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Preface
So, you want to program your own games using Unreal Engine 4 (UE4). You have  
a great number of reasons to do so:

• UE4 is powerful: UE4 provides some of the most state-of-the-art, beautiful, 
realistic lighting and physics effects, of the kind used by AAA Studios.

• UE4 is device-agnostic: Code written for UE4 will work on Windows  
desktop machines, Mac desktop machines, Android devices, and iOS  
devices (at the time of writing this book—even more devices may be 
supported in the future).

So, you can use UE4 to write the main parts of your game once, and after that, 
deploy to iOS and Android Marketplaces without a hitch. (Of course, there will 
be a few hitches: iOS and Android in app purchases will have to be programmed 
separately.)

What is a game engine anyway?
A game engine is analogous to a car engine: the game engine is what drives the 
game. You will tell the engine what you want, and (using C++ code and the UE4 
editor) the engine will be responsible for actually making that happen.

You will build your game around the UE4 game engine, similar to how the body and 
wheels are built around an actual car engine. When you ship a game with UE4, you 
are basically customizing the UE4 engine and retrofitting it with your own game's 
graphics, sounds, and code.
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What will using UE4 cost me?
The answer, in short, is $19 and 5 percent of sales.

"What?" you say. $19?

That's right. For only $19, you get full access to a world class AAA Engine, complete 
with a source. This is a great bargain, considering the fact that other engines can cost 
anywhere from $500 to $1,000 for just a single license.

Why don't I just program my own engine 
and save the 5 percent?
Take it from me, if you want to create games within a reasonable time frame and you 
don't have a large team of dedicated engine programmers to help you, you'll want to 
focus your efforts on what you sell (your game).

Not having to focus on programming a game engine gives you the freedom to think 
only about how to make the actual game. Not having to maintain and bug-fix your 
own engine is a load off your mind too.

A game's overview – the Play-Reward-
Growth loop
I want to show you this diagram now because it contains a core concept that many 
novice developers might miss when writing their first games. A game can be complete 
with sound effects, graphics, realistic physics, and yet, still not feel like a game. Why  
is that?

- Purchase powerups
- Level of points

Drives

Play

Growth

used for

Reward

Result in

- Perfect monsters
- Explore world

- Item box,
- Coin,
- Experience
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Starting at the top of the loop, Play actions committed during the game (such as 
defeating a monster) result in rewards for the player (such as gold or experience). 
These rewards, in turn, can be used for in-game Growth (such as stats increases 
or new worlds to explore). This Growth then drives the gameplay in new and 
interesting ways. For example, a new weapon can change the basic mechanics of 
fighting, new spells let you take on groups of monsters with a completely different 
approach, or new modes of transportation can let you reach areas that were 
previously inaccessible.

This is the basic core loop that creates interesting gameplay. The key is that Play 
must result in some kind of Reward—think of glittering gold pieces popping out of 
nasty baddies. For rewards to have a point, it must result in some kind of Growth in 
the gameplay. Think about how many new locations were unlocked with the hook 
shot in The Legend of Zelda.

A game that is only Play (without Rewards or Growth) won't feel like a game: it 
will feel only like a really basic prototype of a game. For example, imagine a flight 
simulator with just an open world and no goals or objectives as well as without the 
ability to upgrade your plane or weapons. It wouldn't be much of a game.

A game with only Play and Rewards (but no Growth) will feel primitive and simple. 
The rewards will not satisfy the player if they cannot be used for anything.

A game with only Play and Growth (without Rewards) will just be seen as a 
mindless increasing challenge, without giving the player a sense of gratification  
for his achievements.

A game with all three elements will keep the player engaged with an entertaining 
Play. The Play has a rewarding result (loot drops and story progression), which 
results in the Growth of the game world. Keeping this loop in mind while you are 
devising your game will really help you to design a complete game.

A prototype is the proof of concept of a game. Say, you want to create 
your own unique version of Blackjack. The first thing you might do is 
program a prototype to show how the game will be played.

