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Preface
When we write code in our Java or Groovy project, we mostly have dependencies on 
other projects or libraries. For example, we could use the Spring framework in our 
project, so we are dependent on classes found in the Spring framework. We want to 
be able to manage such dependencies from Gradle, our build automation tool.

We will see how we can define and customize the dependencies we need.  
We learn not only how to define the dependencies, but also how to work with 
repositories that store the dependencies. Next, we will see how to customize the  
way Gradle resolves dependencies.

Besides being dependent on other libraries, our project can also be a dependency for 
other projects. This means that we need to know how to deploy our project artifacts 
so that other developers can use it. We learn how to define artifacts and how to 
deploy them to, for example, a Maven or Ivy repository.

What this book covers
Chapter 1, Defining Dependencies, introduces dependency configurations as a way  
to organize dependencies. You will learn about the different types of dependencies 
in Gradle.

Chapter 2, Working with Repositories, covers how we can define repositories that store 
our dependencies. We will see not only how to set the location, but also the layout of 
a repository.

Chapter 3, Resolving Dependencies, is about how Gradle resolves our dependencies. 
You will learn how to customize the dependency resolution and resolve conflicts 
between dependencies.
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Chapter 4, Publishing Artifacts, covers how to define artifacts for our project to be 
published as dependencies for others. We will see how to use configurations to 
define artifacts. We also use a local directory as a repository to publish the artifacts.

Chapter 5, Publishing to a Maven Repository, looks at how to publish our artifacts to 
a Maven repository. You will learn how to define a publication for a Maven-like 
repository, such as Artifactory or Nexus, and how to use the new and incubating 
publishing feature of Gradle.

Chapter 6, Publishing to Bintray, covers how to deploy our artifacts to Bintray. Bintray 
calls itself a Distribution as a Service and provides a low-level way to publish our 
artifacts to the world. In this chapter, we will look at how to use the Bintray Gradle 
plugin to publish our artifacts.

Chapter 7, Publishing to an Ivy Repository, is about publishing our artifacts to an Ivy 
repository. We will look into the different options to publish our artifacts to an Ivy 
repository, which is actually quite similar to publishing to a Maven repository.

What you need for this book
In order to work with Gradle and the code samples in this book, we need at least 
Java Development Kit (version 1.6 or higher), Gradle (samples are written with 
Gradle 2.3), and a good text editor.

Who this book is for
This book is for you if you are working on Java or Groovy projects and are using, or 
are going to use, Gradle to build your code. If your code depends on other projects 
or libraries, you will learn how to define and customize those dependencies. Your 
code can also be used by other projects, so you want to publish your project as a 
dependency for others whom you want to read this book.

Conventions
In this book, you will find a number of text styles that distinguish between different 
kinds of information. Here are some examples of these styles and an explanation of 
their meaning.

Code words in text, database table names, folder names, filenames, file extensions, 
pathnames, dummy URLs, user input, and Twitter handles are shown as follows: 
"We can include other contexts through the use of the include directive."
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A block of code is set as follows:

// Define new configurations for build.
configurations {

    // Define configuration vehicles.
    vehicles {
        description = 'Contains vehicle dependencies'
    }

    traffic {
        extendsFrom vehicles
        description = 'Contains traffic dependencies'
    }

}

Any command-line input or output is written as follows:

$ gradle bintrayUpload

:generatePomFileForSamplePublication

:compileJava

:processResources UP-TO-DATE

:classes

:jar

:publishSamplePublicationToMavenLocal

:bintrayUpload

BUILD SUCCESSFUL

Total time: 9.125 secs

New terms and important words are shown in bold. Words that you see on the screen, 
for example, in menus or dialog boxes, appear in the text like this: "From this screen, 
we click on the New package button."
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Reader feedback
Feedback from our readers is always welcome. Let us know what you think about 
this book—what you liked or disliked. Reader feedback is important for us as it helps 
us develop titles that you will really get the most out of.

To send us general feedback, simply e-mail feedback@packtpub.com, and mention 
the book's title in the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing 
or contributing to a book, see our author guide at www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to 
help you to get the most from your purchase.

Downloading the example code
You can download the example code files from your account at http://www.
packtpub.com for all the Packt Publishing books you have purchased. If you 
purchased this book elsewhere, you can visit http://www.packtpub.com/support 
and register to have the files e-mailed directly to you.

