
[1]

Mastering Google App Engine

Build robust and highly scalable web applications
with Google App Engine

Mohsin Shafique Hijazee

BIRMINGHAM - MUMBAI

Mastering Google App Engine

Copyright © 2015 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the author, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: September 2015

Production reference: 1011015

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78439-667-1

www.packtpub.com

www.packtpub.com

Credits

Author
Mohsin Shafique Hijazee

Reviewers
Aristides Villarreal Bravo

Johann du Toit

Acquisition Editor
Nikhil Karkal

Content Development Editor
Athira Laji

Technical Editor
Naveenkumar Jain

Copy Editor
Ting Baker

Vedangi Narvekar

Project Coordinator
Harshal Ved

Proofreader
Safis Editing

Indexer
Priya Sane

Production Coordinator
Komal Ramchandani

Cover Work
Komal Ramchandani

About the Author

Mohsin Shafique Hijazee started his programming adventure by teaching himself
C, and later C++, mostly with the Win 32 API and MFC. Later, he worked with Visual
Basic to develop an invoicing application for local distributors. In the meantime, .NET
came along and Mohsin happened to be working with C# and Windows Forms. All
of this was around desktop applications, and all of this happened during his days
at university.

Very few people have had a chance to work with fonts, and that's exactly what Mohsin
happened to do as his first job—developing OpenType fonts for complex right to left
calligraphic styles such as Nastaleeq. He developed two different fonts, one based on
characters and joining rules, and the other one contained more than 18,000 ligatures
both of which are in public domain.

His first serious interaction with web development started with Ruby on Rails.
Shortly after that, he discovered Google App Engine and found it to be a very
interesting platform despite its initial limitations back in 2008, with Python being
the only available runtime environment. Mohsin kept experimenting with the
platform and deployed many production applications and mobile backends
that are hosted on Google App Engine to this day.

Currently, Mohsin is working as a backend software engineer with a large
multinational Internet company that operates in the online classified space
in dozens of countries across the globe.

Acknowledgments

This book and a lot more would not have been possible without my parent's constant
support in my earlier years. My father, Mohammad Shafique, taught me how to read,
and later write, in multiple languages by using novels, literature, and other means
that are not a part of traditional education in schools. This book would not have
been possible if my mother, Azra Khanam, hadn't trained me in counting, adding,
and playing with numbers even before I joined school. It was of course my mother
who, in later years, helped me apply for a course in computer science for further
education. My younger sisters Sara and Rida have been constant support by probing
status on the book and keeping me motivated. Thank you both of you!

This book would not have been possible if my dear wife, Dr. Farzana, did not help to
work around the tough schedule and absorbed moments or absent mindedness this
piece of writing that you hold in your hands, brought to my life. She would quickly
place a cup of tea on my table whenever I'd feel exhausted. Thanks a lot, patient is
doing well now after being done with the writing project.

I'm not sure about whether I'd like to thank or complain about the little, cute, and
aggressive boy Alyan, in our house who was way too young and in the cradle when I
started the book, and by the time I finished it, he had started plucking out my laptop
keys. Alyan, I hope you'll not repeat our mistakes and you'll make your own.

Special thanks goes to my newly found friend and colleague Naveed ur Rehman,
who basically turned out to be an inspiration for me to write such technical text.
Thank you Naveed, I've utmost respect for you.

I would like to thank my editors, Nikhil, Ajinkya, and Naveenkumar, for going
through the tons of mistakes that I made throughout the text in painstaking detail,
being tolerant about it, and constantly providing suggestions on how to improve the
content. I became aware of their hard work when I had the chance to read my own
script carefully. Thank you, gentlemen!

About the Reviewers

Aristides Villarreal Bravo is a Java developer. He is the CEO of Javscaz Software
Developers. He is also a member of the NetBeans Dream Team and he is part of
Java User Groups leaders and members. He lives in Panamá. He has organized and
participated in various national and international conferences and seminars related to
Java, JavaEE, NetBeans, the NetBeans platform, free software, and mobile devices. He
also writes tutorials and blogs related to Java and NetBeans and for web developers.

He has reviewed several books for Packt Publishing. He develops plugins for
NetBeans and is a specialist in JSE, JEE, JPA, Agile, and Continuous Integration.

He shares his knowledge via his blog, which can be viewed by visiting
http://avbravo.blogspot.com.

I would like to thank my family for the support throughout the
book process.

Johann du Toit is an entrepreneur and a technical lead for various startups,
ranging from national microchip databases to website verification systems.

He was appointed as the first Google Developer Expert in Africa for Cloud by Google.

He has experience that ranges from building large distributed systems that
scale for millions of requests every day to embedded devices that serve Wi-Fi
and medical information across Africa.

Visit http://johanndutoit.net for his latest details and whereabouts.

I would like to thank my family and especially my sister, Philanie du
Toit, for her support through out the book process.

http://avbravo.blogspot.com
http://johanndutoit.net

www.PacktPub.com

Support files, eBooks, discount offers, and more
For support files and downloads related to your book, please visit www.PacktPub.com.

Did you know that Packt offers eBook versions of every book published, with PDF
and ePub files available? You can upgrade to the eBook version at www.PacktPub.
com and as a print book customer, you are entitled to a discount on the eBook copy.
Get in touch with us at service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles,
sign up for a range of free newsletters and receive exclusive discounts and offers
on Packt books and eBooks.