Monetization
Something you need to think about early in your game's development is your 
monetization strategy. How will your game make money? If you are trying to start  
a company, you have to think of what will be your sources of revenue from early on.
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Are you going to try to make money from the purchase price, such as Jamestown, 
The Banner Saga, Castle Crashers, or Crypt of the Necrodancer? Or, will you focus on 
distributing a free game with in-app purchases, such as Clash of Clans, Candy Crush 
Saga, or Subway Surfers?

A class of games for mobile devices (for example, builder games on iOS) make lots 
of money by allowing the user to pay in order to skip Play and jump straight to the 
rewards and Growth parts of the loop. The pull to do this can be very powerful; 
many people spend hundreds of dollars on a single game.

Why C++
UE4 is programmed in C++. To write code for UE4, you must know C++.

C++ is a common choice for game programmers because it offers very good 
performance combined with object-oriented programming features. It's a very 
powerful and flexible language.

What this book covers
Chapter 1, Coding with C++, talks about getting up and running with your first  
C++ program.

Chapter 2, Variables and Memory, talks about how to create, read, and write variables 
from computer memory.

Chapter 3, If, Else, and Switch, talks about branching the code: that is, allowing 
different sections of the code to execute, depending on program conditions.

Chapter 4, Looping, discusses how we repeat a specific section of code as many times 
as needed.

Chapter 5, Functions and Macros, talks about functions, which are bundles of code that 
can get called any number of times, as often you wish.

Chapter 6, Objects, Classes, and Inheritance, talks about class definitions and 
instantiating some objects based on a class definition.

Chapter 7, Dynamic Memory Allocation, discusses heap-allocated objects as well as  
low-level C and C++ style arrays.

Chapter 8, Actors and Pawns, is the first chapter where we actually delve into UE4 
code. We begin by creating a game world to put actors in, and derive an Avatar  
class from a customized actor.
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Chapter 9, Templates and Commonly Used Containers, explores UE4 and the C++ STL 
family of collections of data, called containers. Often, a programming problem can be 
simplified many times by selecting the right type of container.

Chapter 10, Inventory System and Pickup Items, discusses the creation of an inventory 
system with the ability to pick up new items.

Chapter 11, Monsters, teaches how to create monsters that give chase to the player  
and attack it with weapons.

Chapter 12, Spell Book, teaches how to create and cast spells in our game.

What you need for this book
To work with this text, you will need two programs. The first is your integrated 
development environment, or IDE. The second piece of software is, of course, the 
Unreal Engine itself.

If you are using Microsoft Windows, then you will need Microsoft Visual Studio 2013 
Express Edition for Windows Desktop. If you are using a Mac, then you will need 
Xcode. Unreal Engine can be downloaded from https://www.unrealengine.com/.

Who this book is for
This book is for anyone who wants to write an Unreal Engine application. The text 
begins by telling you how to compile and run your first C++ application, followed 
by chapters that describe the rules of the C++ programming language. After the 
introductory C++ chapters, you can start to build your own game application in C++.

Conventions
In this book, you will find a number of styles of text that distinguish between 
different kinds of information. Here are some examples of these styles, and an 
explanation of their meaning.

Code words in text, database table names, folder names, filenames, file extensions, 
pathnames, dummy URLs, user input, and Twitter handles are shown as follows: 
"The variableType is going to tell you what type of data we are going to store in  
our variable. The variableName is the symbol we'll use to read or write that piece  
of memory".

https://www.unrealengine.com/
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A block of code is set as follows:

struct Player
{
  string name;
  int hp;
  // A member function that reduces player hp by some amount
  void damage( int amount ) {
    hp -= amount;
  }
  void recover( int amount ) {
    hp += amount;
  }
};

New terms and important words are shown in bold. Text that appears on the screen 
appears like this: From the File menu, select New Project...

Extra information that is relevant, but kind of a side 
note, appears in boxes like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about 
this book—what you liked or may have disliked. Reader feedback is important for  
us to develop titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com, 
and mention the book title via the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing 
or contributing to a book, see our author guide on www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things  
to help you to get the most from your purchase.

www.packtpub.com/authors
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Downloading the example code
You can download the example code files for all Packt books you have purchased 
from your account at http://www.packtpub.com. If you purchased this book 
elsewhere, you can visit http://www.packtpub.com/support and register to have 
the files e-mailed directly to you.

