

Raspberry Pi Home Automation with Arduino

Second Edition

Unleash the power of the most popular microboards to build convenient, useful, and fun home automation projects

Raspberry Pi Home Automation with Arduino

Second Edition

Unleash the power of the most popular microboards to build convenient, useful, and fun home automation projects

Andrew K. Dennis

BIRMINGHAM - MUMBAI

Raspberry Pi Home Automation with Arduino Second Edition

Copyright © 2015 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, without the prior written permission of the publisher, except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the information presented. However, the information contained in this book is sold without warranty, either express or implied. Neither the author nor Packt Publishing, and its dealers and distributors will be held liable for any damages caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies and products mentioned in this book by the appropriate use of capitals. However, Packt Publishing cannot guarantee the accuracy of this information.

First published: February 2013

Second edition: February 2015

Production reference: 1200215

Published by Packt Publishing Ltd. Livery Place 35 Livery Street Birmingham B3 2PB, UK.

ISBN 978-1-78439-920-7

www.packtpub.com

Credits

Author

Andrew K. Dennis

Project Coordinator Shipra Chawhan

Reviewers

Ed Baker Rémy Bétus

Piotr Kula

Proofreaders

Simran Bhogal

Chris Smith

Commissioning Editor

Akram Hussain

Indexer

Mariammal Chettiyar

Acquisition Editor

Richard Brookes-Bland

Production Coordinator

Melwyn D'sa

Content Development Editor

Prachi Bisht

Cover Work

Melwyn D'sa

Technical Editor

Mitali Somaiya

Copy Editor

Vikrant Phadke

About the Author

Andrew K. Dennis is the manager of professional services software development at Prometheus Research. This company is a leading provider of integrated data management for research, and is the home of HTSQL, an open source navigational query language for RDBMS.

Andrew has a diploma in computing and a BS in software engineering. He is currently studying for a second BS in creative computing.

He has over 10 years of experience in the software industry in the UK, Canada, and USA. His experience includes Python and JavaScript development, e-learning, CMS and LMS development, SCORM consultancy, web development in a variety of languages, open source application development, and a blog dedicated to maker culture and home automation.

His interests include web development, e-learning, 3D printing, Linux, the Raspberry Pi and Arduino, open source projects, parallel computing, home automation, amateur electronics, home networking, and software engineering.

Many of these topics were covered in his previous book, *Raspberry Pi Super Cluster*, *Packt Publishing*.

I would like to thank my wife, Megen, for supporting me throughout this project, and my parents for their support with my interest in technology while I was growing up.

I would also like to thank the team at Prometheus Research for making this a great and interesting place to work and helping to change the face of data management.

Finally, I would like to thank everyone who bought the first edition of this book, and the team at Packt Publishing for commissioning this second edition.

About the Reviewers

Ed Baker graduated with a BSc in Physics from Imperial College in 2007, and somehow ended up working in the Entomology Department of The Natural History Museum shortly afterwards. His work focuses on how technology (both hardware and software), can improve the way research is performed, from field data collection to final publication. Outside the technology world, he is fond of stick insects, cockroaches, and grasshoppers.

Recently, Ed's work has focused on automated acoustic and environmental monitoring and protocols for sensor networks. He has started a biodiversity technology company called Infocology.co.uk.

Ed's first book, provisionally titled *Arduino for Biologists*, will be published in 2015 with Pelagic Publishing.

I would like to thank Philippa for believing that writing and tinkering would bring rewards in the end.

Rémy Bétus is a web developer in e-commerce, and he integrates open source solutions. He's always been an enthusiast on the Arduino, the Raspberry Pi, and other DIY products. He was also a member of the Fablab in his engineering school, where he discovered all of these wonderful things. He is also passionate about development, networks, telecommunication, and science in general.

www.PacktPub.com

Support files, eBooks, discount offers, and more

For support files and downloads related to your book, please visit www.PacktPub.com.

