

Learning C++ by Creating
Games with UE4

Learn C++ programming with a fun, real-world
application that allows you to create your own games!

William Sherif

BIRMINGHAM - MUMBAI

Learning C++ by Creating Games with UE4

Copyright © 2015 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the author, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: February 2015

Production reference: 1180215

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78439-657-2

www.packtpub.com

www.packtpub.com

Credits

Author
William Sherif

Reviewers
Brandon Mann

Matt Sutherlin

Alan Wolfe

Commissioning Editor
Edward Bowkett

Acquisition Editor
Subho Gupta

Content Development Editor
Anand Singh

Technical Editor
Saurabh Malhotra

Copy Editors
Dipti Kapadia

Deepa Nambiar

Project Coordinator
Rashi Khivansara

Proofreaders
Martin Diver

Lawrence A. Herman

Paul Hindle

Indexer
Hemangini Bari

Graphics
Sheetal Aute

Production Coordinator
Melwyn D'sa

Cover Work
Melwyn D'sa

About the Author

William Sherif is a C++ programmer with more than 8 years' programming
experience. He has a wide range of experience in the programming world, from
game programming to web programming. He has also worked as a university
course instructor (sessional) for 7 years.

He has released several apps on to the iTunes store, including strum and
MARSHALL OF THE ELITE SQUADRON.

In the past, he has won acclaim for delivering course material in an
easy-to-understand manner.

I'd like to thank my family, for their support when I was writing this
book; Mostafa and Fatima, for their hospitality; as well as Ryan and
Reda, for letting me write.

About the Reviewers

Brandon Mann is a well-rounded game developer with over 7 years of professional
game-development experience. He has worked on a wide range of titles, from Indie
Games to AAA titles, and at companies such as Warner Bros., Midway, and 343
Industries. He has worked on several titles, including Blacklight, Tango Down, Gotham
City Impostors, and Battle Nations.

Matt Sutherlin has been working in the games industry for over a decade now,
where he's held job titles ranging from QA and scripter to engine programmer, and
technical artist. Most recently, he has been heavily focusing on graphics technology,
working on engine renderers, art pipelines, and shaders for AAA titles, such as
Heroes of the Storm and Halo 5: Guardians.

I would like to thank my beautiful wife, Megan, for years of support
and understanding and Matthew Phillips for giving me my debut in
the industry.

Alan Wolfe is a self-taught game and engine programmer who has worked at
companies such as inXile Entertainment, Midway, Warner Bros., and Blizzard
Entertainment. He has worked on titles including Line Rider 2, Unbound, Gotham City
Impostors, Battle Nations, Insanely Twisted Shadow Planet, and StarCraft II: Heart of the
Swarm. Alan is currently a senior engine programmer at Blizzard Entertainment,
where he works on StarCraft II and Heroes of the Storm.

I'd like to thank Packt Publishing and the author for allowing me to
contribute to this book and to help budding game programmers learn
the same way I did. If you want to succeed as a game programmer,
practice implementing everything you learn, hang out with like-
minded individuals, who want to achieve the same things you do,
and never stop learning new things.

www.PacktPub.com

Support files, eBooks, discount offers,
and more
For support files and downloads related to your book, please visit www.PacktPub.com.

Did you know that Packt offers eBook versions of every book published, with PDF and ePub
files available? You can upgrade to the eBook version at www.PacktPub.com and as a print
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at
service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up for a
range of free newsletters and receive exclusive discounts and offers on Packt books and eBooks.

https://www2.packtpub.com/books/subscription/packtlib

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital book
library. Here, you can search, access, and read Packt's entire library of books.