Downloading the color images of this book
We also provide you with a PDF file that has color images of the screenshots/
diagrams used in this book. The color images will help you better understand the 
changes in the output. You can download this file from https://www.packtpub.
com/sites/default/files/downloads/6572OT_ColoredImages.pdf.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes 
do happen. If you find a mistake in one of our books—maybe a mistake in the text or 
the code—we would be grateful if you would report this to us. By doing so, you can 
save other readers from frustration and help us improve subsequent versions of this 
book. If you find any errata, please report them by visiting http://www.packtpub.
com/submit-errata, selecting your book, clicking on the errata submission form link, 
and entering the details of your errata. Once your errata are verified, your submission 
will be accepted and the errata will be uploaded on our website, or added to any list of 
existing errata, under the Errata section of that title. Any existing errata can be viewed 
by selecting your title from http://www.packtpub.com/support.

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media. 
At Packt, we take the protection of our copyright and licenses very seriously. If you 
come across any illegal copies of our works, in any form, on the Internet, please 
provide us with the location address or website name immediately so that we can 
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected  
pirated material.

We appreciate your help in protecting our authors, and our ability to bring you 
valuable content.

http://www.packtpub.com
http://www.packtpub.com/support
https://www.packtpub.com/sites/default/files/downloads/6572OT_ColoredImages.pdf
https://www.packtpub.com/sites/default/files/downloads/6572OT_ColoredImages.pdf
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/support
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Questions
You can contact us at questions@packtpub.com if you are having a problem with 
any aspect of the book, and we will do our best to address it.



Coding with C++
You're a first-time programmer. You have a lot to learn!

Academics often describe programming concepts in theory but like to leave 
implementation to someone else, preferably someone from the industry. We don't do 
that in this book—in this book, we will describe the theory behind C++ concepts and 
implement our own game as well.

The first thing I will recommend is that you do the exercises. You cannot learn to 
program simply by reading. You must work with the theory with the exercises.

We are going to get started by programming very simple programs in C++. I know 
that you want to start playing your finished game right now. However, you have to 
start at the beginning to get to that end (if you really want to, skip over to Chapter 12, 
Spell Book, or open some of the samples to get a feel for where we are going).

In this chapter, we will cover the following topics:

• Setting up a new project (in Visual Studio and Xcode)
• Your first C++ project
• How to handle errors
• What are building and compiling?

Setting up our project
Our first C++ program will be written outside of UE4. To start with, I will provide 
steps for both Xcode and Visual Studio 2013, but after this chapter, I will try to 
talk about just the C++ code without reference to whether you're using Microsoft 
Windows or Mac OS.
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Using Microsoft Visual C++ on Windows
In this section, we will install a code editor for Windows, Microsoft's Visual Studio. 
Please skip to the next section if you are using a Mac.

The Express edition of Visual Studio is the free version of Visual 
Studio that Microsoft provides on their website. Go to http://
www.visualstudio.com/en-us/products/visual-
studio-express-vs.aspx to start the installation process.

To start, you have to download and install Microsoft Visual Studio Express 2013 for 
Windows Desktop. This is how the icon for the software looks:

Do not install Express 2013 for Windows. This is a different package 
and it is used for different things than what we are doing here.

Once you have Visual Studio 2013 Express installed, open it. Work through the 
following steps to get to a point where you can actually type in the code:

1. From the File menu, select New Project..., as shown in the following 
screenshot:

http://www.visualstudio.com/en-us/products/visual-studio-express-vs.aspx
http://www.visualstudio.com/en-us/products/visual-studio-express-vs.aspx
http://www.visualstudio.com/en-us/products/visual-studio-express-vs.aspx
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2. You will get the following dialog:

Note that there is a small box at the bottom with the text Solution 
name. In general, Visual Studio Solutions might contain many 
projects. However, this book only works with a single project, but at 
times, you might find it useful to integrate many projects into the same 
solution.

