
[1]

Learning Embedded Linux
Using the Yocto Project

Develop powerful embedded Linux systems with the
Yocto Project components

Alexandru Vaduva

BIRMINGHAM - MUMBAI

Learning Embedded Linux Using the Yocto Project

Copyright © 2015 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the author, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: June 2015

Production reference: 1240615

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78439-739-5

www.packtpub.com

www.packtpub.com

Credits

Author
Alexandru Vaduva

Reviewers
Peter Ducai

Alex Tereschenko

Commissioning Editor
Nadeem N. Bagban

Acquisition Editor
Harsha Bharwani

Content Development Editor
Vaibhav Pawar

Technical Editor
Shivani Kiran Mistry

Copy Editor
Sonia Michelle Cheema

Project Coordinator
Nidhi J. Joshi

Proofreader
Safis Editing

Indexer
Mariammal Chettiyar

Graphics
Sheetal Aute

Disha Haria

Jason Monteiro

Abhinash Sahu

Production Coordinator
Conidon Miranda

Cover Work
Conidon Miranda

About the Author

Alexandru Vaduva is an embedded Linux software engineer whose main focus
lies in the field of open source software. He has an inquiring mind and also believes
that actions speak louder than words. He is a strong supporter of the idea that there
is no need to reinvent the wheel, but there is always room for improvement. He has
knowledge of C, Yocto, Linux, Bash, and Python, but he is also open to trying new
things and testing new technologies.

Alexandru Vaduva has been a reviewer of the book Embedded Linux Development with
Yocto Project, Packt Publishing, which is a great asset to the Yocto Project community.

About the Reviewer

Peter Ducai has 15 years of experience in the IT industry, including the fields of
programming and OS administration. Currently, he works at HP as an automation
engineer.

Alex Tereschenko is an avid Maker. He believes that computers can do a lot of
good when they are interfaced with real-world objects (as opposed to just crunching
data in a dusty corner). This drives him in his projects and is also the reason why
embedded systems and the Internet of Things are the topics he enjoys the most.

www.PacktPub.com

Support files, eBooks, discount offers,
and more
For support files and downloads related to your book, please visit www.PacktPub.com.

Did you know that Packt offers eBook versions of every book published, with PDF and ePub
files available? You can upgrade to the eBook version at www.PacktPub.com and as a print
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at
service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up for
a range of free newsletters and receive exclusive discounts and offers on Packt books and
eBooks.

TM

https://www2.packtpub.com/books/subscription/packtlib

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital book
library. Here, you can search, access, and read Packt's entire library of books.

Why subscribe?
• Fully searchable across every book published by Packt
• Copy and paste, print, and bookmark content
• On demand and accessible via a web browser

Free access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access PacktLib
today and view 9 entirely free books. Simply use your login credentials for immediate access.

www.PacktPub.com
www.PacktPub.com
www.PacktPub.com
https://www2.packtpub.com/books/subscription/packtlib
www.PacktPub.com

[i]

Table of Contents
Preface v
Chapter 1: Introduction 1

Advantages of Linux and open source systems 1
Embedded systems 3

General description 3
Examples 4

Introducing GNU/Linux 6
Introduction to the Yocto Project 9

Buildroot 10
OpenEmbedded 13

Summary 18
Chapter 2: Cross-compiling 19

Introducing toolchains 19
Components of toolchains 21
Delving into C libraries 29
Working with toolchains 32

Advice on robust programming 34
Generating the toolchain 36

The Yocto Project reference 38
Summary 43

Chapter 3: Bootloaders 45
The role of the bootloader 46
Comparing various bootloaders 48
Delving into the bootloader cycle 49
The U-Boot bootloader 51

Booting the U-Boot options 55
Porting U-Boot 56

Table of Contents

[ii]

The Yocto Project 61
Summary 62

Chapter 4: Linux Kernel 63
The role of the Linux kernel 66
Delving into the features of the Linux kernel 67

Memory mapping and management 68
Page cache and page writeback 74
The process address space 74

Process management 76
Process scheduling 77
System calls 78
The virtual file system 79

Interrupts 81
Bottom halves 83
Methods to perform kernel synchronization 85

Timers 86
Linux kernel interaction 87

The development process 87
Kernel porting 89
Community interaction 91

Kernel sources 92
Configuring kernel 93
Compiling and installing the kernel 94
Cross-compiling the Linux kernel 95

Devices and modules 95
Debugging a kernel 99
The Yocto Project reference 100
Summary 104

Chapter 5: The Linux Root Filesystem 105
Interacting with the root filesystem 105

Delving into the filesystem 111
Device drivers 116
Filesystem options 117

Understanding BusyBox 121
Minimal root filesystem 123
The Yocto Project 125
Summary 127

Table of Contents

[iii]

Chapter 6: Components of the Yocto Project 129
Poky 129
Eclipse ADT plug-ins 134
Hob and Toaster 138
Autobuilder 139
Lava 139
Wic 140
Summary 141

Chapter 7: ADT Eclipse Plug-ins 143
The Application Development Toolkit 144

Setting up the environment 145
Eclipse IDE 152

QEMU emulator 165
Debugging 165
Profiling and tracing 167
The Yocto Project bitbake commander 170

