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Preface
This book attempts to give both the introductory reader and the intermediate or 
advanced reader an understanding of basic distributed computing concepts as 
well as demonstrates how to use Akka to build fault-tolerant horizontally-scalable 
distributed applications that communicate over a network. Akka is a powerful 
toolkit that gives us options to abstract away whether a unit of work is handled 
on the local machine or a remote machine on the network. Throughout this book, 
concepts will be introduced to help the reader understand the difficulty of getting 
systems to talk to each other over the network while introducing the solutions that 
Akka offers to various problems.

Soaked in these pages is my own journey, my own discovery—and I hope that 
you will share that with me. I have a fair amount of professional Akka experience 
working with both Java8 and Scala, but I have learned a lot of the finer details of 
Akka while writing this book. I feel that this work is a good introduction to how and 
why to use Akka, and demonstrates how to start building scalable and distributed 
applications with the Akka toolkit. It does not simply repeat the documentation, 
but covers many of the important topics and approaches you should understand 
to successfully approach building systems to handle the scale-related problems we 
encounter as developers today.

What this book covers
Chapter 1, Starting Life as an Actor: Introduction to the Akka Toolkit and Actor Model.

Chapter 2, Actors and Concurrency: Reactive. Working with Actors and Futures.

Chapter 3, Getting the Message Across: Message Passing Patterns.

Chapter 4, Actor Lifecycle – Handling State and Failure: Actor Lifecycle, Supervision, 
Stash/ Unstash, Become/ Unbecome, and FMSs.
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Chapter 5, Scaling Up: Doing work concurrently, Router Groups/Pools, Dispatchers, 
Handling Blocking I/O, and APIs.

Chapter 6, Successfully Scaling Out—Clustering: Clustering, CAP Theorem, and Akka 
Cluster.

Chapter 7, Handling Mailbox Problems: Overwhelmed mailboxes, choosing different 
mailboxes, Circuit Breakers.

Chapter 8, Testing and Design: Specification, Domain Driven Design, and Akka Testkit.

Chapter 9, A Journey's End: Other Akka Features. Next steps.

What you need for this book
You will need a PC with access to install tools such as Java JDK8 (for Java 
development) or Java JDK6 (for Scala development). You will also require sbt 
(Simple Build Tool) or Typesafe Activator, which contains sbt. Installation is  
covered in this book.

Who this book is for
This book is intended for beginner to intermediate Java or Scala developers who 
want to build applications to serve the high-scale user demands in computing today. 
If you need your applications to handle the ever-growing user bases and datasets 
with high performance demands, then this book is for you. Learning Akka will let you 
do more for your users with less code and less complexity by building and scaling 
your networked applications with ease.

Conventions
In this book, you will find a number of text styles that distinguish between different 
kinds of information. Here are some examples of these styles and an explanation of 
their meaning.

Code words in text, database table names, folder names, filenames, file extensions, 
pathnames, dummy URLs, user input, and Twitter handles are shown as follows: 
"We can include other contexts through the use of the include directive."
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A block of code is set as follows:

// The executor function used by our promise.
// The first argument is the resolver function,
// which is called in 1 second to resolve the promise.
function executor(resolve) {
    setTimeout(resolve, 1000);
}

New terms and important words are shown in bold. Words that you see on  
the screen, for example, in menus or dialog boxes, appear in the text like this:  
"Select the folder and click Next."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about 
this book—what you liked or disliked. Reader feedback is important for us as it helps 
us develop titles that you will really get the most out of.

To send us general feedback, simply e-mail feedback@packtpub.com, and mention 
the book's title in the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing 
or contributing to a book, see our author guide at www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to 
help you to get the most from your purchase.

www.packtpub.com/authors
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Downloading the example code
You can download the example code files from your account at http://www.
packtpub.com for all the Packt Publishing books you have purchased. If you 
purchased this book elsewhere, you can visit http://www.packtpub.com/support 
and register to have the files e-mailed directly to you.

