

Learning Akka

Build fault-tolerant, concurrent, and distributed
applications with Akka

Jason Goodwin

BIRMINGHAM - MUMBAI

Learning Akka

Copyright © 2015 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book
is sold without warranty, either express or implied. Neither the author nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: December 2015

Production reference: 1181215

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78439-300-7

www.packtpub.com

www.packtpub.com

Credits

Author
Jason Goodwin

Reviewer
Taylor Jones

Commissioning Editor
Akram Hussain

Acquisition Editor
Nikhil Karkal

Content Development Editor
Dharmesh Parmar

Technical Editor
Gebin George

Copy Editor
Yesha Gangani

Project Coordinator
Nikhil Nair

Proofreader
Safis Editing

Indexer
Tejal Daruwale Soni

Graphics
Jason Monteiro

Production Coordinator
Melwyn Dsa

Cover Work
Melwyn Dsa

About the Author

Jason Goodwin is a developer who is primarily self-taught. His entrepreneurial
spirit led him to study business at school, but he started programming when he was
15 and always had a high level of interest in technology. This interest led his career
to take a few major changes away from the business side and back into software
development. His journey has led him to working on high-scale distributed systems.
He likes to create electronic music in his free time.

He was first introduced to an Akka project at a Scala/Akka shop—mDialog—that
built video ad insertion software for major publishers. The company was acquired by
Google eventually. He has also been an influential technologist in introducing Akka
to a major Canadian telco to help them serve their customers with more resilient
and responsive software. He has experience of teaching Akka and functional and
concurrent programming concepts to small teams there. He is currently working via
Adecco at Google.

Acknowledgments

I wish to write a thank-you note here to a few people who have shaped and formed
my opinions, and supported me through my own journey.

First, to my wife Kate, thank you for the many, many months of support while
I wrote this book and worked on crazy projects. Without your constant support,
patience, and care, changing my career to do things that I love to do, and writing
this, would not be possible. We made it to the finish line. Time for painting, fixing
the house, and Netflix and chill!

To my parents and grandparents, who always told me that I can do anything that
I set my mind to: thank you for your advice. You were right.

To my mDialog/Google team, thanks for your reviews and discipline on my
journey—I feel lucky to have had the opportunity to work with you all. To Chris
especially, thanks for your faith that my interest would be enough to help me grow
into a decent engineer, and for always expecting that the team keep it clean.

To Craig and Herb, thanks for the early start. If I wasn't doing bubble sorts, drawing
pixelated circles, or converting customer databases when I was 17, I'm not sure I
would have been able to find my way to the work that I love to do so much today.

About the Reviewer

Taylor Jones is a full-stack software engineer specializing in Java-based webapp
development currently working at Cisco Systems. He enjoys designing and building
complex applications with open source technologies and playing with his dog, and is
semi-competent at DotA 2.

www.PacktPub.com

Support files, eBooks, discount offers,
and more
For support files and downloads related to your book, please visit www.PacktPub.com.

Did you know that Packt offers eBook versions of every book published, with PDF and ePub
files available? You can upgrade to the eBook version at www.PacktPub.com and as a print
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at
service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up for a
range of free newsletters and receive exclusive discounts and offers on Packt books and eBooks.

https://www2.packtpub.com/books/subscription/packtlib

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital book
library. Here, you can search, access, and read Packt's entire library of books.

Why subscribe?
•	 Fully searchable across every book published by Packt
•	 Copy and paste, print, and bookmark content
•	 On demand and accessible via a web browser

Free access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view 9 entirely free books. Simply use your login credentials for
immediate access.

www.PacktPub.com
www.PacktPub.com
www.PacktPub.com
https://www2.packtpub.com/books/subscription/packtlib
www.PacktPub.com

[i]

Table of Contents
Preface	 ix
Chapter 1: Starting Life as an Actor	 1

What's in this book?	 2
Chapter overview	 2
What is Akka	 3

Actor Model origins	 3
What's an Actor anyway?	 3
Actors and Message passing	 4

The Evolution of supervision and fault tolerance in Erlang	 8
The Evolution of distribution and location transparency	 9

