
[1]

Gradle Dependency
Management

Learn how to use Gradle's powerful dependency
management through extensive code samples,
and discover how to define, customize, and
deploy dependencies

Hubert Klein Ikkink

BIRMINGHAM - MUMBAI

Gradle Dependency Management

Copyright © 2015 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the author, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: June 2015

Production reference: 1120615

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78439-278-9

www.packtpub.com

www.packtpub.com

Credits

Author
Hubert Klein Ikkink

Reviewers
Tony Dieppa

Izzet Mustafaiev

Konstantin Zgirovskiy

Commissioning Editor
Pramila Balan

Acquisition Editor
Sonali Vernekar

Content Development Editor
Athira Laji

Technical Editor
Siddhesh Ghadi

Copy Editor
Sarang Chari

Project Coordinator
Harshal Ved

Proofreader
Safis Editing

Indexer
Monica Mehta

Production Coordinator
Arvindkumar Gupta

Cover Work
Arvindkumar Gupta

About the Author

Hubert Klein Ikkink, born in 1973, lives in Tilburg, the Netherlands, with
his beautiful wife and three gorgeous children. He is also known as mrhaki,
which is simply the initials of his name prepended by "mr". He studied information
systems and management at Tilburg University. After finishing his studies in
1996, he started to develop Java software. Over the years, his focus switched from
applets to servlets, and from Java Enterprise Edition applications to Spring-based
software and Groovy-related technologies. He likes the expressiveness of the Groovy
language and how it is used in other tools, such as Gradle. He also wrote Gradle
Effective Implementation Guide, Packt Publishing.

In the Netherlands, Hubert works for a company called JDriven. JDriven focuses on
technologies that simplify and improve the development of enterprise applications.
Employees of JDriven have years of experience with Java and related technologies
and are all eager to learn about new technologies. Hubert works on projects using
Grails and Java combined with Groovy and Gradle.

About the Reviewers

Izzet Mustafaiev is a family guy who likes to throw BBQ parties and travel.

Professionally, he is a software engineer working at EPAM Systems with primary
skills in Java and hands-on experience in Groovy/Ruby, and is exploring FP with
Erlang/Elixir. Izzet has participated in different projects as a developer and as an
architect. He advocates XP, clean code, and DevOps practices when he speaks at
engineering conferences.

Konstantin Zgirovskiy grew up alongside Android, in a manner of speaking.
In 2008, he started programming web services and Chrome extensions for an online
browser game, which was later made official. In 2011, Konstantin continued to
explore Android through writing a game, which brought him victory in a local
programming contest. Nowadays, he works at Looksery, Inc., where he is involved
in developing an app with face-tracking and transformation technology for video
chats, video selfies, and images on mobile devices.

I would like to thank my cats, friends, colleagues, and family
for their support. My thanks also go to Packt Publishing for
this opportunity. Additionally, I would like to thank Dasha
Tsareva-Lenskaya for motivating and encouraging me
whenever I got distracted.

www.PacktPub.com

Support files, eBooks, discount offers, and more
For support files and downloads related to your book, please visit www.PacktPub.com.

Did you know that Packt offers eBook versions of every book published, with PDF
and ePub files available? You can upgrade to the eBook version at www.PacktPub.com,
and as a print book customer, you are entitled to a discount on the eBook copy. Get in
touch with us at service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign
up for a range of free newsletters, and receive exclusive discounts and offers on
Packt books and eBooks.

TM

https://www2.packtpub.com/books/subscription/packtlib

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital
book library. Here, you can search, access, and read Packt's entire library of books.

Why subscribe?
• Fully searchable across every book published by Packt
• Copy and paste, print, and bookmark content
• On demand and accessible via a web browser

Free access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view 9 entirely free books. Simply use your login credentials for
immediate access.

www.PacktPub.com
www.PacktPub.com
www.PacktPub.com
https://www2.packtpub.com/books/subscription/packtlib
www.PacktPub.com

[i]

Table of Contents
Preface v
Chapter 1: Defining Dependencies 1

Declaring dependency configurations 1
Declaring dependencies 4

External module dependencies 5
Defining client module dependencies 9
Using project dependencies 10
Defining file dependencies 11
Using internal Gradle and Groovy dependencies 11

Using dynamic versions 12
Getting information about dependencies 13

Accessing dependencies 16
Buildscript dependencies 17

Optional Ant task dependencies 19
Managing dependencies 20
Summary 24

Chapter 2: Working with Repositories 25
Declaring repositories 25

Using the Maven JCenter repository 26
Using the Maven Central repository 28
Using the Maven local repository 29
Using Maven repositories 30
Using the flat directory repository 34
Using Ivy repositories 36

Using different protocols 40
Summary 41

Table of Contents

[ii]