Summary 171
Chapter 8: Hob, Toaster, and Autobuilder 173

Hob 173
Toaster 186
AutoBuilder 193
Summary 195

Chapter 9: Wic and Other Tools 197
Swabber 198
Wic 202
LAVA 207
Summary 210

Chapter 10: Real-time 211
Understanding GPOS and RTOS 212
PREEMPT_RT 215

Applying the PREEMPT_RT patch 217
The Yocto Project -rt kernel 224
Disadvantages of the PREEMPT_RT patches 226

Linux real-time applications 227
Benchmarking 228
Meta-realtime 229
Summary 231

Table of Contents

[iv]

Chapter 11: Security 233
Security in Linux 234
SELinux 234
Grsecurity 237
Security for the Yocto Project 244
Meta-security and meta-selinux 245

Meta-security 246
Meta-selinux 252

Summary 254
Chapter 12: Virtualization 255

Linux virtualization 256
SDN and NFV 256
NFV 257
ETSI NFV 257
SDN 260
OPNFV 261

Virtualization support for the Yocto Project 264
Summary 280

Chapter 13: CGL and LSB 281
Linux Standard Base 282
Carrier grade options 288

Carrier Grade Linux 288
Automotive Grade Linux 291
Carrier Grade Virtualization 292

Specific support for the Yocto Project 293
Summary 302

Index 303

[v]

Preface
With regard to the Linux environment today, most of the topics explained in this
book are already available and are covered in a fair bit of detail, This book also
covers a large variety of information and help in creating many viewpoints. Of
course, there are some very good books written on various subjects also presented
in this book, and here, you will find references to them. The scope of this book,
however, is not to present this information all over again, but instead to make
a parallel between the traditional methods of interaction with the embedded
development process and the methods used by the Yocto Project.

This book also presents the various challenges that you might encounter in
embedded Linux and suggests solutions for them. Although this book is intended
for developers who are pretty confident of their basic Yocto and Linux skills and
are trying to improve them, I am confident that that those of you who have no real
experience in this area, could also find some useful information here.

This book has been built around various big subjects, which you will encounter in
your embedded Linux journey. Besides this, technical information and a number
of exercises are also given to you to ensure that as much information as possible
is passed on to you. At the end of this book, you should have a clear picture of the
Linux ecosystem.

What this book covers
Chapter 1, Introduction, tries to offer a picture of how an embedded Linux software
and hardware architecture looks. It also presents you information on the benefits
of Linux and Yocto along with examples. It explains the architecture of the Yocto
Project and how it is integrated inside the Linux environment.

Chapter 2, Cross-compiling, offers you the definition of a toolchain, its components,
and the way in which it can be obtained. After this, information on the Poky
repository is given to you and a comparison is made with the components.

Preface

[vi]

Chapter 3, Bootloaders, gives you information on a boot sequence, U-Boot bootloader,
and how it can be built for a specific board. After this, it gives access to the U-Boot
recipe from Poky and shows how it is used.

Chapter 4, Linux Kernel, explains the features of the Linux kernel and source code.
It gives you information on how to build a kernel source and modules and then
moves on to explain the recipes of the Yocto kernel and presents how the same
things happen there after that the kernel is booted.

Chapter 5, The Linux Root Filesystem, gives you information on the organization of
root file system directories and device drivers. It explains the various filesystems,
BusyBox, and what a minimal filesystem should contain. It will show you how
BusyBox is compiled inside and outside the Yocto Project and how a root filesystem
is obtained using Poky.

Chapter 6, Components of the Yocto Project, offers an overview of the available
components of the Yocto Project, most of which are outside Poky. It provides an
introduction and a brief presentation of each component. After this chapter, a bunch
of these components are explained in more detail.

Chapter 7, ADT Eclipse Plug-ins, shows how to set up the Yocto Project Eclipse IDE,
setting it up for cross development and debugging using Qemu, and customizing
an image and interacting with different tools.

Chapter 8, Hob, Toaster, and Autobuilder, goes through each one of these tools and
explain how each one of them can be used, mentioning their benefits as well.

Chapter 9, Wic and Other Tools, explains how to use another set of tools, very different
form the ones mentioned in the previous chapter.

Chapter 10, Real-time, shows the real-time layers of the Yocto Project, their purposes,
and added value. Documented information on Preempt-RT, NoHz, userspace RTOS,
benchmarking, and other real-time related features are also mentioned.

Chapter 11, Security, explains the Yocto Project's security-related layers, their
purposes, and the ways in which they could add value to Poky. Here, you will
also be given information about SELinux and other applications, such as bastille,
buck-security, nmap and so on.

Chapter 12, Virtualization, explains the virtualization layers of the Yocto Project,
their purposes and the ways in which they could add value to Poky. You will
also be given information about virtualization-related packages and initiatives.

Preface

[vii]

Chapter 13, CGL and LSB, gives you information on the Carrier Graded Linux (CGL)
specifications and requirements as well as the specifications, requirements, and tests
of Linux Standard Base (LSB). In the end, a parallel will be made with the support
provided by the Yocto Project.

What you need for this book
Before reading this book, prior knowledge of embedded Linux and Yocto would be
helpful, though not mandatory. In this book, a number of exercises are available, and
to do them, a basic understanding of the GNU/Linux environment would be useful.
Also, some of the exercises are for a specific development board and others involve
using Qemu. Owning such a board and previous knowledge of Qemu is a plus, but
is not mandatory.