TM

https://www2.packtpub.com/books/subscription/packtlib

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital
book library. Here, you can search, access, and read Packt's entire library of books.

Why subscribe?
• Fully searchable across every book published by Packt
• Copy and paste, print, and bookmark content
• On demand and accessible via a web browser

Free access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view 9 entirely free books. Simply use your login credentials for
immediate access.

http://www.PacktPub.com
www.PacktPub.com
http://www.PacktPub.com
http://www.PacktPub.com
mailto:service@packtpub.com
http://www.PacktPub.com
https://www2.packtpub.com/books/subscription/packtlib
http://www.packtpub.com/

[i]

Table of Contents
Preface ix
Chapter 1: Understanding the Runtime Environment 1

The overall architecture 2
The challenge of scale 2
How to scale with the scale? 2
Scaling in practice 4
Infrastructure as a Service 5
Platform as a Service 5

Containers 6
How does App Engine scales? 7

Available runtimes 9
Python 10
The Java runtime environment 10
Go 11
PHP 11

The structure of an application 11
The available services 12

Datastore 13
Google Cloud SQL 13
The Blobstore 13
Memcache 14
Scheduled Tasks 14
Queues Tasks 14
MapReduce 15
Mail 15
XMPP 15
Channels 16

Table of Contents

[ii]

Users 16
OAuth 16

Writing and deploying a simple application 16
Installing an SDK on Linux 17
Installing an SDK on Mac 18
Installing an SDK on Windows 18
Writing a simple app 18
Deploying 24

Summary 26
Chapter 2: Handling Web Requests 27

Request handling 27
The CGI program 28

Streams and environment variables 29
CGI and Google App Engine 30

WSGI 31
Problems with CGI 31
Solutions 32
What WSGI looks like 32

WSGI – Multithreading considerations 34
WSGI in Google App Engine 35

Request handling in App Engine 36
Rendering templates 39
Serving static resources 44

Cache, headers, and mime types 45
Serving files 47

Using web frameworks 48
Built-in frameworks 48
Using external frameworks 50

Using Bottle 52
Summary 54

Chapter 3: Understanding the Datastore 55
The BigTable 56

The data model 57
How is data stored? 59

The physical storage 60
Some limitations 61

Random writes and deletion 62
Operations on BigTable 64

Reading 64
Writing 65
Deleting 65
Updating 65
Scanning a range 66

Table of Contents

[iii]

Selecting a key 67
BigTable – a hands-on approach 69

Scaling BigTable to BigData 70
The datastore thyself 73

Supporting queries 77
Data as stored in BigTable 77

The implementation details 78
Summary 79

Chapter 4: Modeling Your Data 81
The data modeling language 81

Keys and internal storage 85
The application ID 86
Namespaces 87
The Kind 88
The ID 88

The key 92
Modeling your data 94

The first approach – storing a reference as a property 94
The second approach – a category within a key 97
Properties 102

The required option 103
The default option 103
The repeated option 104
The choices options 104
The indexed option 105
The validator option 105

The available properties 106
Structured Properties 108
The computed properties 109

The model 110
The constructor 110
Class methods 110

The allocate_ids() method 111
The get_by_id() method 111
The get_or_insert() method 111
The query() method 111

The instance methods 111
The populate() method 112
The put() method 112
The to_dict() method 112

Asynchronous versions 112
Model hooks 113

Summary 115

Table of Contents

[iv]

Chapter 5: Queries, Indexes, and Transactions 117
Querying your data 117
Queries under the hood 125

Single-property queries 126
Examples of single-property queries 128

Multiple property indexes 129
Working with indexes 132

The query API 134
The Query object 135

App 136
Namespace 136
Kind 136
The ancestor 136
The projection 137
Filters 137
The orders 137
Further query options 138

Filtering entities 141
Filtering repeated properties 142

Filtering structured properties 143
The AND and OR operations 144

Iterating over the results 146
Conclusions 149

Transactions 149
Summary 152

Chapter 6: Integrating Search 153
Background 153
The underlying principle 154
Indexing your data 155

Sample data 156
Indexing thyself 160
Documents 162
Fields 162

The text fields 163
Placing the document in an index 164
Getting a document 165
Updating documents 166
Deleting documents 166
Indexing the documents 167

Queries 169
Simple queries 169
Multiple value queries 170

Table of Contents

[v]

Logical operations 170
Being specific with fields 171

Operators on NumberField 172
Operators on DateField 172
Operations on AtomField 173
Operations on TextField and HTMLField 173
Operations on GeoField 174

Putting it all together 175
Selecting fields and calculated fields 177

Sorting 181
Pagination 185

Offset-based pagination 186
Cursor-based pagination 187

Facets 190
Indexing facets 191
Fetching facets 194

Asking facets via automatic discovery 195
Asking specific facets 198
Asking facets with specific values 198
Asking facets in specific ranges 199

Filtering by facets 201
Summary 202

Chapter 7: Using Task Queues 203
The need to queue things 204
The queue 205

Defining queues 207
Adding to a queue 212
Processing tasks 216
Putting it all together 220
Using a deferred library 230

Pull queues 234
Summary 236

Chapter 8: Reaching out, Sending E-mails 237
About e-mails 237
Sending e-mails 239

The object-oriented API 242
E-mail on the development console 244
Headers 245

Receiving e-mails 246
Handling bounce notifications 250

Putting it all together 252
Summary 262

Table of Contents

[vi]