What we will build	 10
Example 1 – handling distributed state	 10
Example 2 – getting lots of work done	 10

Setting up your environment	 11
Choosing a language	 11
Installing Java – Oracle JDK8	 12

Installing on Windows	 12
Installing on OS X	 12
Installing on Linux or Unix (Universal instructions)	 12

Ensuring Java is configured in your environment	 13
Installing Scala	 13
Installing Typesafe Activator	 13

Windows	 13
Linux/Unix/OS X	 14
OS X	 14

Creating a new project	 15
Installing an IDE	 16

Install IntelliJ CE	 16
Eclipse	 16

Table of Contents

[ii]

Creating your first Akka application – setting up the SBT project	 19
Adding Akka to build.sbt	 20

A note on getting the right Scala version with %%	 21
Adding other Dependencies from Maven Central	 21

Creating your first Actor	 21
Making the Message first	 21
Defining Actor response to the Message	 22

Validating the code with unit tests	 25
Akka Testkit	 25

Running the test	 28
Homework	 29
Summary	 29

Chapter 2: Actors and Concurrency	 31
Reactive system design	 31
The 4 reactive tenets	 32

Responsive	 32
Elastic	 32
Resilient	 33
Event-driven/message-driven	 33
Reactive Tenet Correlation	 33

Anatomy of an Actor	 34
Java Actor API	 34
Scala Actor API	 36

Creating an actor	 38
Props	 39

Promises, futures, and event-driven programming models	 41
Blocking versus event-driven APIs	 41

Skills check-point	 45
Having an Actor respond via a future	 45

Java example	 46
Scala example	 48
Blocking threads in tests	 50

Understanding futures and promises	 51
Future – expressing failure and latency in types	 51

Preparing the DB and messages	 60
The messages	 61
Implementing the DB functionality	 62
Enabling remoting	 63
Main	 64
Publishing the messages	 64
Starting the DB	 65

Table of Contents

[iii]

Producing the client	 65
Scaffolding the project	 65
Modifying build.sbt	 66
Building the client	 66
Testing	 67

Homework	 68
General learning	 68
Project homework	 68

Summary	 69
Chapter 3: Getting the Message Across	 71

Setting the stage with an example problem	 71
Sketching the project	 72

Core functionality	 72
Messaging delivery	 73

Messages should be immutable	 73
Ask message pattern	 77

Designing with Ask	 78
Callbacks execute in another execution context	 82
Timeouts are required	 83
Timeout stacktraces aren't useful	 84
Ask has overhead	 85
Complexity of Actors and Ask	 85

Tell	 86
Designing with Tell	 87
Forward	 94
Pipe	 96

Homework	 97
General learning	 97
Project homework	 97

Summary	 98
Chapter 4: Actor Lifecycle – Handling State and Failure	 99

The 8 Fallacies of Distributed Computing	 99
The network is reliable	 100
Bandwidth is infinite	 101
The network is secure	 101
Network topology doesn't change	 102
There is one administrator	 102
Transport cost is zero	 102
The network is homogeneous	 103

Failure	 103
Isolating failure	 104

Redundancy	 104

Table of Contents

[iv]

Supervision	 104
Supervision hierarchies	 105
Supervision strategies and the drunken sushi chef	 106
Defining supervisor strategies	 107
Actor lifecycle	 109
Messages in restart, stop	 110
Terminating or killing an Actor	 111
Lifecycle monitoring and DeathWatch	 111
Safely restarting	 111

State	 113
Online/Offline state	 113

Transitioning state	 114
Stashing messages between states	 114

Conditional statements	 115
Hotswap: Become/Unbecome	 116

Stash leaks	 118
Finite State Machines (FSM)	 118
Defining states	 120
Defining the state container	 121
Defining behavior in FSMs	 121

Using restarts to transition through states	 124
Homework	 124
Summary	 125

Chapter 5: Scaling Up	 127
Moore's law	 127
Multicore architecture as a distribution problem	 128
Choosing Futures or Actors for concurrency	 129
Doing work in parallel	 130