3. There are five things to take care of now, as follows:
1. Select Visual C++ from the left-hand side panel.
2. Select Win32 Console Application from the right-hand side panel.
3. Name your app (I used MyFirstApp).
4. Select a folder to save your code.
5. Click on the OK button.
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4. After this an Application Wizard dialog box opens up, as shown in the 
following screenshot:

5. We have four things to take care of in this dialog box, as follows:
1. Click on Application Settings in the left-hand side panel.
2. Ensure that Console application is selected.
3. Select Empty project.
4. Click on Finish.

Now you are in the Visual Studio 2013 environment. This is the place where you will 
do all your work and code.
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However, we need a file to write our code into. So, we will add a C++ code file to our 
project, as shown in the following screenshot:

Add your new source code file as shown in the following screenshot:

You will now edit Source.cpp. Skip to the Your First C++ Program section and type 
in your code.
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Using XCode on a Mac
In this section, we will talk about how to install Xcode on a Mac. Please skip to the 
next section if you are using Windows.

Xcode is available on all Mac machines. You can get Xcode using the Apple App 
Store (it's free), as shown here:

1. Once you have Xcode installed, open it. Then, navigate to File | New | 
Project... from the system's menu bar at the top of your screen, as shown  
in the following screenshot:
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2. In the New Project dialog, select Application under OS X on the left-hand 
side of the screen, and select Command Line Tool from the right-hand side 
pane. Then, click on Next:

You might be tempted to click on the SpriteKit Game 
icon, but don't click on it.

3. In the next dialog, name your project. Be sure to fill in all the fields or Xcode 
won't let you proceed. Make sure that the project's Type is set to C++ and 
then click on the Next button, as shown here:
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4. The next popup will ask you to choose a location in order to save your 
project. Pick a spot on your hard drive and save it there. Xcode, by default, 
creates a Git repository for every project you create. You can uncheck  
Create git repository —we won't cover Git in this chapter—as shown  
in the following screenshot:

Git is a Version control system. This basically means that Git keeps 
the snapshots of all the code in your project every so often (every 
time you commit to the repository). Other popular source control 
management tools (scm) are Mercurial, Perforce, and Subversion. 
When multiple people are collaborating on the same project, the scm 
tool has the ability to automatically merge and copy other people's 
changes from the repository to your local code base.
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Okay! You are all set up. Click on the main.cpp file in the left-hand side panel of 
Xcode. If the file doesn't appear, ensure that the folder icon at the top of the left-hand 
side panel is selected first, as shown in the following screenshot:

Creating your first C++ program
We are now going to write some C++ source code. There is a very good reason why 
we are calling it the source code: it is the source from which we will build our binary 
executable code. The same C++ source code can be built on different platforms such 
as Mac, Windows, and iOS, and in theory, an executable code doing the exact same 
things on each respective platform should result.

In the not-so-distant past, before the introduction of C and C++, programmers 
wrote code for each specific machine they were targeting individually. They wrote 
code in a language called assembly language. But now, with C and C++ available, 
a programmer only has to write code once, and it can be deployed to a number of 
different machines simply by sending the same code through different compilers.

In practice, there are some differences between Visual Studio's flavor 
of C++ and Xcode's flavor of C++, but these differences mostly come 
up when working with advanced C++ concepts, such as templates.
One of the main reasons why using UE4 is so helpful is that UE4 will 
erase a lot of the differences between Windows and Mac. The UE4 
team did a lot of magic in order to get the same code to work on both 
Windows and Mac.
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A real-world tip
It is important for the code to run in the same way on all machines, 
especially for networked games or games that allow things such as 
shareable replays. This can be achieved using standards. For example, 
the IEEE floating-point standard is used to implement decimal math on 
all C++ compilers. This means that the result of computations such as 
200 * 3.14159 should be the same on all the machines.

Write the following code in Microsoft Visual Studio or in Xcode:

#include <iostream>  // Import the input-output library
using namespace std; // allows us to write cout
                     // instead of std::cout
int main()
{
  cout << "Hello, world" << endl;
  cout << "I am now a C++ programmer." << endl;
  return 0;      // "return" to the operating sys
}

Press Ctrl + F5 to run the preceding code in Visual Studio, or press  + R to run  
in Xcode.

The first time you press Ctrl + F5 in Visual Studio, you will see this dialog:

Select Yes and Do not show this dialog again—trust me, this will avoid  
future problems.