Chapter 9: Working with the Google App Engine Services 265
Memcache 266

The Memcache operations 267
Memcache in Google App Engine 269
The Memcache client 269

The object-oriented client 272
Multi-tenancy 273

Automatically setting the namespace 275
The API-specific notes 276

The Datastore 276
Memcache 276
Task queues 276
Search 277
Blobstore 277

Blobs 277
Uploads 278

Getting BlobInfo 281
More BlobInfo methods 283

Serving 284
Reading 287

Users 287
Storing users in datastore 291

Images 292
Putting it all together 294
Summary 303

Chapter 10: Application Deployment 305
Deployment configurations 305

Deployment revisited 306
Versions 307
The instance classes 308

Instance addressability 309
Scaling types 310

Manual scaling 310
Basic scaling 312
Automatic scaling 313
Modules 315

Accessing the modules 320
The dispatch.yaml file 321
Scheduled tasks 322

The Scheduled tasks format 324
Protecting cron handling URLs 327

Table of Contents

[vii]

Logs 328
The Remote API 332

AppStats 333
Summary 335

Index 337

[ix]

Preface
Google App Engine is a Platform as a Service that builds and runs applications on
Google's infrastructure. App Engine applications are easy to build, maintain,
and scale.

Google App Engine allows you to develop highly scalable web applications
or backends for mobile applications without worrying about the system
administration's plumbing or hardware provisioning issues. You can just focus on
writing your business logic, which is the meat of the application, and let Google's
powerful infrastructure scale it to thousands of requests per second and millions of
users without any effort on your part.

This book introduces you to cloud computing, managed Platform as a Service,
the things that Google has to offer, and the advantages. It also introduces you to a
sample app that will be built during the course of the book. It will be a small invoice
management application where we have clients, products, categories, invoices, and
payments as a sample SaaS application. The most complex part is that of reporting,
as datastore has certain limitations on this.

What this book covers
Chapter 1, Understanding the Runtime Environment, explains the runtime environment,
how requests are processed and handled, and how App Engine scales. This chapter
also explores the limitations of runtime environments with respect to the request
time and response size, among other factors.

Chapter 2, Handling Web Requests, introduces ways to handle web requests by using
a built-in framework or Django and others. It also discusses how to serve static files
and caching issues, render templates.

Preface

[x]

Chapter 3, Understanding the Datastore, covers the problem of storing huge amounts
of data and processing it in bulk with the ability to randomly access it. This chapter
explains the datastore in detail, which is built on top of Bigtable.

Chapter 4, Modeling Your Data, explains the new ndb Python library on top of
Google datastore. It will also teach you how to model your data using its API.

Chapter 5, Queries, Indexes, and Transactions, focuses on how to query your data,
the limitations, and ways to work around these limitations.

Chapter 6, Integrating Search, builds upon the datastore and shows how to make
data searchable.

Chapter 7, Using Task Queues, introduces the reader to task queues, which enable
the background repeated execution of tasks.

Chapter 8, Reaching out, Sending E-mails, talks about how the app can send and
receive e-mails and how to handle bounce notifications.

Chapter 9, Working with the Google App Engine Services, introduces you to the other
services that are provided by Google App Engine to make you aware of your
available options.

Chapter 10, Application Deployment, talks in detail about deploying the GAE apps.

What you need for this book
In order to run the code demonstrated in this book, you need an interpreter that
comes with the Python 2.7.x series and the latest Google App Engine SDK release
of the 1.9.x series.

Additionally, to access the example application, once it runs on App Engine, you
need a recent version of a web browser such as Google Chrome, Mozilla Firefox,
Apple Safari, or Microsoft Internet Explorer.

Who this book is for
If you have been developing web applications in Python or any other dynamic
language but have always been wondering how to write highly scalable web
applications without getting into system administration and other areas that
plumbing, this is the book for you. We will assume that you have no experience
of writing scalable applications. We will help you build your skill set to a point
where you can fully leverage the environment and services of Google App Engine,
especially the highly distributed NoSQL datastore, to neatly knit and jot down a
very robust and scalable solution for your users, be it a web application or a
backend for your next killer mobile app.

Preface

[xi]

Conventions
In this book, you will find a number of styles of text that distinguish between
different kinds of information. Here are some examples of these styles, and an
explanation of their meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows: "
We can include other contexts through the use of the include directive."

A block of code is set as follows:

class Person(ndb.Model):
 name = ndb.StringProperty()
 age = ndb.IntegerProperty()

Any command-line input or output is written as follows:

$ appcfg update /path/to/my/app/containing/app.yaml/

New terms and important words are shown in bold. Words that you see on the screen,
in menus or dialog boxes for example, appear in the text like this: " Now, double-click
on the Launcher icon that you just dragged to the Applications folder ".

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or may have disliked. Reader feedback is important for
us to develop titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com,
and mention the book title via the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide on www.packtpub.com/authors.

www.packtpub.com/authors

Preface

[xii]

Customer support
Now that you are the proud owner of a Packt book, we have a number of things
to help you to get the most from your purchase.

Downloading the example code
You can download the example code files for all Packt books you have purchased
from your account at http://www.packtpub.com. If you purchased this book
elsewhere, you can visit http://www.packtpub.com/support and register to
have the files e-mailed directly to you.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in the text or
the code—we would be grateful if you would report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
book. If you find any errata, please report them by visiting http://www.packtpub.
com/submit-errata, selecting your book, clicking on the errata submission form link,
and entering the details of your errata. Once your errata are verified, your submission
will be accepted and the errata will be uploaded on our website, or added to any list of
existing errata, under the Errata section of that title. Any existing errata can be viewed
by selecting your title from http://www.packtpub.com/support.