Doing work In parallel with futures	 130
Doing work in parallel with Actors	 132

Introducing Routers	 133
Routing logic	 134
Sending Messages to All Actors in a Router Group/Pool	 135
Supervising the Routees in a Router Pool	 135

Working with Dispatchers	 136
Dispatchers explained	 136
Executors	 138
Creating Dispatchers	 138
Deciding Which Dispatcher to use where	 140
Default Dispatcher	 143
Blocking IO dispatcher use with futures	 144

Table of Contents

[v]

Article parsing dispatcher	 147
Using a configured dispatcher with Actors	 147
Using BalancingPool/BalancingDispatcher	 149

Optimal parallelism	 150
Homework	 150
Summary	 151

Chapter 6: Successfully Scaling Out – Clustering	 153
Introducing Akka Cluster	 153
One Giant Monolith or Many Micro Services?	 154
Definition of a Cluster	 155

Failure Detection	 155
Gossiping an Eventually Consistent View	 156

CAP Theorem	 157
C – Consistency	 157
A – Availability	 157
P – Partition Tolerance	 157
Compromises in CAP Theorem	 158

CP System – Preferring Consistency	 158
AP System – Preferring Availability	 159
Consistency as a Sliding Scale	 160

Building Systems with Akka Cluster	 160
Creating the Cluster	 161

Configuring the Project	 161
Seed Nodes	 162
Subscribing to Cluster Events	 163
Starting the Cluster	 165
Leaving the Cluster Gracefully	 167

Cluster Member States	 168
Failure Detection	 168

Routing Messages to the Cluster	 169
Producing a Distributed Article Parse Service	 169
Cluster Client for Clustered Services	 170

Setting up the Server Project	 171
Setting up the Client Project	 173
Sharing the Message Class between Client and Server	 173
Sending Messages to the Cluster	 174
Building a Distributed Key Value Store	 176
Disclaimer – Distributed Systems are Hard	 177

Designing the Cluster	 177
Basic Key-Value Store Design	 178
Coordinating Node	 179
Redundant Nodes	 181

Table of Contents

[vi]

Combining Sharding and Replication	 183
Pre-Sharding And Redistributing Keys to New Nodes	 184

Addressing Remote Actors	 185
Using akka.actor.Identify to Find a Remote Actor	 186

Homework	 186
Summary	 187

Chapter 7: Handling Mailbox Problems	 189
Overwhelming your weakest link	 189
Ballooning response times	 191
Crashing	 191

Resiliency	 192
Mailboxes	 192

Configuring mailboxes	 193
Deciding which mailbox to use	 194

Staying responsive under load	 196
Circuit breakers	 197

Circuit breaker listeners	 198
Circuit breaker examples	 199

Homework	 203
Summary	 203

Chapter 8: Testing and Design	 205
Example problem	 206
Approaching application design	 206

High-Level design	 208
Designing, building, and testing the Domain model	 209

Specifications	 209
Designing the Domain model	 210
Testing and building the Domain model	 211
Building by specification	 213

Testing actors	 216
Testing Actor behavior and state	 216
Testing Message flow	 219

Using the test Itself as an Actor	 219
Using TestProbes as mock Actors	 221

Testing Advice	 222
Homework	 223
Summary	 224

Table of Contents

[vii]

Chapter 9: A Journey's End	 225
Other Akka Features and Modules	 226

Logging in Akka	 226
Message Channels and EventBus	 228
Agents	 231
Akka Persistence	 234
Akka I/O	 235
Akka streams and HTTP	 235

Deployment Tools	 236
Monitoring Logs and Events	 237

Writing some Actor Code	 238
Coursera Courses	 239

Summary	 240
Index	 241

[ix]

Preface
This book attempts to give both the introductory reader and the intermediate or
advanced reader an understanding of basic distributed computing concepts as
well as demonstrates how to use Akka to build fault-tolerant horizontally-scalable
distributed applications that communicate over a network. Akka is a powerful
toolkit that gives us options to abstract away whether a unit of work is handled
on the local machine or a remote machine on the network. Throughout this book,
concepts will be introduced to help the reader understand the difficulty of getting
systems to talk to each other over the network while introducing the solutions that
Akka offers to various problems.