Chapter 3: Resolving Dependencies 43
Understanding dependency resolution 43

Configuring transitive dependencies 44
Disabling transitive dependencies 45
Excluding transitive dependencies 47
Using artifact-only dependencies 51

Resolving version conflicts 51
Using the newest version 52
Failing on version conflict 58
Forcing a version 59

Customizing dependency resolution rules 62
Using client modules 67

Using dynamic versions and changing modules 69
Understanding the dependency cache 69

Command-line options for caching 71
Changing cache expiration 71

Summary 74
Chapter 4: Publishing Artifacts 75

Defining artifact configurations 75
Defining artifacts 78

Using the archive task 79
Using artifact files 80

Creating artifacts 83
Publishing artifacts to the local directory 87

Excluding the descriptor file 90
Signing artifacts 92

Using configurations to sign 92
Using archive tasks to sign 94

Summary 96
Chapter 5: Publishing to a Maven Repository 97

Defining publication 97
Defining publication artifacts 98
Using archive task artifacts 99
Using file artifacts 103
Using software components 104
Generating POM files 105

Customizing the POM file 109
Defining repositories 114

Publishing to the local Maven repository 114

Table of Contents

[iii]

Publishing to the Maven repository 116
Publishing to Artifactory 118
Publishing to Nexus 120

Summary 123
Chapter 6: Publishing to Bintray 125

What is Bintray? 125
Defining a new repository 126

Defining the Bintray plugin 127
Deploying publications to Bintray 129
Configuring the Bintray plugin 135
Summary 139

Chapter 7: Publishing to an Ivy Repository 141
Defining publications 141
Defining publication artifacts 142
Using archive task artifacts 143

Using file artifacts 147
Using software components 147

Generating Ivy descriptor files 148
Customizing the descriptor file 153

Defining repositories 156
Publishing to a local directory 156
Publishing to Artifactory 158
Publishing to Nexus 161

Summary 164
Index 165

[v]

Preface
When we write code in our Java or Groovy project, we mostly have dependencies on
other projects or libraries. For example, we could use the Spring framework in our
project, so we are dependent on classes found in the Spring framework. We want to
be able to manage such dependencies from Gradle, our build automation tool.

We will see how we can define and customize the dependencies we need.
We learn not only how to define the dependencies, but also how to work with
repositories that store the dependencies. Next, we will see how to customize the
way Gradle resolves dependencies.

Besides being dependent on other libraries, our project can also be a dependency for
other projects. This means that we need to know how to deploy our project artifacts
so that other developers can use it. We learn how to define artifacts and how to
deploy them to, for example, a Maven or Ivy repository.

What this book covers
Chapter 1, Defining Dependencies, introduces dependency configurations as a way
to organize dependencies. You will learn about the different types of dependencies
in Gradle.

Chapter 2, Working with Repositories, covers how we can define repositories that store
our dependencies. We will see not only how to set the location, but also the layout of
a repository.

Chapter 3, Resolving Dependencies, is about how Gradle resolves our dependencies.
You will learn how to customize the dependency resolution and resolve conflicts
between dependencies.

Preface

[vi]

Chapter 4, Publishing Artifacts, covers how to define artifacts for our project to be
published as dependencies for others. We will see how to use configurations to
define artifacts. We also use a local directory as a repository to publish the artifacts.

Chapter 5, Publishing to a Maven Repository, looks at how to publish our artifacts to
a Maven repository. You will learn how to define a publication for a Maven-like
repository, such as Artifactory or Nexus, and how to use the new and incubating
publishing feature of Gradle.

Chapter 6, Publishing to Bintray, covers how to deploy our artifacts to Bintray. Bintray
calls itself a Distribution as a Service and provides a low-level way to publish our
artifacts to the world. In this chapter, we will look at how to use the Bintray Gradle
plugin to publish our artifacts.

Chapter 7, Publishing to an Ivy Repository, is about publishing our artifacts to an Ivy
repository. We will look into the different options to publish our artifacts to an Ivy
repository, which is actually quite similar to publishing to a Maven repository.

What you need for this book
In order to work with Gradle and the code samples in this book, we need at least
Java Development Kit (version 1.6 or higher), Gradle (samples are written with
Gradle 2.3), and a good text editor.

Who this book is for
This book is for you if you are working on Java or Groovy projects and are using, or
are going to use, Gradle to build your code. If your code depends on other projects
or libraries, you will learn how to define and customize those dependencies. Your
code can also be used by other projects, so you want to publish your project as a
dependency for others whom you want to read this book.

Conventions
In this book, you will find a number of text styles that distinguish between different
kinds of information. Here are some examples of these styles and an explanation of
their meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows:
"We can include other contexts through the use of the include directive."