Throughout the book, there are chapters with various exercises that require you to
already have knowledge of C language, Python, and Shell Script. It would be useful
if the reader has experience in these areas, because they are the core technologies
used in most Linux projects available today. I hope this information does not
discourage you while reading the content of this book content, and that you enjoy it.

Who this book is for
The book is targeted at Yocto and Linux enthusiasts who want to build embedded
Linux systems and maybe contribute to the community. Background knowledge
should include C programming skills, experience with Linux as a development
platform, basic understanding of the software development process. If you've
previously read Embedded Linux Development with Yocto Project, Packt Publishing,
it would be a plus as well.

Taking a look at technology trends, Linux is the next big thing. It offers access to
cutting-edge open source products and more embedded systems are introduced to
mankind every day. The Yocto Project is the best choice for any project that involves
interaction with embedded devices due to the fact that it provides a rich set of tools
to help you to use most of your energy and resources in your product development,
instead of reinventing.

Preface

[viii]

Conventions
In this book, you will find a number of text styles that distinguish between different
kinds of information. Here are some examples of these styles and an explanation of
their meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows: "A
maintainers file offers a list of contributors to a particular board support."

A block of code is set as follows:

sudo add-apt-repository "deb http://archive.ubuntu.com/ubuntu $(lsb_
release -sc) universe"
sudo apt-get update
sudo add-apt-repository "deb http://people.linaro.org/~neil.williams/
lava jessie main"
sudo apt-get update

sudo apt-get install postgresql
sudo apt-get install lava
sudo a2dissite 000-default
sudo a2ensite lava-server.conf
sudo service apache2 restart

When we wish to draw your attention to a particular part of a code block, the
relevant lines or items are set in bold:

sudo add-apt-repository "deb http://archive.ubuntu.com/ubuntu $(lsb_
release -sc) universe"
sudo apt-get update
sudo add-apt-repository "deb http://people.linaro.org/~neil.williams/
lava jessie main"
sudo apt-get update

sudo apt-get install postgresql
sudo apt-get install lava
sudo a2dissite 000-default
sudo a2ensite lava-server.conf
sudo service apache2 restart

Preface

[ix]

Any command-line input or output is written as follows:

DISTRIB_ID=Ubuntu

DISTRIB_RELEASE=14.04

DISTRIB_CODENAME=trusty

DISTRIB_DESCRIPTION="Ubuntu 14.04.1 LTS"

New terms and important words are shown in bold. Words that you see on the
screen, for example, in menus or dialog boxes, appear in the text like this: " If this
warning message appears, press OK and move further "

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or disliked. Reader feedback is important for us as it helps
us develop titles that you will really get the most out of.

To send us general feedback, simply e-mail feedback@packtpub.com, and mention
the book's title in the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide at www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

www.packtpub.com/authors

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in the text or
the code—we would be grateful if you could report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
book. If you find any errata, please report them by visiting http://www.packtpub.
com/submit-errata, selecting your book, clicking on the Errata Submission Form
link, and entering the details of your errata. Once your errata are verified, your
submission will be accepted and the errata will be uploaded to our website or added
to any list of existing errata under the Errata section of that title.

To view the previously submitted errata, go to https://www.packtpub.com/books/
content/support and enter the name of the book in the search field. The required
information will appear under the Errata section.

Piracy
Piracy of copyrighted material on the Internet is an ongoing problem across all
media. At Packt, we take the protection of our copyright and licenses very seriously.
If you come across any illegal copies of our works in any form on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected pirated
material.

We appreciate your help in protecting our authors and our ability to bring you
valuable content.

Questions
If you have a problem with any aspect of this book, you can contact us at
questions@packtpub.com, and we will do our best to address the problem.

http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support

[1]

Introduction
In this chapter, you will be presented with the advantages of Linux and open source
development. There will be examples of systems running embedded Linux, which
a vast number of embedded hardware platforms support. After this, you will be
introduced to the architecture and development environment of an embedded Linux
system, and, in the end, the Yocto Project, where its Poky build system's properties
and purposes are summarized.

Advantages of Linux and open source
systems
Most of the information available in this book, and the examples presented as
exercises, have one thing in common: the fact that they are freely available for
anyone to access. This book tries to offer guidance to you on how to interact with
existing and freely available packages that could help an embedded engineer, such
as you, and at the same time, also try to arouse your curiosity to learn more.

More information on open source can be gathered from the Open Source
Initiative (OSI) at http://opensource.org/.

The main advantage of open source is represented by the fact that it permits
developers to concentrate more on their products and their added value. Having an
open source product offers access to a variety of new possibilities and opportunities,
such as reduced costs of licensing, increased skills, and knowledge of a company.
The fact that a company uses an open source product that most people have access
to, and can understand its working, implies budget savings. The money saved could
be used in other departments, such as hardware or acquisitions.

http://opensource.org/

Introduction

[2]

Usually, there is a misconception about open source having little or no control over
a product. However, the opposite is true. The open source system, in general, offers
full control over software, and we are going to demonstrate this. For any software,
your open source project resides on a repository that offers access for everyone to
see. Since you're the person in charge of a project, and its administrator as well, you
have all the right in the world to accept the contributions of others, which lends them
the same right as you, and this basically gives you the freedom to do whatever you
like. Of course, there could be someone who is inspired by your project and could do
something that is more appreciated by the open source community. However, this
is how progress is made, and, to be completely honest, if you are a company, this
kind of scenario is almost invalid. Even in this case, this situation does not mean the
death of your project, but an opportunity instead. Here, I would like to present the
following quote:

"If you want to build an open source project, you can't let your ego stand in the
way. You can't rewrite everybody's patches, you can't second-guess everybody,
and you have to give people equal control."