Why subscribe?
• Fully searchable across every book published by Packt
• Copy and paste, print, and bookmark content
• On demand and accessible via a web browser

Free access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view 9 entirely free books. Simply use your login credentials for
immediate access.

www.PacktPub.com
www.PacktPub.com
www.PacktPub.com
https://www2.packtpub.com/books/subscription/packtlib
www.PacktPub.com

Table of Contents
Preface 1
Chapter 1: Coding with C++ 9

Setting up our project 9
Using Microsoft Visual C++ on Windows 10
Using XCode on a Mac 14

Creating your first C++ program 17
Semicolons 21
Handling errors 21
Warnings 22

What is building and compiling? 23
Scripting 23

Exercise – ASCII art 23
Summary 24

Chapter 2: Variables and Memory 25
Variables 26

Declaring variables – touching the silicon 26
Reading and writing to your reserved spot in memory 27

Numbers are everything 28
More on variables 29
Math in C++ 31

Exercises 32
Generalized variable syntax 33
Primitive types 33
Object types 34

Exercise – Player 36
Pointers 37
What can pointers do? 38
Address of operator & 39

The Null pointers 40

Table of Contents

[ii]

cin 41
printf() 41

Exercise 42
Solution 42

Summary 43
Chapter 3: If, Else, and Switch 45

Branching 46
Controlling the flow of your program 46

The == operator 47
Coding if statements 47
Coding else statements 49
Testing for inequalities using other comparison operators
(>, >=, <, <=, and !=) 50

Using logical operators 51
The Not (!) operator 51

Exercises 52
Solution 52

The And (&&) operator 52
The Or (||) operator 53

Our first example with Unreal Engine 53
Exercise 60
Solution 60
Branching code in more than two ways 61
The else if statement 61

Exercise 62
Solution 63

The switch statement 64
Switch versus if 66
Exercise 67
Solution 68

Summary 69
Chapter 4: Looping 71

The while loop 71
Infinite loops 73
Exercises 74
Solutions 74

The do/while loop 75
The for loop 76

Exercises 77
Solutions 78

Looping with Unreal Engine 78
Summary 80

Table of Contents

[iii]

Chapter 5: Functions and Macros 81
Functions 81
An example of a <cmath> library function – sqrt() 83
Writing our own functions 84

A sample program trace 85
Exercise 88
Solution 88

Functions with arguments 88
Functions that return values 89

Exercises 91
Solutions 91

Variables, revisited 92
Global variables 92
Local variables 93
The scope of a variable 94
Static local variables 96
Const variables 97
Function prototypes 97
.h and .cpp files 97
prototypes.h contains 98
funcs.cpp contains 99
main.cpp contains 99
Extern variables 100

Macros 100
Advice – try to use const variables where possible 101

Macros with arguments 101
Advice – use inline functions instead of macros with arguments 102

Summary 103
Chapter 6: Objects, Classes, and Inheritance 105

struct objects 106
Member functions 107

The this keyword 107
Strings are objects? 108
Invoking a member function 109

Exercises 110
Solutions 110

Privates and encapsulation 111
Some people like it public 112

class versus struct 113

Table of Contents

[iv]

Getters and setters 113
Getters 114
Setters 115
But what's the point of get/set operations? 116

Constructors and destructors 117
Class inheritance 118

Derived classes 118
Syntax of inheritance 122
What does inheritance do? 123

is-a relationship 123
protected variables 124
Virtual functions 124
Purely virtual functions (and abstract classes) 125

Multiple inheritance 125
private inheritance 126

Putting your classes into headers 127
.h and .cpp 129
Exercise 131

Summary 131
Chapter 7: Dynamic Memory Allocation 133

Dynamic memory allocation 135
The delete keyword 135
Memory leaks 136

Regular arrays 137
The array syntax 137
Exercise 138
Solutions 139

C++ style dynamic size arrays (new[] and delete[]) 139
Dynamic C-style arrays 141
Summary 142

Chapter 8: Actors and Pawns 143
Actors versus pawns 143
Creating a world to put your actors in 144
The UE4 editor 147