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media.
At Packt, we take the protection of our copyright and licenses very seriously. If you
come across any illegal copies of our works, in any form, on the Internet, please
provide us with the location address or website name immediately so that we
can pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors, and our ability to bring
you valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with
any aspect of the book, and we will do our best to address it.

http://www.PacktPub.com
http://www.PacktPub.com/support
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/support
mailto:copyright@packtpub.com

[1]

Understanding the Runtime
Environment

In this chapter, we will look at the runtime environment that is offered by Google
App Engine. Overall, a few details of the runtime environment pertaining to the
infrastructure remain the same no matter which runtime environment—Java,
Python, Go, or PHP—you opt for.

From all the available runtimes, Python is the most mature one. Therefore, in order
to master Google App Engine, we will focus on Python alone. Many of the details
vary a bit, but in general, runtimes have a commonality. Having said that, the other
runtimes are catching up as well and all of them (including Java, PHP, and Go) are
out of their respective beta stages.

Understanding the runtime environment will help you have a better grasp of the
environment in which your code executes and you might be able to tweak code in
accordance and understand why things behave the way they behave.

In this chapter, we will cover the following topics:

• The overall architecture
• Runtime environments
• Anatomy of a Google App Engine application
• A quick overview of the available services
• Setting up the development tools and writing a basic application

Understanding the Runtime Environment

[2]

The overall architecture
The scaling of a web application is a hard thing to do. Serving a single page to a
single user is a simple matter. Serving thousands of pages to a single or a handful
of users is a simple matter, too. However, delivering just a single page to tens of
thousands of users is a complex task. To better understand how Google App Engine
deals with the problem of scale, we will revisit the whole problem of scaling in next
chapter's, how it has been solved till date and the technologies/techniques that are
at work behind the scenes. Once armed with this understanding, we will talk about
how Google App Engine actually works.

The challenge of scale
The whole problem of complexity arises from the fact that to serve a simple page, a
certain amount of time is taken by the machine that hosts the page. This time usually
falls in milliseconds, and eventually, there's a limit to the number of pages that can
be rendered and served in a second. For instance, if it takes 10 milliseconds to render
a page on a 1 GHz machine, this means that in one second, we can serve 100 pages,
which means that at a time, roughly 100 users can be served in a second.

However, if there are 300 users per second, we're out of luck as we will only be able
to serve the first 100 lucky users. The rest will get time-out errors, and they may
perceive that our web page is not responding, as a rotating wait icon will appear
on the browser, which will indicate that the page is loading.

Let's introduce a term here. Instead of pages per second, we will call it requests or
queries per second, or simply Queries Per Second (QPS), because users pointing the
browser to our page is just a request for the page.

How to scale with the scale?
We have two options here. The first option is to bring the rendering time down
from 10 milliseconds to 5 milliseconds, which will effectively help us serve double
the number of users. This path is called optimization. It has many techniques,
which involve minimizing disk reads, caching computations instead of doing on
the fly, and all that varies from application to application. Once you've applied all
possible optimizations and achieved a newer and better page rendering time, further
reduction won't be possible, because there's always a limit to how much we can
optimize things and there always will be some overhead. Nothing comes for free.

Chapter 1

[3]

The other way of scaling things up will be to put more hardware. So, instead of a
1 GHz machine, we can put a 2 GHz machine. Thus, we effectively doubled the
number of requests that are processed from 100 to 200 QPS. So now, we can serve
200 users in a second. This method of scaling is called vertical scaling. However, yet
again, vertical scaling has its limits because you can put a 3 GHz processor, then a
3.5 GHz one, or maybe clock it to a 4.8 GHz one, but finally, the clock frequency has
some physical limits that are imposed by how the universe is constructed, and we'll
hit the wall sooner or later. The other way around is that instead of putting a single
1 GHz machine, we can put two such machines and a third one in front. Now, when
a request comes to the third front-end machine, we can distribute it to either of the
other two machines in an alternate fashion, or to the machine with the least load.
This request distribution can have many strategies. It can be as simple as a random
selection between the two machines, or round-robin fashion one after the other or
delegating request to the least loaded machine or we may even factor in the past
response times of the machines. The main idea and beauty of the whole scheme is
that we are no more limited by the limitations of the hardware. If a 1 GHz machine
serves 100 users, we can put 10 such machines to serve 1000 users. To serve an
audience of 1 million users, we will need ten thousand machines. This is exactly how
Google, Facebook, Twitter, and Amazon handle tens of millions of users. The image
shows the process of load balancer:

Internet

Load Balancer
Web Servers

Load balancer splitting the load among machines.

A critical and enabling component here is the machine at front called load
balancer. This machine runs the software that receives requests and delegates
them to the other machines. Many web servers such as Ngnix and Apache come
with load-balancing capabilities and require configurations for activating load
balancing. The HAProxy is another open source load balancer that has many
algorithms at its disposal, which are used to distribute load among the
available servers.