Preface

[vii]

A block of code is set as follows:

// Define new configurations for build.
configurations {

 // Define configuration vehicles.
 vehicles {
 description = 'Contains vehicle dependencies'
 }

 traffic {
 extendsFrom vehicles
 description = 'Contains traffic dependencies'
 }

}

Any command-line input or output is written as follows:

$ gradle bintrayUpload

:generatePomFileForSamplePublication

:compileJava

:processResources UP-TO-DATE

:classes

:jar

:publishSamplePublicationToMavenLocal

:bintrayUpload

BUILD SUCCESSFUL

Total time: 9.125 secs

New terms and important words are shown in bold. Words that you see on the screen,
for example, in menus or dialog boxes, appear in the text like this: "From this screen,
we click on the New package button."

Preface

[viii]

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or disliked. Reader feedback is important for us as it helps
us develop titles that you will really get the most out of.

To send us general feedback, simply e-mail feedback@packtpub.com, and mention
the book's title in the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide at www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Downloading the example code
You can download the example code files from your account at http://www.
packtpub.com for all the Packt Publishing books you have purchased. If you
purchased this book elsewhere, you can visit http://www.packtpub.com/support
and register to have the files e-mailed directly to you.

Downloading the color images of this book
We also provide you with a PDF file that has color images of the screenshots/diagrams
used in this book. The color images will help you better understand the changes in
the output. You can download this file from https://www.packtpub.com/sites/
default/files/downloads/B03462_Coloredimages.pdf.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in the text or
the code—we would be grateful if you could report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
book. If you find any errata, please report them by visiting http://www.packtpub.
com/submit-errata, selecting your book, clicking on the Errata Submission Form
link, and entering the details of your errata. Once your errata are verified, your
submission will be accepted and the errata will be uploaded to our website or added
to any list of existing errata under the Errata section of that title.

www.packtpub.com/authors
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com/support
https://www.packtpub.com/sites/default/files/downloads/B03462_Coloredimages.pdf
https://www.packtpub.com/sites/default/files/downloads/B03462_Coloredimages.pdf
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata

Preface

[ix]

To view the previously submitted errata, go to https://www.packtpub.com/books/
content/support and enter the name of the book in the search field. The required
information will appear under the Errata section.

Piracy
Piracy of copyrighted material on the Internet is an ongoing problem across all
media. At Packt, we take the protection of our copyright and licenses very seriously.
If you come across any illegal copies of our works in any form on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors and our ability to bring you
valuable content.

Questions
If you have a problem with any aspect of this book, you can contact us at
questions@packtpub.com, and we will do our best to address the problem.

https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support

[1]

Defining Dependencies
When we develop software, we need to write code. Our code consists of packages with
classes, and those can be dependent on the other classes and packages in our project.
This is fine for one project, but we sometimes depend on classes in other projects we
didn't develop ourselves, for example, we might want to use classes from an Apache
Commons library or we might be working on a project that is part of a bigger,
multi-project application and we are dependent on classes in these other projects.

Most of the time, when we write software, we want to use classes outside of our
project. Actually, we have a dependency on those classes. Those dependent classes
are mostly stored in archive files, such as Java Archive (JAR) files. Such archive files
are identified by a unique version number, so we can have a dependency on the
library with a specific version.

In this chapter, you are going to learn how to define dependencies in your Gradle
project. We will see how we can define the configurations of dependencies. You will
learn about the different dependency types in Gradle and how to use them when you
configure your build.

Declaring dependency configurations
In Gradle, we define dependency configurations to group dependencies together. A
dependency configuration has a name and several properties, such as a description
and is actually a special type of FileCollection. Configurations can extend from each
other, so we can build a hierarchy of configurations in our build files. Gradle plugins can
also add new configurations to our project, for example, the Java plugin adds several
new configurations, such as compile and testRuntime, to our project. The compile
configuration is then used to define the dependencies that are needed to compile
our source tree. The dependency configurations are defined with a configurations
configuration block. Inside the block, we can define new configurations for our build.
All configurations are added to the project's ConfigurationContainer object.

Defining Dependencies

[2]

In the following example build file, we define two new configurations, where
the traffic configuration extends from the vehicles configuration. This means
that any dependency added to the vehicles configuration is also available in
the traffic configuration. We can also assign a description property to our
configuration to provide some more information about the configuration for
documentation purposes. The following code shows this:

// Define new configurations for build.
configurations {

 // Define configuration vehicles.
 vehicles {
 description = 'Contains vehicle dependencies'
 }

 traffic {
 extendsFrom vehicles
 description = 'Contains traffic dependencies'
 }

}

To see which configurations are available in a project, we can execute the
dependencies task. This task is available for each Gradle project. The task
outputs all the configurations and dependencies of a project. Let's run this
task for our current project and check the output:

$ gradle -q dependencies

--

Root project

--

traffic - Contains traffic dependencies

No dependencies

vehicles - Contains vehicle dependencies

No dependencies

Note that we can see our two configurations, traffic and vehicles, in the
output. We have not defined any dependencies to these configurations, as shown
in the output.