Editor controls 147
Play mode controls 148
Adding objects to the scene 148

Starting from scratch 151
Adding light sources 152
Collision volumes 154

Adding collision detection for the objects editor 154

Table of Contents

[v]

Adding an actor to the scene 156
Creating a player entity 156

Inheriting from UE4 GameFramework classes 156
Associating a model with the Avatar class 159

Loading the mesh 161
Creating a blueprint from our C++ class 161

Writing C++ code that controls the game's character 169
Making the player an instance of the Avatar class 169
Setting up controller inputs 172

Exercise 174
Solution 174

Yaw and pitch 176
Creating non-player character entities 177
Displaying a quote from each NPC dialog box 181

Displaying messages on the HUD 181
Using TArray<Message> 184

Exercise 186
Solution 187

Triggering an event when it is near an NPC 187
Make the NPC display something to the HUD when something is nearby 189
Exercises 190
Solutions 191

Summary 192
Chapter 9: Templates and Commonly Used Containers 193

Debugging the output in UE4 194
UE4's TArray<T> 194

An example that uses TArray<T> 195
Iterating a TArray 196
Finding whether an element is in the TArray 198

TSet<T> 199
Iterating a TSet 199
Intersecting TSet 200
Unioning TSet 200
Finding TSet 200

TMap<T, S> 200
A list of items for the player's inventory 201
Iterating a TMap 201

C++ STL versions of commonly used containers 202
C++ STL set 203

Finding an element in a <set> 204
Exercise 204
Solution 204

Table of Contents

[vi]

C++ STL map 205
Finding an element in a <map> 206
Exercise 206
Solution 206

Summary 207
Chapter 10: Inventory System and Pickup Items 209

Declaring the backpack 209
Forward declaration 210
Importing assets 211
Attaching an action mapping to a key 216

Base class PickupItem 217
The root component 220

Getting the avatar 222
Getting the player controller 222
Getting the HUD 222

Drawing the player inventory 223
Using HUD::DrawTexture() 224

Exercise 227
Detecting inventory item clicks 227

Dragging elements 228
Exercises 231

Summary 232
Chapter 11: Monsters 233

Landscape 234
Sculpting the landscape 237

Monsters 238
Basic monster intelligence 243

Moving the monster – steering behavior 243
The discrete nature of monster motion 246
Monster SightSphere 248

Monster attacks on the player 250
Melee attacks 251

Defining a melee weapon 251
Sockets 257

Creating a skeletal mesh socket in the monster's hand 258
Attaching the sword to the model 260
Code to equip the player with a sword 261
Triggering the attack animation 263

Projectile or ranged attacks 277
Bullet physics 279
Adding bullets to the monster class 281

Player knockback 285
Summary 286

Table of Contents

[vii]

Chapter 12: Spell Book 287
The particle systems 289

Changing particle properties 291
Settings for the blizzard spell 294

Spell class actor 300
Blueprinting our spells 303
Picking up spells 305

Creating blueprints for PickupItems that cast spells 306
Attaching right mouse click to cast spell 308

Writing the avatar's CastSpell function 309
Instantiating the spell – GetWorld()->SpawnActor() 309
if(spell) 310
spell->SetCaster(this) 310

Writing AMyHUD::MouseRightClicked() 310
Activating right mouse button clicks 312

Creating other spells 314
The fire spell 314
Exercises 315

Summary 315
Index 317

Preface
So, you want to program your own games using Unreal Engine 4 (UE4). You have
a great number of reasons to do so:

• UE4 is powerful: UE4 provides some of the most state-of-the-art, beautiful,
realistic lighting and physics effects, of the kind used by AAA Studios.

• UE4 is device-agnostic: Code written for UE4 will work on Windows
desktop machines, Mac desktop machines, Android devices, and iOS
devices (at the time of writing this book—even more devices may be
supported in the future).

So, you can use UE4 to write the main parts of your game once, and after that,
deploy to iOS and Android Marketplaces without a hitch. (Of course, there will
be a few hitches: iOS and Android in app purchases will have to be programmed
separately.)