Downloading the color images of this book
We also provide you with a PDF file that has color images of the screenshots/
diagrams used in this book. The color images will help you better understand the 
changes in the output. You can download this file from https://www.packtpub.
com/sites/default/files/downloads/LearningAkka_ColoredImages.pdf

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes 
do happen. If you find a mistake in one of our books—maybe a mistake in the text or 
the code—we would be grateful if you could report this to us. By doing so, you can 
save other readers from frustration and help us improve subsequent versions of this 
book. If you find any errata, please report them by visiting http://www.packtpub.
com/submit-errata, selecting your book, clicking on the Errata Submission Form 
link, and entering the details of your errata. Once your errata are verified, your 
submission will be accepted and the errata will be uploaded to our website or added 
to any list of existing errata under the Errata section of that title.

To view the previously submitted errata, go to https://www.packtpub.com/books/
content/support and enter the name of the book in the search field. The required 
information will appear under the Errata section.

Piracy
Piracy of copyrighted material on the Internet is an ongoing problem across all 
media. At Packt, we take the protection of our copyright and licenses very seriously. 
If you come across any illegal copies of our works in any form on the Internet, please 
provide us with the location address or website name immediately so that we can 
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected  
pirated material.

We appreciate your help in protecting our authors and our ability to bring you 
valuable content.

http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com/support
https://www.packtpub.com/sites/default/files/downloads/LearningAkka_ColoredImages.pdf 
https://www.packtpub.com/sites/default/files/downloads/LearningAkka_ColoredImages.pdf 
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
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Starting Life as an Actor
This book is primarily intended for intermediate, to senior-level developers wishing 
to explore Akka and build fault-tolerant, distributed systems in Scala or modern 
versions of Java.

This book has been written for the engineer who is faced with building applications 
that are fast, stable, and elastic, meaning they can scale to meet thousands or tens 
of thousands concurrent users. With more users having access to the Internet with 
faster devices and networks, today, more than ever, we need our applications to be 
able to handle many concurrent users working with larger datasets and with higher 
expectations of application stability and performance.

This book does not assume that you have a deep understanding of concurrency 
concepts and does try to introduce all of the concepts needed to know how to start 
a project from scratch, work with concurrency abstractions, and test and build 
standalone or networked applications using Akka. While this book should give you 
everything you need in those regards, it's not meant for an absolute beginner and 
does assume some does assume some programming proficiency.

Here is a quick overview of what you'll need and what you'll get out of this book.

•	 Requirements:
°° Intermediate Scala or Java experience
°° A computer
°° Internet connectivity

•	 Recommendations (but you can learn as you go):
°° If using Java, Java8 lambda exposure
°° Git and GitHub experience for assignments



Starting Life as an Actor

[ 2 ]

•	 What you'll learn:
°° Learn to build distributed and concurrent application
°° Learn techniques for building fault-tolerant systems
°° Learn techniques for sharing code between projects and teams
°° Learn several concepts and patterns to aid in distributed system design

What's in this book?
To meet the modern challenges a platform developer may face, this book puts a 
strong focus not only on Akka but also on distributed and concurrent computing 
concepts. It is my intention to give you a toolkit to understand the problems you'll 
face while trying to scale these distributed and concurrent applications.

These pages are not a re-iteration of the Akka documentation. If you want a desk 
reference or manual, the 460-page Akka documentation will serve that purpose well. 
This book is not simply a book about Akka, it is a book about building concurrent 
and distributed systems with Akka.

This book will take you on a journey to show you a new way of working 
with distributed and concurrent applications. This book will arm you with an 
understanding of the tools, and then will show you how to use them. It will 
demonstrate how to build clusters of applications that talk to each other over the 
network and can have new computing nodes added or removed to be able to scale 
to meet the needs of your users. We'll learn how to do things like building pools 
of workers to handle huge jobs at scale to show how it's done. We will talk about 
important theorems and common approaches in distributed systems and show how 
they affect our design decisions, and we will discuss problems you will encounter 
related to network reliability and demonstrate how we can build our applications to 
be resilient to those problems.

Chapter overview
At the heart of Akka is an implementation of the Actor Model, which is a theoretical 
model of concurrent computation. In this, chapter we will introduce core concepts 
in Akka by looking at the history of Akka and the actor model. This will give you 
insight into what Akka is and help you understand what problems it tries to solve. 
Then, the goals of this book will be introduced with recurring examples that will  
be used.
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After covering these concepts, the chapter will move into setting up your development 
environment with the tools you need to start building. We will set up our environment, 
Integrated Development Environment (IDE), and our first Akka project, including 
unit testing.