Did you know that Packt offers eBook versions of every book published, with PDF and ePub files available? You can upgrade to the eBook version at www.PacktPub.com and as a print book customer, you are entitled to a discount on the eBook copy. Get in touch with us at service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up for a range of free newsletters and receive exclusive discounts and offers on Packt books and eBooks.

https://www2.packtpub.com/books/subscription/packtlib

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital book library. Here, you can search, access, and read Packt's entire library of books.

Why subscribe?

- Fully searchable across every book published by Packt
- Copy and paste, print, and bookmark content
- On demand and accessible via a web browser

Free access for Packt account holders

If you have an account with Packt at www.PacktPub.com, you can use this to access PacktLib today and view 9 entirely free books. Simply use your login credentials for immediate access.

Table of Contents

Preface	1
Chapter 1: An Introduction to the Raspberry Pi, Arduino,	
and Home Automation	7
History and background of the Raspberry Pi	8
History and background of the Arduino	9
Raspberry Pi to Arduino shield connection bridge	11
Soldering	13
Creating software for the Arduino	13
What is home automation?	14
History of home automation	14
X10 – a standard is born	15
The dot-com boom and open source – a new set of technologies	16
Commercial products	17
Arrival of the Raspberry Pi	18
Summary	18
Chapter 2: Getting Started – Setting Up Your Raspberry Pi	
and Arduino	19
The SD card – our Raspberry Pi's storage device	19
Preinstalled SD card versus a blank SD card	20
A note on Noobs	20
Downloading Raspbian	21
Setting up the SD card and installing Raspbian	21
Raspberry Pi SSH setup	22
Arduino	23
Installing the IDE on your Raspberry Pi	23
A quick guide to the Arduino IDE	23
Using the Arduino to Raspberry Pi connection bridge	24
Summary	26

Chapter 3: Central Air and Heating Thermostat	27
Safety first	28
Introducing the thermostat	28
Setting up our hardware	29
Adding the Ethernet shield	30
Relays	30
Connecting the thermistor	31
Setting up our software	32
Thermostat software	33
Testing our thermostat and fan	37
Attaching the fan	37
Starting your thermostat application	37
Testing the JSON response	38
Next steps	39
Attaching the device to your heating system or a similar appliance	40
Adding a potentiometer	41
Adding an LCD screen	42 43
Summary	43
Chapter 4: Temperature Storage – Setting Up a Database	45
to Store Your Results	45
SSH	46
SQLite	48
Installing SQLite Version 3.x	48
Creating a database A table to record our temperature	49 50
A table to record our rooms	50 50
Writing SQL queries	50
Creating a Python application to write to our database	52
Checking the results	55
Adding a cron job	55
HTSQL	57
Downloading HTSQL	57
Configuring HTSQL	58
Summary	60
Chapter 5: Parcel Delivery Detector	61
Wiring up the parcel sensor	62
An introduction to resistors	62
Pressure sensor – force-sensing resistor 10K ohm resistor	62 63

Connecting the components to the Arduino	63
Writing our software	64
Updating the Raspberry Pi database	67
A web-based Python application	67
Setting up SMTP	68
Our Python application	68
Starting the web service Testing our application	71 72
Installing the parcel detector	72
Testing the complete setup	74
Next steps	74
Upgrading from Ethernet to a wireless system	74
Checking the shipping details	74
Replacing the pressure sensor with a camera and image recognition	75
Summary	75
Chapter 6: Curtain Automation – Open and Close the Curtains	
Based on the Ambient Light	77
Introduction to the Arduino bridge shield	78
Installing arduPi	78
Photoresistors	79
Motor shield and motors	79
Setting up the photoresistor	80
Wiring up the components	80
Testing the photoresistor with software	81
Makefiles	83
Setting up the motor shield	84
Wiring the components to the shield	84 85
Curtain control application Pulse width modulation	85
Threads	85
Writing our code	86
Connecting to your blinds/curtains	90
Setting the timing	90
Attaching the hardware	90
Debugging problems	91
Next steps	92
Mounting the photoresistor outdoors	92
Adding a stepper motor	92
Summary	93