What is a game engine anyway?
A game engine is analogous to a car engine: the game engine is what drives the
game. You will tell the engine what you want, and (using C++ code and the UE4
editor) the engine will be responsible for actually making that happen.

You will build your game around the UE4 game engine, similar to how the body and
wheels are built around an actual car engine. When you ship a game with UE4, you
are basically customizing the UE4 engine and retrofitting it with your own game's
graphics, sounds, and code.

Preface

[2]

What will using UE4 cost me?
The answer, in short, is $19 and 5 percent of sales.

"What?" you say. $19?

That's right. For only $19, you get full access to a world class AAA Engine, complete
with a source. This is a great bargain, considering the fact that other engines can cost
anywhere from $500 to $1,000 for just a single license.

Why don't I just program my own engine
and save the 5 percent?
Take it from me, if you want to create games within a reasonable time frame and you
don't have a large team of dedicated engine programmers to help you, you'll want to
focus your efforts on what you sell (your game).

Not having to focus on programming a game engine gives you the freedom to think
only about how to make the actual game. Not having to maintain and bug-fix your
own engine is a load off your mind too.

A game's overview – the Play-Reward-
Growth loop
I want to show you this diagram now because it contains a core concept that many
novice developers might miss when writing their first games. A game can be complete
with sound effects, graphics, realistic physics, and yet, still not feel like a game. Why
is that?

- Purchase powerups
- Level of points

Drives

Play

Growth

used for

Reward

Result in

- Perfect monsters
- Explore world

- Item box,
- Coin,
- Experience

Preface

[3]

Starting at the top of the loop, Play actions committed during the game (such as
defeating a monster) result in rewards for the player (such as gold or experience).
These rewards, in turn, can be used for in-game Growth (such as stats increases
or new worlds to explore). This Growth then drives the gameplay in new and
interesting ways. For example, a new weapon can change the basic mechanics of
fighting, new spells let you take on groups of monsters with a completely different
approach, or new modes of transportation can let you reach areas that were
previously inaccessible.

This is the basic core loop that creates interesting gameplay. The key is that Play
must result in some kind of Reward—think of glittering gold pieces popping out of
nasty baddies. For rewards to have a point, it must result in some kind of Growth in
the gameplay. Think about how many new locations were unlocked with the hook
shot in The Legend of Zelda.

A game that is only Play (without Rewards or Growth) won't feel like a game: it
will feel only like a really basic prototype of a game. For example, imagine a flight
simulator with just an open world and no goals or objectives as well as without the
ability to upgrade your plane or weapons. It wouldn't be much of a game.

A game with only Play and Rewards (but no Growth) will feel primitive and simple.
The rewards will not satisfy the player if they cannot be used for anything.

A game with only Play and Growth (without Rewards) will just be seen as a
mindless increasing challenge, without giving the player a sense of gratification
for his achievements.

A game with all three elements will keep the player engaged with an entertaining
Play. The Play has a rewarding result (loot drops and story progression), which
results in the Growth of the game world. Keeping this loop in mind while you are
devising your game will really help you to design a complete game.

A prototype is the proof of concept of a game. Say, you want to create
your own unique version of Blackjack. The first thing you might do is
program a prototype to show how the game will be played.

Monetization
Something you need to think about early in your game's development is your
monetization strategy. How will your game make money? If you are trying to start
a company, you have to think of what will be your sources of revenue from early on.

Preface

[4]

Are you going to try to make money from the purchase price, such as Jamestown,
The Banner Saga, Castle Crashers, or Crypt of the Necrodancer? Or, will you focus on
distributing a free game with in-app purchases, such as Clash of Clans, Candy Crush
Saga, or Subway Surfers?