 – Rasmus Lerdorf

Allowing access to others, having external help, modifications, debugging, and
optimizations performed on your open source software implies a longer life for the
product and better quality achieved over time. At the same time, the open source
environment offers access to a variety of components that could easily be integrated
in your product if there's a requirement for them. This permits a quick development
process, lower costs, and also shifts a great deal of the maintenance and development
work from your product. Also, it offers the possibility to support a particular
component to make sure that it continues to suit your needs. However, in most
instances, you would need to take some time and build this component for your
product from zero.

This brings us to the next benefit of open source, which involves testing and quality
assurance for our product. Besides the lesser amount of work that is needed for
testing, it is also possible to choose from a number of options before deciding which
components fits best for our product. Also, it is cheaper to use open source software,
than buying and evaluating proprietary products. This takes and gives back
process, visible in the open source community, is the one that generates products
of a higher quality and more mature ones. This quality is even greater than that of
other proprietary or closed source similar products. Of course, this is not a generally
valid affirmation and only happens for mature and widely used products, but here
appears the term community and foundation into play.

Chapter 1

[3]

In general, open source software is developed with the help of communities of
developers and users. This system offers access to a greater support on interaction
with the tools directly from developers - the sort of thing that does not happen
when working with closed source tools. Also, there is no restriction when you're
looking for an answer to your questions, no matter whether you work for a
company or not. Being part of the open source community means more than bug
fixing, bug reporting, or feature development. It is about the contribution added
by the developers, but, at the same time, it offers the possibility for engineers to get
recognition outside their working environment, by facing new challenges and trying
out new things. It can also be seen as a great motivational factor and a source of
inspiration for everyone involved in the process.

Instead of a conclusion, I would also like to present a quote from the person who
forms the core of this process, the man who offered us Linux and kept it open source:

"I think, fundamentally, open source does tend to be more stable software. It's the
right way to do things."

 – Linus Torvalds

Embedded systems
Now that the benefits of open source have been introduced to you, I believe we can
go through a number of examples of embedded systems, hardware, software, and
their components. For starters, embedded devices are available anywhere around us:
take a look at your smartphone, car infotainment system, microwave oven, or even
your MP3 player. Of course, not all of them qualify to be Linux operating systems,
but they all have embedded components that make it possible for them to fulfill their
designed functions.

General description
For Linux to be run on any device hardware, you will require some hardware-
dependent components that are able to abstract the work for hardware-independent
ones. The boot loader, kernel, and toolchain contain hardware-dependent components
that make the performance of work easier for all the other components. For example,
a BusyBox developer will only concentrate on developing the required functionalities
for his application, and will not concentrate on hardware compatibility. All these
hardware-dependent components offer support for a large variety of hardware
architectures for both 32 and 64 bits. For example, the U-Boot implementation is the
easiest to take as an example when it comes to source code inspection. From this, we
can easily visualize how support for a new device can be added.

Introduction

[4]

We will now try to do some of the little exercises presented previously, but before
moving further, I must present the computer configuration on which I will continue
to do the exercises, to make sure that that you face as few problems as possible. I am
working on an Ubuntu 14.04 and have downloaded the 64-bit image available on the
Ubuntu website at http://www.ubuntu.com/download/desktop

Information relevant to the Linux operation running on your computer can be
gathered using this command:

uname –srmpio

The preceding command generates this output:

Linux 3.13.0-36-generic x86_64 x86_64 x86_64 GNU/Linux

The next command to gather the information relevant to the Linux operation is as
follows:

cat /etc/lsb-release

The preceding command generates this output:

DISTRIB_ID=Ubuntu

DISTRIB_RELEASE=14.04

DISTRIB_CODENAME=trusty

DISTRIB_DESCRIPTION="Ubuntu 14.04.1 LTS"

Examples
Now, moving on to exercises, the first one requires you fetch the git repository
sources for the U-Boot package:

sudo apt-get install git-core

git clone http://git.denx.de/u-boot.git

After the sources are available on your machine, you can try to take a look inside
the board directory; here, a number of development board manufacturers will be
present. Let's take a look at board/atmel/sama5d3_xplained, board/faraday/
a320evb, board/freescale/imx, and board/freescale/b4860qds. By observing
each of these directories, a pattern can be visualized. Almost all of the boards
contain a Kconfig file, inspired mainly from kernel sources because they present the
configuration dependencies in a clearer manner. A maintainers file offers a list with
the contributors to a particular board support. The base Makefile file takes from the
higher-level makefiles the necessary object files, which are obtained after a board-
specific support is built. The difference is with board/freescale/imx which only
offers a list of configuration data that will be later used by the high-level makefiles.

http://www.ubuntu.com/download/desktop

Chapter 1

[5]

At the kernel level, the hardware-dependent support is added inside the arch file.
Here, for each specific architecture besides Makefile and Kconfig, various numbers
of subdirectories could also be added. These offer support for different aspects of a
kernel, such as the boot, kernel, memory management, or specific applications.