What is Akka
This section will introduce Akka and the actor model. Akka, purportedly named 
after a mountain in Sweden, is often referred to as a distribution toolkit—a 
collection of tools that are used to do work across remote computing resources. 
Akka is a modern implementation of the actor model of concurrency. Akka today 
could be seen as an evolution of other technologies, borrowing from Erlang's actor 
model implementation while introducing many new features to aid with building 
applications that can handle today's high-scale problems.

Actor Model origins
To better understand what Akka is and how it is used, we will take a brief trip through 
time looking at the Actor model to understand what it is and how it has evolved into a 
framework for building fault-tolerant distributed systems in Akka today.

The actor model of concurrency was originally a theoretical model of concurrent 
computation proposed in a paper called A Universal Modular Actor Formalism for 
Artificial Intelligence in 1973. We will look at the actor model's qualities here to 
understand its benefits in aiding our ability to reason about concurrent computation 
while protecting against common pitfalls in shared state.

What's an Actor anyway?
First, let's define what an Actor is. In the actor model, an actor is a concurrency 
primitive; more simply stated, an actor can be thought of as a worker like a process 
or thread that can do work and take action. It might be helpful to think of an actor 
as a person in an organization that has a role and responsibility in that organization. 
Let's say a sushi restaurant. Restaurant staff have to do various pieces of work 
throughout the day such as preparing dishes for customers.
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Actors and Message passing
One of the qualities of an object in object oriented languages is that it can be can be 
directly invoked–one object can examine or change another object's fields, or invoke 
its methods. This is fine if a single thread is doing it, but if multiple threads are 
trying to read and change values at the same time, then synchronization and locks 
are needed.

Actors differ from objects in that they cannot be directly read, changed, and invoked. 
Instead, Actors can only communicate with the world outside of them through 
message passing. Message passing simply means that an actor can be sent a message 
(object in our case) and can, itself, send messages or reply with a message. While you 
may draw parallels to passing a parameter to a method, and receiving a return value, 
message passing is fundamentally different because it happens asynchronously. 
An actor begins processing a message, and replies to the message, on its own terms 
when it is ready.

Actor
Mailbox

Message

The actor processes messages one at a time, synchronously. The mailbox is 
essentially a queue of work outstanding for the worker to process. When an actor 
processes a message, the actor can respond by changing its internal state, creating 
more actors, or sending more messages to other actors.

The term Actor System is often used in implementations to describe a collection 
of actors and everything related to them including addresses, mailboxes, and 
configuration.

To reiterate these key concepts:

•	 Actor: A worker concurrency primitive, which synchronously processes 
messages. Actors can hold state, which can change.

•	 Message: A piece of data used to communicate with processes  
(for example, Actors).

•	 Message-passing: A software development paradigm where messages are 
passed to invoke behavior instead of directly invoking the behavior.

•	 Mailing address: Where messages are sent for an actor to process when the 
actor is free.
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•	 Mailbox: The place messages are stored until an actor is able to process  
the message. This can be viewed as a queue of messages.

•	 Actor system: A collection of actors, their addresses, mailboxes,  
and configuration, etc.

It might not be obvious yet, but the Actor Model is much easier to reason about  
than imperative object oriented concurrent applications. Taking a real world example 
and modeling it in an actor system will help to demonstrate this benefit. Consider a 
sushi restaurant, We have three actors in this example: a customer, a waiter, and the 
sushi chef.

Our example starts with the customer telling our waiter their order. The waiter writes 
it down this onto a piece of paper and places this message in the chef's mailbox (sticks 
it in the kitchen window). When the chef is free, the chef will pick up the message 
(order) and start preparing the sushi. The chef will continue to process the message 
until it's done. When the sushi is prepared, the chef will put this message (plate) in the 
kitchen window (waiter's mailbox) for the waiter to pick up. The chef can go work on 
other orders now.

When the waiter has a free minute, the waiter can pick up the food message from the 
window and deliver it to the customer's mailbox (for example, the table). When the 
customer is ready, they will process the message by eating the food.

 

Kitchen
Window

Customer
Table

Order

Food!

Chef

Ticket
Window

Wait Staff