A class of games for mobile devices (for example, builder games on iOS) make lots
of money by allowing the user to pay in order to skip Play and jump straight to the
rewards and Growth parts of the loop. The pull to do this can be very powerful;
many people spend hundreds of dollars on a single game.

Why C++
UE4 is programmed in C++. To write code for UE4, you must know C++.

C++ is a common choice for game programmers because it offers very good
performance combined with object-oriented programming features. It's a very
powerful and flexible language.

What this book covers
Chapter 1, Coding with C++, talks about getting up and running with your first
C++ program.

Chapter 2, Variables and Memory, talks about how to create, read, and write variables
from computer memory.

Chapter 3, If, Else, and Switch, talks about branching the code: that is, allowing
different sections of the code to execute, depending on program conditions.

Chapter 4, Looping, discusses how we repeat a specific section of code as many times
as needed.

Chapter 5, Functions and Macros, talks about functions, which are bundles of code that
can get called any number of times, as often you wish.

Chapter 6, Objects, Classes, and Inheritance, talks about class definitions and
instantiating some objects based on a class definition.

Chapter 7, Dynamic Memory Allocation, discusses heap-allocated objects as well as
low-level C and C++ style arrays.

Chapter 8, Actors and Pawns, is the first chapter where we actually delve into UE4
code. We begin by creating a game world to put actors in, and derive an Avatar
class from a customized actor.

Preface

[5]

Chapter 9, Templates and Commonly Used Containers, explores UE4 and the C++ STL
family of collections of data, called containers. Often, a programming problem can be
simplified many times by selecting the right type of container.

Chapter 10, Inventory System and Pickup Items, discusses the creation of an inventory
system with the ability to pick up new items.

Chapter 11, Monsters, teaches how to create monsters that give chase to the player
and attack it with weapons.

Chapter 12, Spell Book, teaches how to create and cast spells in our game.

What you need for this book
To work with this text, you will need two programs. The first is your integrated
development environment, or IDE. The second piece of software is, of course, the
Unreal Engine itself.

If you are using Microsoft Windows, then you will need Microsoft Visual Studio 2013
Express Edition for Windows Desktop. If you are using a Mac, then you will need
Xcode. Unreal Engine can be downloaded from https://www.unrealengine.com/.

Who this book is for
This book is for anyone who wants to write an Unreal Engine application. The text
begins by telling you how to compile and run your first C++ application, followed
by chapters that describe the rules of the C++ programming language. After the
introductory C++ chapters, you can start to build your own game application in C++.

Conventions
In this book, you will find a number of styles of text that distinguish between
different kinds of information. Here are some examples of these styles, and an
explanation of their meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows:
"The variableType is going to tell you what type of data we are going to store in
our variable. The variableName is the symbol we'll use to read or write that piece
of memory".

https://www.unrealengine.com/

Preface

[6]

A block of code is set as follows:

struct Player
{
 string name;
 int hp;
 // A member function that reduces player hp by some amount
 void damage(int amount) {
 hp -= amount;
 }
 void recover(int amount) {
 hp += amount;
 }
};

New terms and important words are shown in bold. Text that appears on the screen
appears like this: From the File menu, select New Project...

Extra information that is relevant, but kind of a side
note, appears in boxes like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or may have disliked. Reader feedback is important for
us to develop titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com,
and mention the book title via the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide on www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things
to help you to get the most from your purchase.

www.packtpub.com/authors

Preface

[7]

Downloading the example code
You can download the example code files for all Packt books you have purchased
from your account at http://www.packtpub.com. If you purchased this book
elsewhere, you can visit http://www.packtpub.com/support and register to have
the files e-mailed directly to you.