By cloning the kernel sources, the preceding information can be easily visualized by
using this code:

git clone https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.
git

Some of the directories that can be visualized are arch/arc and arch/metag.

From the toolchain point of view, the hardware-dependent component is represented
by the GNU C Library, which is, in turn, usually represented by glibc. This
provides the system call interface that connects to the kernel architecture-dependent
code and further provides the communication mechanism between these two entities
to user applications. System calls are presented inside the sysdeps directory of the
glibc sources if the glibc sources are cloned, as follows:

git clone http://sourceware.org/git/glibc.git

The preceding information can be verified using two methods: the first one involves
opening the sysdeps/arm directory, for example, or by reading the ChangeLog.
old-ports-arm library. Although it's old and has nonexistent links, such as ports
directory, which disappeared from the newer versions of the repository, the latter
can still be used as a reference point.

These packages are also very easily accessible using the Yocto Project's poky
repository. As mentioned at https://www.yoctoproject.org/about:

"The Yocto Project is an open source collaboration project that provides templates,
tools and methods to help you create custom Linux-based systems for embedded
products regardless of the hardware architecture. It was founded in 2010 as a
collaboration among many hardware manufacturers, open-source operating
systems vendors, and electronics companies to bring some order to the chaos of
embedded Linux development."

Most of the interaction anyone has with the Yocto Project is done through the Poky
build system, which is one of its core components that offers the features and
functionalities needed to generate fully customizable Linux software stacks. The first
step needed to ensure interaction with the repository sources would be to clone them:

git clone -b dizzy http://git.yoctoproject.org/git/poky

https://www.yoctoproject.org/about

Introduction

[6]

After the sources are present on your computer, a set of recipes and configuration
files need to be inspected. The first location that can be inspected is the U-Boot
recipe, available at meta/recipes-bsp/u-boot/u-boot_2013.07.bb. It contains
the instructions necessary to build the U-Boot package for the corresponding
selected machine. The next place to inspect is in the recipes available in the kernel.
Here, the work is sparse and more package versions are available. It also provides
some bbappends for available recipes, such as meta/recipes-kernel/linux/
linux-yocto_3.14.bb and meta-yocto-bsp/recipes-kernel/linux/linux-
yocto_3.10.bbappend. This constitutes a good example for one of the kernel
package versions available when starting a new build using BitBake.

Toolchain construction is a big and important step for host generated packages.
To do this, a set of packages are necessary, such as gcc, binutils, glibc library,
and kernel headers, which play an important role. The recipes corresponding
to this package are available inside the meta/recipes-devtools/gcc/, meta/
recipes-devtools/binutils, and meta/recipes-core/glibc paths. In all the
available locations, a multitude of recipes can be found, each one with a specific
purpose. This information will be detailed in the next chapter.

The configurations and options for the selection of one package version in favor of
another is mainly added inside the machine configuration. One such example is the
Freescale MPC8315E-rdb low-power model supported by Yocto 1.6, and its machine
configuration is available inside the meta-yocto-bsp/conf/machine/mpc8315e-
rdb.conf file.

More information on this development board can be found at http://
www.freescale.com/webapp/sps/site/prod_summary.
jsp?code=MPC8315E.

Introducing GNU/Linux
GNU/Linux, or Linux as it's commonly known, represents a name that has a long
line of tradition behind it, and is one of the most important unions of open source
software. Shortly, you will be introduced to the history of what is offered to people
around the world today and the choice available in terms of selecting personal
computer operating systems. Most of all, we will look at what is offered to hardware
developers and the common ground available for the development of platforms.

http://www.freescale.com/webapp/sps/site/prod_summary.jsp?code=MPC8315E
http://www.freescale.com/webapp/sps/site/prod_summary.jsp?code=MPC8315E
http://www.freescale.com/webapp/sps/site/prod_summary.jsp?code=MPC8315E

Chapter 1

[7]

GNU/Linux consists of the Linux kernel and has a collection of user space applications
that are put on top of GNU C Library; this acts as a computer operating system. It may
be considered as one of the most prolific instances of open source and free software
available, which is still in development. Its history started in 1983 when Richard
Stallman founded the GNU Project with the goal of developing a complete Unix-like
operating system, which could be put together only from free software. By the
beginning of the 1990s, GNU already offered a collection of libraries, Unix-like shells,
compilers, and text editors. However, it lacked a kernel. They started developing their
own kernel, the Hurd, in 1990. The kernel was based on a Mach micro-kernel design,
but it proved to be difficult to work with and had a slow development process.