Understanding the Runtime Environment

[4]

A very important aspect of this scaling magic is that each machine, when added
to the network, must respond in a manner that is consistent with the responses
of the other machines of the cluster. Otherwise, users will have an inconsistent
experience, that is, they might see something different when routed to one machine
and something else when routed to another machine. For this to happen, even if
the operating system differs (consider an instance where the first machine runs on
Ubuntu with Cpython and the second one runs on CentOS with Jython), the output
produced by each node should be exactly the same. In order to keep things simple,
each machine usually has an exactly identical OS, set of libraries, and configurations.

Scaling in practice
Now that you have a load balancer and two servers and you're able to ramp up
about 200 QPS (200 users per second), what happens when your user base grows
to about 500 people? Well, it's simple. You have to repeat the following process:

1. Go to a store and purchase three more machines.
2. Put them on racks and plug in the network and power cables.
3. Install an OS on them.
4. Install the required languages/runtimes such as Ruby or Python.
5. Install libraries and frameworks, such as Rails or Django.
6. Install components such as web servers and databases.
7. Configure all of software.
8. Finally, add the address of the new machines to the load balancer

configuration so that it can start delegating requests from users to
machines as well.

You have to repeat the same process for all the three machines that you purchased
from the store.

So, in this way, we scaled up our application, but how much time did it take us to do
that all? The setting up of the server cables took about 10 minutes, the OS installation
another 15 minutes, and the installation of the software components consumed about
40 minutes. So approximately, it took about 1 hour and 5 minutes to add a single
node to the machine. Add the three nodes yourself, this amounts to about 4 hours
and 15 minutes, that too if you're efficient enough and don't make a mistake along
the way, which may make you go back and trace what went wrong and redo the
things. Moreover, the sudden spike of users may be long gone by then, as they may
feel frustrated by a slow or an unresponsive website. This may leave your newly
installed machines idle.

Chapter 1

[5]

Infrastructure as a Service
This clunky game of scaling was disrupted by another technology called
virtualization, which lets us emulate a virtual machine on top of an operating
system. Now that you have a virtual machine, you can install another operating
system on this virtual machine. You can have more than one virtual machine on a
single physical machine if your hardware is powerful enough, which usually is the
case with server-grade machines. So now, instead of wiring a physical machine
and installing the required OS, libraries, and so on, you can simply spin a virtual
machine from a binary image that contains an OS and all the required libraries, tools,
software components, and even your application code, if you want. Spinning such
a machine requires few minutes (usually about 40 to 150 seconds). So, this is a great
time-saving technique, as it cuts down the time requirement from one and a half
hour to a few minutes.

Virtualization has created a multibillion-dollar industry. It is a whole new cool
term that is related to Cloud computing for consultants of all sorts, and it is used
to furnish their resumes. The idea is to put hundreds of servers on racks with
virtualization enabled, let the users spin the virtual machines of their desired specs
and charge them based on the usage. This is called Infrastructure as a Service (IaaS).
Amazon, Racksapce, and Digital Ocean are the prime examples of such models.

Platform as a Service
Although Infrastructure as a Service gives a huge boost in building scalable
applications, it still leaves a lot of room for improvements because you have to take
care of the OS, required libraries, tools, security updates, the load balancing and
provisioning of new machine instances, and almost everything in between. This
limitation or problem leads to another solution called Platform as a Service (Paas),
where right from the operating system to the required runtime, libraries and tools
are preinstalled and configured for you. All that you have to do is push your code,
and it will start serving right away. Google App Engine is such a platform where
everything else is taken care of and all that you have to worry about is your code
and what your app is supposed to do.

However, there's another major difference between IaaS and PaaS. Let's see what the
difference is.

Understanding the Runtime Environment

[6]

Containers
We talked about scaling by adding new machines to our hosting fleet that was done
by putting up new machines on the rack, plugging in the wires, and installing the
required software, which was tedious and very time-consuming and took up hours.
We then spoke about how virtualization changed the game. You can instantiate a
whole new (virtual) machine in a few minutes, possibly from an existing disk image,
so that you don't have to install anything. This is indeed a real game changer.

However, the machine is slow at the Internet scale. You may have a sudden increase
in the traffic and you might not be able to afford waiting for a few minutes to boot
new instances. There's a faster way that comes from a few special features in the
Linux kernel, where each executing process can have its own allocated and dedicated
resources. What this abstract term means is that each process gets its own partition
of the file systems, CPU, and memory share. This process is completely isolated
from the other processes. Hence, it is executed in an isolated container. Then, for
all practical purposes, this containment actually works as a virtual machine. An
overhead of creating such an environment merely requires spinning a new process,
which is not a matter of minutes but of a few seconds.

Google App Engine uses containment technology instead of virtualization
to scale up the things. Hence, it is able to respond much faster than any IaaS
solution, where they have to load a whole new virtual machine and then the
whole separate operating system on top of an existing operating system along
with the required libraries.

The containers use a totally different approach towards virtualization. Instead of
emulating the whole hardware layer and then running an operating system on top
of it, they actually are able to provide each running process a totally different view
of the system in terms of file system, memory, network, and CPU. This is mainly
enabled by cgroups (short for control groups). A kernel feature was developed by
the engineers at Google in 2006 and later, it was merged into Linux kernel 2.6.24,
which allows us to define an isolated environment and perform resource accounting
for processes.

A container is just a separation of resources, such as file system, memory, and other
resources. This is somewhat similar to chroot on Linux/Unix systems which changes
the apparent root directory for the current running process and all of its parent-child.
If you're familiar with it, you can change the system that you're working on, or simply
put, you can replace the hard drive of your laptop with a hard drive from another
laptop with identical hardware but a different operating system and set of programs.
Hence, the mechanism helps to run totally different applications in each container. So,
one container might be running LAMP stack and another might be running node.js on
the same machine that runs at bare metal at native speed with no overhead.

