclemma.org/jacoco/
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By default, the Jacoco gradle plugin isn't supported in Android Studio; therefore, 
you cannot see code coverage in your IDE, and so code coverage has to be viewed as 
separate HTML reports. There are other options available with other plugins such as 
Atlassian's Clover or Eclipse with EclEmma.

Tests should be automated, and you should run some or all tests every time you 
introduce a change or addition to your code in order to ensure that all the conditions 
that were met before are still met, and that the new code satisfies the tests as 
expected.

This leads us to the introduction of Continuous Integration, which will be discussed 
in detail in Chapter 5, Discovering Continuous Integration, enabling the automation of 
tests and the building process.

If you don't use automated testing, it is practically impossible to adopt Continuous 
Integration as part of the development process, and it is very difficult to ensure that 
changes would not break existing code.

Having tests stops you from introducing new bugs into already completed features 
when you touch the code base. These regressions are easily done, and tests are a 
barrier to this happening. Further, you can now catch and find problems at compile 
time, that is, when you are developing, rather than receiving them as feedback when 
your users start complaining.
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What to test
Strictly speaking, you should test every statement in your code, but this also depends 
on different criteria and can be reduced to testing the main path of execution or just 
some key methods. Usually, there's no need to test something that can't be broken; 
for example, it usually makes no sense to test getters and setters as you probably 
won't be testing the Java compiler on your own code, and the compiler would have 
already performed its tests.

In addition to your domain-specific functional areas that you should test, there are 
some other areas of an Android application that you should consider. We will be 
looking at these in the following sections.

Activity lifecycle events
You should test whether your activities handle lifecycle events correctly.

If your activity should save its state during the onPause() or onDestroy() events 
and later be able to restore it in onCreate(Bundle savedInstanceState), then you 
should be able to reproduce and test all these conditions and verify that the state was 
correctly saved and restored.

Configuration change events should also be tested as some of these events cause 
the current Activity to be recreated. You should test whether the handling of the 
event is correct and that the newly created Activity preserves the previous state. 
Configuration changes are triggered even by a device rotation, so you should test 
your application's ability to handle these situations.

Database and filesystem operations
Database and filesystem operations should be tested to ensure that the operations 
and any errors are handled correctly. These operations should be tested in isolation 
at the lower system level, at a higher level through ContentProviders, or from the 
application itself.

To test these components in isolation, Android provides some mock objects in the 
android.test.mock package. A simple way to think of a mock is as a drop-in 
replacement for the real object, where you have more control of the object's behavior.

Physical characteristics of the device
Before shipping your application, you should be sure that all of the different devices 
it can be run on are supported, or at least you should detect the unsupported 
situation and take pertinent measures.
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The characteristics of the devices that you should test are:

• Network capabilities
• Screen densities
• Screen resolutions
• Screen sizes
• Availability of sensors
• Keyboard and other input devices
• GPS
• External storage

In this respect, an Android emulator can play an important role because it is 
practically impossible to have access to all of the devices with all of the possible 
combinations of features, but you can configure emulators for almost every situation. 
However, as mentioned before, leave your final tests for actual devices where the 
real users will run the application so you get feedback from a real environment.

Types of tests
Testing comes in a variety of frameworks with differing levels of support from the 
Android SDK and your IDE of choice. For now, we are going to concentrate on how 
to test Android apps using the instrumented Android testing framework, which has 
full SDK and ASide support, and later on, we will discuss the alternatives. 

Testing can be implemented at any time in the development process, depending on 
the test method employed. However, we will be promoting testing at an early stage 
of the development cycle, even before the full set of requirements has been defined 
and the coding process has been started.

There are several types of tests depending on the code being tested. Regardless of 
its type, a test should verify a condition and return the result of this evaluation as a 
single Boolean value that indicates its success or failure.