Meanwhile, in 1991, a Finnish student started working on another kernel as a
hobby while attending the University of Helsinki. He also got help from various
programmers who contributed to the cause over the Internet. That student's name
was Linus Torvalds and, in 1992, his kernel was combined with the GNU system.
The result was a fully functional operating system called GNU/Linux that was free
and open source. The most common form of the GNU system is usually referred
to as a GNU/Linux system, or even a Linux distribution, and is the most popular
variant of GNU. Today, there are a great number of distributions based on GNU
and the Linux kernel, and the most widely used ones are: Debian, Ubuntu, Red Hat
Linux, SuSE, Gentoo, Mandriva, and Slackware. This image shows us how the two
components of Linux work together:

Introduction

[8]

Although not originally envisioned to run on anything else then x86 PCs, today,
the Linux operating system is the most widespread and portable operating system.
It can be found on both embedded devices or supercomputers because it offers
freedom to its users and developers. Having tools to generate customizable Linux
systems is another huge step forward in the development of this tool. It offers access
to the GNU/Linux ecosystem to new categories of people who, by using a tool,
such as BitBake, end up learning more about Linux, its architecture differences, root
filesystem construction and configuration, toolchains, and many other things present
in the Linux world.

Linux is not designed to work on microcontrollers. It will not work properly if it
has less then 32 MB of RAM, and it will need to have at least 4 MB of storage space.
However, if you take a look at this requirement, you will notice that it is very
permissive. Adding to this is the fact that it also offers support for a variety of
communication peripherals and hardware platforms, which gives you a clear
image of why it is so widely adopted.

Well, it may work on 8MB of RAM, but that depends on the
application's size as well.

Working with a Linux architecture in an embedded environment requires certain
standards. This is an image that represents graphically an environment which was
made available on one of free-electrons Linux courses:

Chapter 1

[9]

The preceding image presents the two main components that are involved in the
development process when working with Linux in the embedded devices world:

• Host machine: This is the machine where all the development tools reside.
Outside the Yocto world, these tools are represented by a corresponding
toolchain cross-compiled for a specific target and its necessary applications
sources and patches. However, for an Yocto user, all these packages, and the
preparation work involved, is reduced to automatized tasks executed before
the actual work is performed. This, of course, has to be prioritized adequately.

• Target machine: This is the embedded system on which the work is done and
tested. All the software available on the target is usually cross-compiled on
the host machine, which is a more powerful and more efficient environment.
The components that are usually necessary for an embedded device to boot
Linux and operate various application, involve using a bootloader for basic
initiation and loading of the Linux kernel. This, in turn, initializes drivers
and the memory, and offers services for applications to interact with through
the functions of the available C libraries.

There are also other methods of working with embedded devices,
such as cross-canadian and native development, but the ones
presented here are the most used and offer the best results for both
developers and companies when it comes to software development
for embedded devices.

To have a functional Linux operating system on an development board, a developer
first needs to make sure that the kernel, bootloader, and board corresponding drives
are working properly before starting to develop and integrate other applications
and libraries.

Introduction to the Yocto Project
In the previous section, the benefits of having an open source environment were
presented. Taking a look at how embedded development was done before the advent
of the Yocto Project offers a complete picture of the benefits of this project. It also
gives an answer as to why it was adopted so quickly and in such huge numbers.

Introduction

[10]

Using the Yocto Project, the whole process gets a bit more automatic, mostly because
the workflow permitted this. Doing things manually requires a number of steps to be
taken by developers:

1. Select and download the necessary packages and components.
2. Configure the downloaded packages.
3. Compile the configured packages.
4. Install the generated binary, libraries, and so on, on rootfs available on

development machine.
5. Generate the final deployable format.

All these steps tend to become more complex with the increase in the number of
software packages that need to be introduced in the final deployable state. Taking
this into consideration, it can clearly be stated that manual work is suitable only for
a small number of components; automation tools are usually preferred for large
and complex systems.

In the last ten years, a number of automation tools could be used to generate an
embedded Linux distribution. All of them were based on the same strategy as the
one described previously, but they also needed some extra information to solve
dependency related problems. These tools are all built around an engine for the
execution of tasks and contain metadata that describes actions, dependencies,
exceptions, and rules.

The most notable solutions are Buildroot, Linux Target Image Builder (LTIB),
Scratchbox, OpenEmbedded, Yocto, and Angstrom. However, Scratchbox doesn't
seem to be active anymore, with the last commit being done in April 2012. LTIB was
the preferred build tool for Freescale and it has lately moved more toward Yocto;
in a short span of time, LTIB may become deprecated also.

Buildroot
Buildroot as a tool tries to simplify the ways in which a Linux system is generated
using a cross-compiler. Buildroot is able to generate a bootloader, kernel image, root
filesystem, and even a cross-compiler. It can generate each one of these components,
although in an independent way, and because of this, its main usage has been
restricted to a cross-compiled toolchain that generates a corresponding and custom
root filesystem. It is mainly used in embedded devices and very rarely for x86
architectures; its main focus being architectures, such as ARM, PowerPC, or MIPS.
As with every tool presented in this book, it is designed to run on Linux, and certain
packages are expected to be present on the host system for their proper usage. There
are a couple of mandatory packages and some optional ones as well.