Chapter 1

[7]

This is called operating system virtualization and it's a vast subject in itself. Much
more has been built on top of cgroups, such as Linux Containers (LXC) and Docker
on top of LXC or using libvirt, but recently, docker has its own library called
libcontainer, which sits directly on top of cgroups. However, the key idea is
process containment, which results in a major reduction of time. Eventually,
you will be able to spin a new virtual machine in a few seconds, as it is just about
launching another ordinary Linux process, although contained in terms of what
and how it sees the underlying system.

A comparison of virtual machines versus application containers (App Engine
instances in our case) can be seen in the following diagram:

User
Code

A

User
Code

B

User
Code

C

Libs Libs Libs

User
Code

A

User
Code

B

User
Code

C

Libs
Bins

Libs
Bins

Libs
Bins

Guest
OS

Guest
OS

Guest
OS

Hypervisor

Host OS

Server hardware Server hardware

App Engine
Instance

VM

Operating System

App Engine Runtime
Service Libs & APIs

Virtualization vs container based App Engine machine instances.

How does App Engine scales?
Now that we understand many of the basic concepts behind how web applications
can be scaled and the technologies that are at work, we can now examine how App
Engine scales itself. When a user navigates to your app using their browser, the
first thing that receives the users are the Google front end servers. These servers
determine whether it is a request for App Engine (mainly by examining the HTTP
Host header), and if it is, they are handed over to the App Engine server.

Understanding the Runtime Environment

[8]

The App Engine server first determines whether this is a request for a static resource,
and if that's the case, it is handed over to the static file servers, and the whole process
ends here. Your application code never gets executed if a static resource is requested
such as a JavaScript file or a CSS stylesheet. The following image shows the cycle of
Google App Engine server request process:

User

ISP Google
Front End

Google's
Fiber

Closest Google
Data Center

App Engine Data Center

App Engine
Front End

App Master
(App Engine Management Layer)

Static Servers App ServersEdge Cache

Application
Instances

Application
Instances

Application
Instances

Google App Engine Journey of a request.

However, in case the request is dynamic, the App Engine server assigns it a unique
identifier based on the time of receiving it. It is entered into a request queue, where
it shall wait till an instance is available to serve it, as waiting might be cheaper then
spinning a new instance altogether. As we talked about in the section on containers,
these instances are actually containers and just isolated processes. So eventually,
it is not as costly as launching a new virtual machine altogether. There are a few
parameters here that you can tweak, which are accessible from the application
performance settings once you've deployed. One is the minimum latency. It is the
minimum amount of time a request should wait in the queue If you set this value to
a higher number, you'll be able to serve more requests with fewer instances but at
the cost of more latency, as perceived by the end user. App Engine will wait till the
time that is specified as minimum latency and then, it will hand over the request to
an existing instance. The other parameter is maximum latency, which specifies the
maximum time for which a request can be held in the request queue, after which,
App Engine will spin a new instance if none is available and pass the request to it.
If this value is too low, App Engine will spin more instances, which will result in an
increase in cost but much less latency, as experienced by the end user.

Chapter 1

[9]

However by default, if you haven't tweaked the default settings. (we'll see how to do
this in the Chapter 10, Application Deployment) Google App Engine will use heuristics
to determine whether it should spin a new instance based on your past request
history and patterns.

Pending
Latency If existing instances are busy,

and the Pending Latency for a
request is large, then create a

new Instance to handle the load.

Busy New

Instance Instance Instance Instance

App Engine Front End

App Engine: Request, Request queues and Instances.

The last but a very important component in the whole scheme of things is the App
Engine master. This is responsible for updates, deployments, and the versioning of
the app. This is the component that pushes static resources to static servers and code
to application instances when you deploy an application to App Engine.

Available runtimes
You can write web applications on top of Google App Engine in many programming
languages, and your choices include Python, Java, Go, and PHP. For Python, two
versions of runtimes are available, we will focus on the latest version.

Let's briefly look at each of the environments.

Understanding the Runtime Environment

[10]

Python
The most basic and important principle of all runtime environments, including that
of Python, is that you can talk to the outside world only by going through Google's
own services. It is like a completely sealed and contained sandbox where you are
not allowed to write to the disk or to connect to the network. However, no program
will be very useful in that kind of isolation. Therefore, you can definitely talk to the
outside world but only through the services provided by the App Engine. You can
also ship your own code and libraries but they must all be in pure Python code and
no C extensions are allowed. This is actually a limitation and tradeoff to ensure
that the containers are always identical. Since no external libraries are allowed,
it can be ensured that the minimal set of native required libraries is always
present on the instance.

At the very beginning, App Engine started with the Python runtime environment,
and version 2.5 was the one that was available for you. It had a few external libraries
too, and it provided a CGI environment for your web app to talk to the world. That
is, when a web request comes in, the environment variables are set from the request,
the body goes to stdin and the Python interpreter invoked with given program.
It is up to your program to then handle and respond to the request. This runtime
environment is now deprecated.

Later, the Python 2.7 runtime environment came along, with new language features
and updated shipped libraries. A major departure from the Python 2.5 runtime
environment was not only the language version, but also a switch from CGI to
WSGI. Because of this switch, it became possible for web apps to process requests
concurrently. This boosted the overall throughput per instance. We will examine CGI
and WSGI in detail in the next chapter.