Soaked in these pages is my own journey, my own discovery—and I hope that
you will share that with me. I have a fair amount of professional Akka experience
working with both Java8 and Scala, but I have learned a lot of the finer details of
Akka while writing this book. I feel that this work is a good introduction to how and
why to use Akka, and demonstrates how to start building scalable and distributed
applications with the Akka toolkit. It does not simply repeat the documentation,
but covers many of the important topics and approaches you should understand
to successfully approach building systems to handle the scale-related problems we
encounter as developers today.

What this book covers
Chapter 1, Starting Life as an Actor: Introduction to the Akka Toolkit and Actor Model.

Chapter 2, Actors and Concurrency: Reactive. Working with Actors and Futures.

Chapter 3, Getting the Message Across: Message Passing Patterns.

Chapter 4, Actor Lifecycle – Handling State and Failure: Actor Lifecycle, Supervision,
Stash/ Unstash, Become/ Unbecome, and FMSs.

Preface

[x]

Chapter 5, Scaling Up: Doing work concurrently, Router Groups/Pools, Dispatchers,
Handling Blocking I/O, and APIs.

Chapter 6, Successfully Scaling Out—Clustering: Clustering, CAP Theorem, and Akka
Cluster.

Chapter 7, Handling Mailbox Problems: Overwhelmed mailboxes, choosing different
mailboxes, Circuit Breakers.

Chapter 8, Testing and Design: Specification, Domain Driven Design, and Akka Testkit.

Chapter 9, A Journey's End: Other Akka Features. Next steps.

What you need for this book
You will need a PC with access to install tools such as Java JDK8 (for Java
development) or Java JDK6 (for Scala development). You will also require sbt
(Simple Build Tool) or Typesafe Activator, which contains sbt. Installation is
covered in this book.

Who this book is for
This book is intended for beginner to intermediate Java or Scala developers who
want to build applications to serve the high-scale user demands in computing today.
If you need your applications to handle the ever-growing user bases and datasets
with high performance demands, then this book is for you. Learning Akka will let you
do more for your users with less code and less complexity by building and scaling
your networked applications with ease.

Conventions
In this book, you will find a number of text styles that distinguish between different
kinds of information. Here are some examples of these styles and an explanation of
their meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows:
"We can include other contexts through the use of the include directive."

Preface

[xi]

A block of code is set as follows:

// The executor function used by our promise.
// The first argument is the resolver function,
// which is called in 1 second to resolve the promise.
function executor(resolve) {
 setTimeout(resolve, 1000);
}

New terms and important words are shown in bold. Words that you see on
the screen, for example, in menus or dialog boxes, appear in the text like this:
"Select the folder and click Next."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or disliked. Reader feedback is important for us as it helps
us develop titles that you will really get the most out of.

To send us general feedback, simply e-mail feedback@packtpub.com, and mention
the book's title in the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide at www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

www.packtpub.com/authors

Preface

[xii]

Downloading the example code
You can download the example code files from your account at http://www.
packtpub.com for all the Packt Publishing books you have purchased. If you
purchased this book elsewhere, you can visit http://www.packtpub.com/support
and register to have the files e-mailed directly to you.

Downloading the color images of this book
We also provide you with a PDF file that has color images of the screenshots/
diagrams used in this book. The color images will help you better understand the
changes in the output. You can download this file from https://www.packtpub.
com/sites/default/files/downloads/LearningAkka_ColoredImages.pdf

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in the text or
the code—we would be grateful if you could report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
book. If you find any errata, please report them by visiting http://www.packtpub.
com/submit-errata, selecting your book, clicking on the Errata Submission Form
link, and entering the details of your errata. Once your errata are verified, your
submission will be accepted and the errata will be uploaded to our website or added
to any list of existing errata under the Errata section of that title.

To view the previously submitted errata, go to https://www.packtpub.com/books/
content/support and enter the name of the book in the search field. The required
information will appear under the Errata section.