Chapter 1

[11]

There is a list of mandatory packages that contain the certain packages, and are
described inside the Buildroot manual available at http://buildroot.org/
downloads/manual/manual.html. These packages are as follows:

• which

• sed

• make (version 3.81 or any later ones)
• binutils

• build-essential (required for Debian-based systems only)
• gcc (version 2.95 or any later ones)
• g++ (version 2.95 or any later ones)
• bash

• patch

• gzip

• bzip2

• perl(version 5.8.7 or any later ones)
• tar

• cpio

• python(version 2.6 or 2.7 ones)
• unzip

• rsync

• wget

Beside these mandatory packages, there are also a number of optional packages.
They are very useful for the following:

• Source fetching tools: In an official tree, most of the package retrieval is done
using wget from http, https, or even ftp links, but there are also a couple of
links that need a version control system or another type of tool. To make sure
that the user does not have a limitation to fetch a package, these tools can
be used:

 ° bazaar

 ° cvs

 ° git

 ° mercurial

 ° rsync

http://buildroot.org/downloads/manual/manual.html
http://buildroot.org/downloads/manual/manual.html

Introduction

[12]

 ° scp

 ° subversion

• Interface configuration dependencies: They are represented by the packages
that are needed to ensure that the tasks, such as kernel, BusyBox, and U-Boot
configuration, are executed without problems:

 ° ncurses5 is used for the menuconfig interface
 ° qt4 is used for the xconfig interface
 ° glib2, gtk2, and glade2 are used for the gconfig interface

• Java related package interaction: This is used to make sure that when a user
wants to interact with the Java Classpath component, that it will be done
without any hiccups:

 ° javac: this refers to the Java compiler
 ° jar: This refers to the Java archive tool

• Graph generation tools: The following are the graph generation tools:
 ° graphviz to use graph-depends and <pkg>-graph-depends
 ° python-matplotlib to use graph-build

• Documentation generation tools: The following are the tools necessary for
the documentation generation process:

 ° asciidoc, version 8.6.3 or higher
 ° w3m

 ° python with the argparse module (which is automatically available
in 2.7+ and 3.2+ versions)

 ° dblatex (necessary for pdf manual generation only)

Buildroot releases are made available to the open source community at http://
buildroot.org/downloads/ every three months, specifically in February, May,
August, and November, and the release name has the buildroot-yyyy-mm format.
For people interested in giving Buildroot a try, the manual described in the previous
section should be the starting point for installing and configuration. Developers
interested in taking a look at the Buildroot source code can refer to http://git.
buildroot.net/buildroot/.

http://buildroot.org/downloads/
http://buildroot.org/downloads/
http://git.buildroot.net/buildroot/.
http://git.buildroot.net/buildroot/.

Chapter 1

[13]

Before cloning the Buildroot source code, I suggest taking a quick look
at http://buildroot.org/download. It could help out anyone
who works with a proxy server.

Next, there will be presented a new set of tools that brought their contribution to this
field and place on a lower support level the Buildroot project. I believe that a quick
review of the strengths and weaknesses of these tools would be required. We will
start with Scratchbox and, taking into consideration that it is already deprecated,
there is not much to say about it; it's being mentioned purely for historical reasons.
Next on the line is LTIB, which constituted the standard for Freescale hardware until
the adoption of Yocto. It is well supported by Freescale in terms of Board Support
Packages (BSPs) and contains a large database of components. On the other hand, it
is quite old and it was switched with Yocto. It does not contain the support of new
distributions, it is not used by many hardware providers, and, in a short period of
time, it could very well become as deprecated as Scratchbox. Buildroot is the last of
them and is easy to use, having a Makefile base format and an active community
behind it. However, it is limited to smaller and simpler images or devices, and it is
not aware of partial builds or packages.

OpenEmbedded
The next tools to be introduced are very closely related and, in fact, have the same
inspiration and common ancestor, the OpenEmbedded project. All three projects
are linked by the common engine called Bitbake and are inspired by the Gentoo
Portage build tool. OpenEmbedded was first developed in 2001 when the Sharp
Corporation launched the ARM-based PDA, and SL-5000 Zaurus, which run Lineo,
an embedded Linux distribution. After the introduction of Sharp Zaurus, it did not
take long for Chris Larson to initiate the OpenZaurus Project, which was meant to
be a replacement for SharpROM, based on Buildroot. After this, people started to
contribute many more software packages, and even the support of new devices,
and, eventually, the system started to show its limitations. In 2003, discussions were
initiated around a new build system that could offer a generic build environment
and incorporate the usage models requested by the open source community; this was
the system to be used for embedded Linux distributions. These discussions started
showing results in 2003, and what has emerged today is the Openembedded project.
It had packages ported from OpenZaurus by people, such as Chris Larson, Michael
Lauer, and Holger Schurig, according to the capabilities of the new build system.

http://buildroot.org/download

Introduction

[14]

The Yocto Project is the next evolutionary stage of the same project and has the Poky
build system as its core piece, which was created by Richard Purdie. The project
started as a stabilized branch of the OpenEmbedded project and only included a
subset of the numerous recipes available on OpenEmbedded; it also had a limited
set of devices and support of architectures. Over time, it became much more
than this: it changed into a software development platform that incorporated a
fakeroot replacement, an Eclipse plug-in, and QEMU-based images. Both the Yocto
Project and OpenEmbedded now coordinate around a core set of metadata called
OpenEmbedded-Core (OE-Core).