The Java runtime environment
Java runtime environment presents a standard Servlet version 2.5 environment,
and there are two language versions available—Java 5 and Java 6. The Java 6
runtime environment is deprecated and will be soon removed. The Java 6 runtime
environment will be replaced and new applications users can only be able to use Java
7. The app.xml is a file that defines your application, and you have various standard
Java APIs available to talk to Google services, such as JPA for persistence, Java Mail
for mail, and so on.

This runtime environment is also capable of handling concurrent requests.

Chapter 1

[11]

Go
This runtime environment uses the new Go programming language from Google.
It is a CGI environment too, and it's not possible to handle concurrent requests,
the applications are written in Go version 1.4.

PHP
This is a preview platform, and the PHP interpreter is modified to fit in the scalable
environment with the libraries patched, removed, or the individual functions
disabled. You get to develop applications just as you would do for any normal
PHP web application, but there are many limitations. Many of the standard library
modules are either not available, or are partially functional, the applications are
written in PHP version 5.5.

The structure of an application
When you are developing a web application that has to be hosted on Google App
Engine, it has to have a certain structure so that the platform can deploy it. A
minimal App Engine application is composed of an application manifest file called
app.yaml and at least one script / code file that handles and responds to requests.
The app.yaml file defines the application ID, version of the application, required
runtime environment and libraries, static resources, if any, and the set of URLs along
with their mappings to the actual code files that are responsible for their processing.

So eventually, if you look at the minimum application structure, it will comprise only
the following two files:

• app.yaml

• main.py

Here, app.yaml describes the application and set of URLs to the actual code files
mappings. We will examine app.yaml in greater detail in a later section. The app.
yaml is not the only file that makes up your application. There are a few other
optional configuration files as well. In case you are using datastore, there may be
another file called index.yaml, which lists the kind of indexes that your app will
require. Although you can edit this file, it is automatically generated for you,
as your application runs queries locally.

Understanding the Runtime Environment

[12]

You then might have a crons.yaml file as well, that describes various repeated tasks.
The queus.yaml file descries your queue configurations so that you can queue in
long running tasks for later processing. The dos.yaml is the file that your application
might define to prevent DoS attacks.

However, most importantly, your application can have one or more logical modules,
where each module will run on a separate instance and might have different scaling
characteristics. So, you can have a module defined by api.yaml that handles your
API calls, and its scaling type is set to automatic so that it responds to requests
according to the number of consumers. Another named backend.yaml handles
various long running tasks, and its scaling type is set to manual with 5 instances on
standby, which will keep running all the time to handle whatever the long running
tasks handled to them.

We will take a look at modules later in this book when discussing deployment
options in Chapter 10, Application Deployment.

The available services
By now, you probably understand the overall architecture and atmosphere in which
our app executes, but it won't be of much use without more services available at our
disposal. Otherwise, with the limitation of pure Python code, we might have to bring
everything that is required along with us to build the next killer web app.

To this end, Google App Engine provides many useful scalable services that you
can utilize to build app. Some services address storage needs, others address the
processing needs of an app, and yet, the other group caters to the communication
needs. In a nutshell, the following services are at your disposal:

• Storage: Datastore, Blobstore, Cloud SQL, and Memcache
• Processing: Images, Crons, Tasks, and MapReduce
• Communication: Mail, XMPP, and Channels
• Identity and security: Users, OAuth, and App Identity
• Others: such as various capabilities, image processing and full text search

If the list seems short, Google constantly keeps adding new services all the time.
Now, let's look at each of the previously listed services in detail.

Chapter 1

[13]

Datastore
Datastore is a NoSQL, distributed, and highly scalable column based on a storage
solution that can scale to petabytes of data so that you don't have to worry about
scaling at all. App Engine provides a data modeling library that you can use to
model your data, just as you would with any Object Relational Mapping (ORM),
such as the Django models or SQL Alchemy. The syntax is quite similar, but there
are differences.

Each object that you save gets a unique key, which is a long string of bytes. Its
generation is another topic that we will discuss later. Since it's a NoSQL solution,
there are certain limitations on what you can query, which makes it unfit for
everyday use, but we can work around those limitations, as we will explore
in the coming chapters.

By default, apps get 1 GB of free space in datastore. So, you can start experimenting
with it right away.

Google Cloud SQL
If you prefer using a relational database, you can have that too. It is a standard
MySQL database, and you have to boot up instances and connect with it via
whatever interface is available to your runtime environment, such as JDBC in case of
Java and MySQLdb in case of Python. Datastore comes with a free quota of about
1 GB of data, but for Cloud SQL, you have to pay from the start.

Because dealing with MySQL is a topic that has been explored in much detail from
blog posts to articles and entire books have been written on the subject, this book
skips the details on this, it focuses more on Google Datastore.

The Blobstore
Your application might want to store larger chunks of data such as images, audio,
and video files. The Blobstore just does that for you. You are given a URL, which has
to be used as the target of the upload form. Uploads are handled for you, while a
key of the uploaded file is returned to a specified callback URL, which can be stored
for later reference. For letting users download a file, you can simply set the key that
you got from the upload as a specific header on your response, which is taken as an
indication by the App Engine to send the file contents to the user.