Chapter 7: Water/Damp Detection – Check for Damp/Flooding	
in Sheds and Basements	95
A brief note on dampness	96
Damp detection system	96
Arduino circuit	96
Sketch code	97
Database updates	100
Python code	100
Adding a cron job	101
Using the humidity reading	102
Adding an LED alert	102
Blinking LED code	103
Expanding the LED functionality	104
Connecting a dehumidifier	106
Water detection	106
Summary	108
Chapter 8: Wrapping Up	109
A brief review of the second edition of Raspberry Pi	
Home Automation with Arduino	110
Next steps	111
The prototyping Pi Plate	111
The wiringPi library	112
The Gertboard	113
Introduction to the Gertboard components	114
GPIO PCB expansion board	114
GPIO pins	114
Motor controller The open collector drivers	114 115
Buffered I/O	115
Atmel ATmega microcontroller	115
Convertors – analog to digital and digital to analog	116
Creating software for the Gertboard	116
Ideas for future projects	116
Expanding the curtain automation tool to include temperature sensing	117
Changing the motor on the curtain automation project to	
a stepper motor	117
Switching lights on with a photoresistor	117
Holiday lights from LEDs	118

	Table of Contents
The future of home automation	118
3D printing	118
RFID chips	118
EEG headsets	119
Summary	119
Appendix: References	121
Raspberry Pi	121
Raspberry Pi to Arduino bridge shield	122
Linux	122
Python	123
C/C++	123
Arduino	123
SQL	124
HTSQL	124
Electronics	124
Packt Publishing titles	125
Home automation technology	125
3D printing	126
Index	127

Preface

The world of home automation is an exciting field that has exploded over the past few years with many new technologies in both the commercial and open source worlds. This book provides a gateway for those interested in learning more about this topic and building their own projects.

With the introduction of the Raspberry Pi computer in 2012, a small and powerful tool is now available for the home automation enthusiast, programmer, and electronic hobbyist. It allows them to augment their home with sensors and software.

Combining Raspberry Pi with the power of the open-hardware Arduino platform, this book will take you through several projects in which you will build electronic sensors, and introduce you to software that will record their data for later use.

We hope you will enjoy the second edition of *Raspberry Pi Home Automation* with *Arduino*.

What this book covers

Chapter1, An Introduction to the Raspberry Pi, Arduino, and Home Automation, introduces the technologies used in the book and provides a conceptual background to the world of home automation.

Chapter 2, Getting Started – Setting Up Your Raspberry Pi and Arduino, is a guide to your Raspberry Pi, Arduino, and the Cooking Hacks Raspberry Pi to Arduino bridge shield.

Chapter 3, Central Air and Heating Thermostat, teaches you how to build a thermostat using the Arduino platform to control your central air conditioning and heating.

Chapter 4, Temperature Storage – Setting Up a Database to Store Your Results, shows you how to build a database to store your projects' data, and explore it via your web browser.

Chapter 5, Parcel Delivery Detector, demonstrates a system using Arduino and Raspberry Pi that will alert you whenever a parcel arrives at your door.

Chapter 6, Curtain Automation – Open and Close the Curtains Based on the Ambient Light, teaches you how to integrate motors with your projects to open and close blinds and curtains using the skills learned in previous chapters.

Chapter 7, Water/Damp Detection – Check for Damp/Flooding in Sheds and Basements, helps you build systems that can check for humidity and water to indicate dampness and flooding.

Chapter 8, Wrapping Up, finishes the topic with some ideas for future projects.

Appendix, References, lists a collection of links to the resources used in this book and other interesting information.

What you need for this book

- Raspberry Pi (version B+)
- A SD card
- Ardunio Uno
- A Seeed Ethernet shield
- · Cooking Hacks' Raspberry Pi to Arduino bridge shield
- An Arduino motor shield
- A Pololu relay module
- An AM2302 combined thermistor/humidity sensor
- An LED
- A Seeed Grove Water sensor
- A 10K ohm resistor
- A force resistor sensor
- A 9V or 12V DC motor
- A breadboard
- Breadboard wires and power supply
- USB cables
- A Cat-5 Ethernet cable
- An Internet connection with a home modem or router
- A small electric fan