The Yocto Project is sponsored by the Linux Foundation, and offers a starting
point for developers of Linux embedded systems who are interested in developing
a customized distribution for embedded products in a hardware-agnostic
environment. The Poky build system represents one of its core components and
is also quite complex. At the center of all this lies Bitbake, the engine that powers
everything, the tool that processes metadata, downloads corresponding source
codes, resolves dependencies, and stores all the necessary libraries and executables
inside the build directory accordingly. Poky combines the best from OpenEmbedded
with the idea of layering additional software components that could be added or
removed from a build environment configuration, depending on the needs of
the developer.

Poky is build system that is developed with the idea of keeping simplicity in mind.
By default, the configuration for a test build requires very little interaction from the
user. Based on the clone made in one of the previous exercises, we can do a new
exercise to emphasize this idea:

cd poky

source oe-init-build-env ../build-test

bitbake core-image-minimal

As shown in this example, it is easy to obtain a Linux image that can be later used
for testing inside a QEMU environment. There are a number of images footprints
available that will vary from a shell-accessible minimal image to an LSB compliant
image with GNOME Mobile user interface support. Of course, that these base
images can be imported in new ones for added functionalities. The layered
structure that Poky has is a great advantage because it adds the possibility to extend
functionalities and to contain the impact of errors. Layers could be used for all sort of
functionalities, from adding support for a new hardware platform to extending the
support for tools, and from a new software stack to extended image features. The sky
is the limit here because almost any recipe can be combined with another.

Chapter 1

[15]

All this is possible because of the Bitbake engine, which, after the environment setup
and the tests for minimal systems requirements are met, based on the configuration
files and input received, identifies the interdependencies between tasks, the
execution order of tasks, generates a fully functional cross-compilation environment,
and starts building the necessary native and target-specific packages tasks exactly as
they were defined by the developer. Here is an example with a list of the available
tasks for a package:

More information about Bitbake and its baking process can be found in
Embedded Linux Development with Yocto Project, by Otavio Salvador and
Daiane Angolini.

The metadata modularization is based on two ideas—the first one refers to the
possibility of prioritizing the structure of layers, and the second refers to the
possibility of not having the need for duplicate work when a recipe needs changes.
The layers are overlapping. The most general layer is meta, and all the other layers
are usually stacked over it, such as meta-yocto with Yocto-specific recipes, machine
specific board support packages, and other optional layers, depending on the
requirements and needs of developers. The customization of recipes should be done
using bbappend situated in an upper layer. This method is preferred to ensure that
the duplication of recipes does not happen, and it also helps to support newer and
older versions of them.

Introduction

[16]

An example of the organization of layers is found in the previous example that
specified the list of the available tasks for a package. If a user is interested in
identifying the layers used by the test build setup in the previous exercise that
specified the list of the available tasks for a package, the bblayers.conf file is a good
source of inspiration. If cat is done on this file, the following output will be visible:

LAYER_CONF_VERSION is increased each time
build/conf/bblayers.conf
changes incompatibly
LCONF_VERSION = "6"

BBPATH = "${TOPDIR}"
BBFILES ?= ""

BBLAYERS ?= " \
 /home/alex/workspace/book/poky/meta \
 /home/alex/workspace/book/poky/meta-yocto \
 /home/alex/workspace/book/poky/meta-yocto-bsp \
 "
BBLAYERS_NON_REMOVABLE ?= " \
 /home/alex/workspace/book/poky/meta \
 /home/alex/workspace/book/poky/meta-yocto \
 "

The complete command for doing this is:

cat build-test/conf/bblayers.conf

Here is a visual mode for the layered structure of a more generic build directory:

Chapter 1

[17]

Yocto as a project offers another important feature: the possibility of having an
image regenerated in the same way, no matter what factors change on your host
machine. This is a very important feature, taking into consideration not only that,
in the development process, changes to a number of tools, such as autotools,
cross-compiler, Makefile, perl, bison, pkgconfig, and so on, could occur, but
also the fact that parameters could change in the interaction process with regards
to a repository. Simply cloning one of the repository branches and applying
corresponding patches may not solve all the problems. The solution that the Yocto
Project has to these problems is quite simple. By defining parameters prior to any of
the steps of the installation as variables and configuration parameters inside recipes,
and by making sure that the configuration process is also automated, will minimize
the risks of manual interaction are minimized. This process makes sure that image
generation is always done as it was the first time.

Since the development tools on the host machine are prone to change, Yocto usually
compiles the necessary tools for the development process of packages and images,
and only after their build process is finished, the Bitbake build engine starts building
the requested packages. This isolation from the developer's machine helps the
development process by guaranteeing the fact that updates from the host machine do
not influence or affect the processes of generating the embedded Linux distribution.

Another critical point that was elegantly solved by the Yocto Project is represented
by the way that the toolchain handles the inclusion of headers and libraries; because
this could bring later on not only compilation but also execution errors that are
very hard to predict. Yocto resolves these problems by moving all the headers and
libraries inside the corresponding sysroots directory, and by using the sysroot
option, the build process makes sure that no contamination is done with the native
components. An example will emphasize this information better:

ls -l build-test/tmp/sysroots/

total 12K

drwxr-xr-x 8 alex alex 4,0K sep 28 04:17 qemux86/

drwxr-xr-x 5 alex alex 4,0K sep 28 00:48 qemux86-tcbootstrap/

drwxr-xr-x 9 alex alex 4,0K sep 28 04:21 x86_64-linux/