Understanding the Runtime Environment

[14]

Memcache
Hitting datastore for every request costs time and computational resources. The
same goes for the rendering of templates with a given set of values. Time is money.
Time really is money when it comes to cloud, as you pay in terms of the time your
code spends in satisfying user requests. This can be reduced by caching certain
content or queries that occur over and over for the same set of data. Google App
Engine provides you with memcache to play with so that you can supercharge
your app response.

When using App Engine's Python library to model data and query, the caching of the
data that is fetched from datastore is automatically done for you, which was not the
case in the previous versions of the library.

Scheduled Tasks
You might want to perform some certain tasks at certain intervals. That's where the
scheduled tasks fit in. Conceptually, they are similar to the Linux/UNIX Cron jobs.
However, instead of specifying commands or programs, you indicate URLs, which
receive the HTTP GET requests from App Engine on the specified intervals. You're
required to process your stuff in under 10 minutes. However, if you want to run
longer tasks, you have that option too by tweaking the scaling options, which
will be examined in the last chapter when we examine deployment.

Queues Tasks
Besides the scheduled tasks, you might be interested in the background processing
of tasks. For this, Google App Engine allows you to create tasks queues and enqueue
tasks in them specifying a target URL with payload, where they are dispatched
on a specified and configurable rate. Hence, it is possible to asynchronously
perform various computations and other pieces of work that otherwise cannot
be accommodated in request handlers.

App Engine provides two types of queues—push queues and pull queues. In push
queues, the tasks are delivered to your code via the URL dispatch mechanism,
and the only limitation is that you must execute them within the App Engine
environment. On the other hand, you can have pull requests where it's your
responsibility to pull tasks and delete them once you are done. To that end, pull
tasks can be accessed and processed from outside Google App Engine. Each task is
retried with backoffs if it fails, and you can configure the rate at which the tasks get
processed and configure this for each of the task queues or even at the individual
task level itself. The task retries are only available for push queues and for pull
queues, you will have to manage repeated attempts of failed tasks on your own.

Chapter 1

[15]

Each app has a default task queue, and it lets you create additional queues, which
are defined in the queues.yaml file. Just like the scheduled tasks, each task is
supposed to finish its processing within 10 minutes. However, if it takes longer then
this, we'll learn how to accommodate such a situation when we examine application
deployment in the last chapter.

MapReduce
MapReduce is a distributed computing paradigm that is widely used at Google to
crunch exotic amounts of data, and now, many open source implementations of such
a model exist, such as Hadoop. App Engine provides the MapReduce functionality
as well, but at the time of writing this book, Google has moved the development
and support of MapReduce libraries for Python and Java to Open source community
and they are hosted on Github. Eventually, these features are bound to change a lot.
Therefore, we'll not cover MapReduce in this book but if you want to explore this
topic further, check https://github.com/GoogleCloudPlatform/appengine-
mapreduce/wiki for further details.

Mail
Google is in the mail business. So, your applications can send mails. You can
not only send e-mails, but also receive them as well. If you plan to write your app
in Java, you will use JavaMail as the API to send emails. You can of course use
third-party solutions as well to send email, such as SendGrid, which integrates
nicely with Google App Engine. If you're interested in this kind of solution, visit
https://cloud.google.com/appengine/docs/python/mail/sendgrid.

XMPP
It's all about instant messaging. You may want to build chat features in your app
or use in other innovative ways, such as notifying users about a purchase as an
instant message or anything else whereas for that matter. XMPP services are at your
disposal. You can send a message to a user, whereas your app will receive messages
from users in the form of HTTP POST requests of a specific URL. You can respond to
them in whatever way you see fit.

https://github.com/GoogleCloudPlatform/appengine-mapreduce/wiki
https://github.com/GoogleCloudPlatform/appengine-mapreduce/wiki
https://cloud.google.com/appengine/docs/python/mail/sendgrid

Understanding the Runtime Environment

[16]

Channels
You might want to build something that does not work with the communication
model of XMPP, and for this, you have channels at your disposal. This allows you
to create a persistent connection from one client to the other clients via Google App
Engine. You can supply a client ID to App Engine, and a channel is opened for you.
Any client can listen on this channel, and when you send a message to this channel,
it gets pushed to all the clients. This can be useful, for instance, if you wish to inform
about the real-time activity of other users, which is similar to you notice on Google
Docs when editing a spreadsheet or document together.

Users
Authentication is an important part of any web application. App Engine allows
you to generate URLs that redirect users to enter their Google account credentials
(yourname@gmail.com) and manage sessions for you. You also have the option
of restricting the sign-in functionality for a specific domain (such as yourname@
yourcompany.com) in case your company uses Google Apps for business and you
intend to build some internal solutions. You can limit access to the users on your
domain alone.

OAuth
Did you ever come across a button labeled Sign in with Facebook, Twitter, Google,
and LinkedIn on various websites? Your app can have similar capabilities as well,
where you let users not only use the credentials that they registered with on your
website, but also sign in to others. In technical jargon, Google Engine can be an
OAuth provider.

Writing and deploying a simple
application
Now that you understand how App Engine works and the composition of an
App Engine app, it's time to get our hands on some real code and play with it.
We will use Python to develop applications, and we've got a few reasons to do so.
For one, Python is a very simple and an easy-to-grasp language. No matter what
your background is, you will be up and running it quickly. Further, Python is the
most mature and accessible runtime environment because it is available since the
introduction of App Engine, Further almost all new experimental and cutting-edge
services are first introduced for Python runtime environment before they make their
way to other runtimes.