Downloading the color images of this book
We also provide you with a PDF file that has color images of the screenshots/
diagrams used in this book. The color images will help you better understand the
changes in the output. You can download this file from https://www.packtpub.
com/sites/default/files/downloads/6572OT_ColoredImages.pdf.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in the text or
the code—we would be grateful if you would report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
book. If you find any errata, please report them by visiting http://www.packtpub.
com/submit-errata, selecting your book, clicking on the errata submission form link,
and entering the details of your errata. Once your errata are verified, your submission
will be accepted and the errata will be uploaded on our website, or added to any list of
existing errata, under the Errata section of that title. Any existing errata can be viewed
by selecting your title from http://www.packtpub.com/support.

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media.
At Packt, we take the protection of our copyright and licenses very seriously. If you
come across any illegal copies of our works, in any form, on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors, and our ability to bring you
valuable content.

http://www.packtpub.com
http://www.packtpub.com/support
https://www.packtpub.com/sites/default/files/downloads/6572OT_ColoredImages.pdf
https://www.packtpub.com/sites/default/files/downloads/6572OT_ColoredImages.pdf
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/support

Preface

[8]

Questions
You can contact us at questions@packtpub.com if you are having a problem with
any aspect of the book, and we will do our best to address it.

Coding with C++
You're a first-time programmer. You have a lot to learn!

Academics often describe programming concepts in theory but like to leave
implementation to someone else, preferably someone from the industry. We don't do
that in this book—in this book, we will describe the theory behind C++ concepts and
implement our own game as well.

The first thing I will recommend is that you do the exercises. You cannot learn to
program simply by reading. You must work with the theory with the exercises.

We are going to get started by programming very simple programs in C++. I know
that you want to start playing your finished game right now. However, you have to
start at the beginning to get to that end (if you really want to, skip over to Chapter 12,
Spell Book, or open some of the samples to get a feel for where we are going).

In this chapter, we will cover the following topics:

• Setting up a new project (in Visual Studio and Xcode)
• Your first C++ project
• How to handle errors
• What are building and compiling?

Setting up our project
Our first C++ program will be written outside of UE4. To start with, I will provide
steps for both Xcode and Visual Studio 2013, but after this chapter, I will try to
talk about just the C++ code without reference to whether you're using Microsoft
Windows or Mac OS.

Coding with C++

[10]

Using Microsoft Visual C++ on Windows
In this section, we will install a code editor for Windows, Microsoft's Visual Studio.
Please skip to the next section if you are using a Mac.

The Express edition of Visual Studio is the free version of Visual
Studio that Microsoft provides on their website. Go to http://
www.visualstudio.com/en-us/products/visual-
studio-express-vs.aspx to start the installation process.

To start, you have to download and install Microsoft Visual Studio Express 2013 for
Windows Desktop. This is how the icon for the software looks:

Do not install Express 2013 for Windows. This is a different package
and it is used for different things than what we are doing here.

Once you have Visual Studio 2013 Express installed, open it. Work through the
following steps to get to a point where you can actually type in the code:

1. From the File menu, select New Project..., as shown in the following
screenshot:

http://www.visualstudio.com/en-us/products/visual-studio-express-vs.aspx
http://www.visualstudio.com/en-us/products/visual-studio-express-vs.aspx
http://www.visualstudio.com/en-us/products/visual-studio-express-vs.aspx

Chapter 1

[11]

2. You will get the following dialog:

Note that there is a small box at the bottom with the text Solution
name. In general, Visual Studio Solutions might contain many
projects. However, this book only works with a single project, but at
times, you might find it useful to integrate many projects into the same
solution.

3. There are five things to take care of now, as follows:
1. Select Visual C++ from the left-hand side panel.
2. Select Win32 Console Application from the right-hand side panel.
3. Name your app (I used MyFirstApp).
4. Select a folder to save your code.
5. Click on the OK button.

Coding with C++

[12]

4. After this an Application Wizard dialog box opens up, as shown in the
following screenshot:

5. We have four things to take care of in this dialog box, as follows:
1. Click on Application Settings in the left-hand side panel.
2. Ensure that Console application is selected.
3. Select Empty project.
4. Click on Finish.