Piracy
Piracy of copyrighted material on the Internet is an ongoing problem across all
media. At Packt, we take the protection of our copyright and licenses very seriously.
If you come across any illegal copies of our works in any form on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors and our ability to bring you
valuable content.

http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com/support
https://www.packtpub.com/sites/default/files/downloads/LearningAkka_ColoredImages.pdf
https://www.packtpub.com/sites/default/files/downloads/LearningAkka_ColoredImages.pdf
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support

Preface

[xiii]

eBooks, discount offers, and more
Did you know that Packt offers eBook versions of every book published, with PDF
and ePub files available? You can upgrade to the eBook version at www.PacktPub.
com and as a print book customer, you are entitled to a discount on the eBook copy.
Get in touch with us at customercare@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign
up for a range of free newsletters, and receive exclusive discounts and offers on
Packt books and eBooks.

Questions
If you have a problem with any aspect of this book, you can contact us at
questions@packtpub.com, and we will do our best to address the problem.

http://www.PacktPub.com
http://www.PacktPub.com
mailto:customercare@packtpub.com
http://www.PacktPub.com

[1]

Starting Life as an Actor
This book is primarily intended for intermediate, to senior-level developers wishing
to explore Akka and build fault-tolerant, distributed systems in Scala or modern
versions of Java.

This book has been written for the engineer who is faced with building applications
that are fast, stable, and elastic, meaning they can scale to meet thousands or tens
of thousands concurrent users. With more users having access to the Internet with
faster devices and networks, today, more than ever, we need our applications to be
able to handle many concurrent users working with larger datasets and with higher
expectations of application stability and performance.

This book does not assume that you have a deep understanding of concurrency
concepts and does try to introduce all of the concepts needed to know how to start
a project from scratch, work with concurrency abstractions, and test and build
standalone or networked applications using Akka. While this book should give you
everything you need in those regards, it's not meant for an absolute beginner and
does assume some does assume some programming proficiency.

Here is a quick overview of what you'll need and what you'll get out of this book.

•	 Requirements:
°° Intermediate Scala or Java experience
°° A computer
°° Internet connectivity

•	 Recommendations (but you can learn as you go):
°° If using Java, Java8 lambda exposure
°° Git and GitHub experience for assignments

Starting Life as an Actor

[2]

•	 What you'll learn:
°° Learn to build distributed and concurrent application
°° Learn techniques for building fault-tolerant systems
°° Learn techniques for sharing code between projects and teams
°° Learn several concepts and patterns to aid in distributed system design

What's in this book?
To meet the modern challenges a platform developer may face, this book puts a
strong focus not only on Akka but also on distributed and concurrent computing
concepts. It is my intention to give you a toolkit to understand the problems you'll
face while trying to scale these distributed and concurrent applications.

These pages are not a re-iteration of the Akka documentation. If you want a desk
reference or manual, the 460-page Akka documentation will serve that purpose well.
This book is not simply a book about Akka, it is a book about building concurrent
and distributed systems with Akka.

This book will take you on a journey to show you a new way of working
with distributed and concurrent applications. This book will arm you with an
understanding of the tools, and then will show you how to use them. It will
demonstrate how to build clusters of applications that talk to each other over the
network and can have new computing nodes added or removed to be able to scale
to meet the needs of your users. We'll learn how to do things like building pools
of workers to handle huge jobs at scale to show how it's done. We will talk about
important theorems and common approaches in distributed systems and show how
they affect our design decisions, and we will discuss problems you will encounter
related to network reliability and demonstrate how we can build our applications to
be resilient to those problems.

Chapter overview
At the heart of Akka is an implementation of the Actor Model, which is a theoretical
model of concurrent computation. In this, chapter we will introduce core concepts
in Akka by looking at the history of Akka and the actor model. This will give you
insight into what Akka is and help you understand what problems it tries to solve.
Then, the goals of this book will be introduced with recurring examples that will
be used.

Chapter 1

[3]

After covering these concepts, the chapter will move into setting up your development
environment with the tools you need to start building. We will set up our environment,
Integrated Development Environment (IDE), and our first Akka project, including
unit testing.