Downloading the color images of this book
We also provide you with a PDF file that has color images of the screenshots/diagrams 
used in this book. The color images will help you better understand the changes in 
the output. You can download this file from https://www.packtpub.com/sites/
default/files/downloads/B03462_Coloredimages.pdf.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes 
do happen. If you find a mistake in one of our books—maybe a mistake in the text or 
the code—we would be grateful if you could report this to us. By doing so, you can 
save other readers from frustration and help us improve subsequent versions of this 
book. If you find any errata, please report them by visiting http://www.packtpub.
com/submit-errata, selecting your book, clicking on the Errata Submission Form 
link, and entering the details of your errata. Once your errata are verified, your 
submission will be accepted and the errata will be uploaded to our website or added 
to any list of existing errata under the Errata section of that title.

www.packtpub.com/authors
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com/support
https://www.packtpub.com/sites/default/files/downloads/B03462_Coloredimages.pdf
https://www.packtpub.com/sites/default/files/downloads/B03462_Coloredimages.pdf
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
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To view the previously submitted errata, go to https://www.packtpub.com/books/
content/support and enter the name of the book in the search field. The required 
information will appear under the Errata section.

Piracy
Piracy of copyrighted material on the Internet is an ongoing problem across all 
media. At Packt, we take the protection of our copyright and licenses very seriously. 
If you come across any illegal copies of our works in any form on the Internet, please 
provide us with the location address or website name immediately so that we can 
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected  
pirated material.

We appreciate your help in protecting our authors and our ability to bring you 
valuable content.

Questions
If you have a problem with any aspect of this book, you can contact us at 
questions@packtpub.com, and we will do our best to address the problem.

https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
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Defining Dependencies
When we develop software, we need to write code. Our code consists of packages with 
classes, and those can be dependent on the other classes and packages in our project. 
This is fine for one project, but we sometimes depend on classes in other projects we 
didn't develop ourselves, for example, we might want to use classes from an Apache 
Commons library or we might be working on a project that is part of a bigger,  
multi-project application and we are dependent on classes in these other projects.

Most of the time, when we write software, we want to use classes outside of our 
project. Actually, we have a dependency on those classes. Those dependent classes 
are mostly stored in archive files, such as Java Archive (JAR) files. Such archive files 
are identified by a unique version number, so we can have a dependency on the 
library with a specific version.

In this chapter, you are going to learn how to define dependencies in your Gradle 
project. We will see how we can define the configurations of dependencies. You will 
learn about the different dependency types in Gradle and how to use them when you 
configure your build.

Declaring dependency configurations
In Gradle, we define dependency configurations to group dependencies together. A 
dependency configuration has a name and several properties, such as a description 
and is actually a special type of FileCollection. Configurations can extend from each 
other, so we can build a hierarchy of configurations in our build files. Gradle plugins can 
also add new configurations to our project, for example, the Java plugin adds several 
new configurations, such as compile and testRuntime, to our project. The compile 
configuration is then used to define the dependencies that are needed to compile 
our source tree. The dependency configurations are defined with a configurations 
configuration block. Inside the block, we can define new configurations for our build. 
All configurations are added to the project's ConfigurationContainer object.
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In the following example build file, we define two new configurations, where 
the traffic configuration extends from the vehicles configuration. This means 
that any dependency added to the vehicles configuration is also available in 
the traffic configuration. We can also assign a description property to our 
configuration to provide some more information about the configuration for 
documentation purposes. The following code shows this:

// Define new configurations for build.
configurations {

  // Define configuration vehicles.
  vehicles {
    description = 'Contains vehicle dependencies'
  }

  traffic {
    extendsFrom vehicles
    description = 'Contains traffic dependencies'
  }

}

To see which configurations are available in a project, we can execute the 
dependencies task. This task is available for each Gradle project. The task  
outputs all the configurations and dependencies of a project. Let's run this  
task for our current project and check the output:

$ gradle -q dependencies

------------------------------------------------------------

Root project

------------------------------------------------------------

traffic - Contains traffic dependencies

No dependencies

vehicles - Contains vehicle dependencies

No dependencies

Note that we can see our two configurations, traffic and vehicles, in the  
output. We have not defined any dependencies to these configurations, as shown  
in the output.