Now you are in the Visual Studio 2013 environment. This is the place where you will
do all your work and code.

Chapter 1

[13]

However, we need a file to write our code into. So, we will add a C++ code file to our
project, as shown in the following screenshot:

Add your new source code file as shown in the following screenshot:

You will now edit Source.cpp. Skip to the Your First C++ Program section and type
in your code.

Coding with C++

[14]

Using XCode on a Mac
In this section, we will talk about how to install Xcode on a Mac. Please skip to the
next section if you are using Windows.

Xcode is available on all Mac machines. You can get Xcode using the Apple App
Store (it's free), as shown here:

1. Once you have Xcode installed, open it. Then, navigate to File | New |
Project... from the system's menu bar at the top of your screen, as shown
in the following screenshot:

Chapter 1

[15]

2. In the New Project dialog, select Application under OS X on the left-hand
side of the screen, and select Command Line Tool from the right-hand side
pane. Then, click on Next:

You might be tempted to click on the SpriteKit Game
icon, but don't click on it.

3. In the next dialog, name your project. Be sure to fill in all the fields or Xcode
won't let you proceed. Make sure that the project's Type is set to C++ and
then click on the Next button, as shown here:

Coding with C++

[16]

4. The next popup will ask you to choose a location in order to save your
project. Pick a spot on your hard drive and save it there. Xcode, by default,
creates a Git repository for every project you create. You can uncheck
Create git repository —we won't cover Git in this chapter—as shown
in the following screenshot:

Git is a Version control system. This basically means that Git keeps
the snapshots of all the code in your project every so often (every
time you commit to the repository). Other popular source control
management tools (scm) are Mercurial, Perforce, and Subversion.
When multiple people are collaborating on the same project, the scm
tool has the ability to automatically merge and copy other people's
changes from the repository to your local code base.

Chapter 1

[17]

Okay! You are all set up. Click on the main.cpp file in the left-hand side panel of
Xcode. If the file doesn't appear, ensure that the folder icon at the top of the left-hand
side panel is selected first, as shown in the following screenshot:

Creating your first C++ program
We are now going to write some C++ source code. There is a very good reason why
we are calling it the source code: it is the source from which we will build our binary
executable code. The same C++ source code can be built on different platforms such
as Mac, Windows, and iOS, and in theory, an executable code doing the exact same
things on each respective platform should result.

In the not-so-distant past, before the introduction of C and C++, programmers
wrote code for each specific machine they were targeting individually. They wrote
code in a language called assembly language. But now, with C and C++ available,
a programmer only has to write code once, and it can be deployed to a number of
different machines simply by sending the same code through different compilers.

In practice, there are some differences between Visual Studio's flavor
of C++ and Xcode's flavor of C++, but these differences mostly come
up when working with advanced C++ concepts, such as templates.
One of the main reasons why using UE4 is so helpful is that UE4 will
erase a lot of the differences between Windows and Mac. The UE4
team did a lot of magic in order to get the same code to work on both
Windows and Mac.

Coding with C++

[18]

A real-world tip
It is important for the code to run in the same way on all machines,
especially for networked games or games that allow things such as
shareable replays. This can be achieved using standards. For example,
the IEEE floating-point standard is used to implement decimal math on
all C++ compilers. This means that the result of computations such as
200 * 3.14159 should be the same on all the machines.

Write the following code in Microsoft Visual Studio or in Xcode:

#include <iostream> // Import the input-output library
using namespace std; // allows us to write cout
 // instead of std::cout
int main()
{
 cout << "Hello, world" << endl;
 cout << "I am now a C++ programmer." << endl;
 return 0; // "return" to the operating sys
}

Press Ctrl + F5 to run the preceding code in Visual Studio, or press + R to run
in Xcode.

The first time you press Ctrl + F5 in Visual Studio, you will see this dialog:

Select Yes and Do not show this dialog again—trust me, this will avoid
future problems.