What is Akka
This section will introduce Akka and the actor model. Akka, purportedly named
after a mountain in Sweden, is often referred to as a distribution toolkit—a
collection of tools that are used to do work across remote computing resources.
Akka is a modern implementation of the actor model of concurrency. Akka today
could be seen as an evolution of other technologies, borrowing from Erlang's actor
model implementation while introducing many new features to aid with building
applications that can handle today's high-scale problems.

Actor Model origins
To better understand what Akka is and how it is used, we will take a brief trip through
time looking at the Actor model to understand what it is and how it has evolved into a
framework for building fault-tolerant distributed systems in Akka today.

The actor model of concurrency was originally a theoretical model of concurrent
computation proposed in a paper called A Universal Modular Actor Formalism for
Artificial Intelligence in 1973. We will look at the actor model's qualities here to
understand its benefits in aiding our ability to reason about concurrent computation
while protecting against common pitfalls in shared state.

What's an Actor anyway?
First, let's define what an Actor is. In the actor model, an actor is a concurrency
primitive; more simply stated, an actor can be thought of as a worker like a process
or thread that can do work and take action. It might be helpful to think of an actor
as a person in an organization that has a role and responsibility in that organization.
Let's say a sushi restaurant. Restaurant staff have to do various pieces of work
throughout the day such as preparing dishes for customers.

Starting Life as an Actor

[4]

Actors and Message passing
One of the qualities of an object in object oriented languages is that it can be can be
directly invoked–one object can examine or change another object's fields, or invoke
its methods. This is fine if a single thread is doing it, but if multiple threads are
trying to read and change values at the same time, then synchronization and locks
are needed.

Actors differ from objects in that they cannot be directly read, changed, and invoked.
Instead, Actors can only communicate with the world outside of them through
message passing. Message passing simply means that an actor can be sent a message
(object in our case) and can, itself, send messages or reply with a message. While you
may draw parallels to passing a parameter to a method, and receiving a return value,
message passing is fundamentally different because it happens asynchronously.
An actor begins processing a message, and replies to the message, on its own terms
when it is ready.

Actor
Mailbox

Message

The actor processes messages one at a time, synchronously. The mailbox is
essentially a queue of work outstanding for the worker to process. When an actor
processes a message, the actor can respond by changing its internal state, creating
more actors, or sending more messages to other actors.

The term Actor System is often used in implementations to describe a collection
of actors and everything related to them including addresses, mailboxes, and
configuration.

To reiterate these key concepts:

•	 Actor: A worker concurrency primitive, which synchronously processes
messages. Actors can hold state, which can change.

•	 Message: A piece of data used to communicate with processes
(for example, Actors).

•	 Message-passing: A software development paradigm where messages are
passed to invoke behavior instead of directly invoking the behavior.

•	 Mailing address: Where messages are sent for an actor to process when the
actor is free.

Chapter 1

[5]

•	 Mailbox: The place messages are stored until an actor is able to process
the message. This can be viewed as a queue of messages.

•	 Actor system: A collection of actors, their addresses, mailboxes,
and configuration, etc.

It might not be obvious yet, but the Actor Model is much easier to reason about
than imperative object oriented concurrent applications. Taking a real world example
and modeling it in an actor system will help to demonstrate this benefit. Consider a
sushi restaurant, We have three actors in this example: a customer, a waiter, and the
sushi chef.

Our example starts with the customer telling our waiter their order. The waiter writes
it down this onto a piece of paper and places this message in the chef's mailbox (sticks
it in the kitchen window). When the chef is free, the chef will pick up the message
(order) and start preparing the sushi. The chef will continue to process the message
until it's done. When the sushi is prepared, the chef will put this message (plate) in the
kitchen window (waiter's mailbox) for the waiter to pick up. The chef can go work on
other orders now.

When the waiter has a free minute, the waiter can pick up the food message from the
window and deliver it to the customer's mailbox (for example, the table). When the
customer is ready, they will process the message by eating the food.

Kitchen
Window

Customer
Table

Order

Food!

Chef

Ticket
Window

Wait Staff

