

OpenCV 3 Blueprints

Expand your knowledge of computer vision by building
amazing projects with OpenCV 3

Joseph Howse

Steven Puttemans

Quan Hua

Utkarsh Sinha

BIRMINGHAM - MUMBAI

OpenCV 3 Blueprints

Copyright © 2015 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the authors, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: November 2015

Production reference: 1281015

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78439-975-7

www.packtpub.com

www.packtpub.com

Credits

Authors
Joseph Howse

Steven Puttemans

Quan Hua

Utkarsh Sinha

Reviewers
Demetris Gerogiannis

Li Jing

Walter Lucetti

Luca Del Tongo

Theodore Tsesmelis

Commissioning Editor
Julian Ursell

Acquisition Editors
Harsha Bharwani

Divya Poojari

Content Development Editor
Merwyn D'souza

Technical Editor
Pramod Kumavat

Copy Editor
Janbal Dharmaraj

Project Coordinator
Neha Bhatnagar

Proofreader
Safis Editing

Indexer
Priya Sane

Graphics
Abhinash Sahu

Production Coordinator
Komal Ramchandani

Cover Work
Komal Ramchandani

About the Authors

Joseph Howse lives in Canada. During the cold winters, he grows a beard
and his four cats grow thick coats of fur. He combs the cats every day. Sometimes,
the cats pull his beard.

Joseph has been writing for Packt Publishing since 2012. His books include
OpenCV for Secret Agents, OpenCV 3 Blueprints, Android Application Programming
with OpenCV 3, Learning OpenCV 3 Computer Vision with Python, and Python Game
Programming by Example.

When he is not writing books or grooming cats, Joseph provides consulting,
training, and software development services through his company, Nummist
Media (http://nummist.com).

I dedicate my work to Sam, Jan, Bob, Bunny, and the cats, who have
been my lifelong guides and companions.
To my coauthors, I extend my sincere thanks for the opportunity to
research and write OpenCV 3 Blueprints together. Authoring a book
is a lot of work, and your dedication has made this project possible!
I am also indebted to the many editors and technical reviewers who
have contributed to planning, polishing, and marketing this book.
These people have guided me with their experience and have saved
me from sundry errors and omissions. From the project's beginnings,
Harsha Bharwani and Merwyn D'souza have been instrumental
in assembling and managing the team of authors, editors, and
reviewers. Harsha has advised me through multiple book projects,
and I am grateful for her continued support.
Finally, I want to thank my readers and everybody else at Packt and
in the OpenCV community. We have done so much together, and
our journey continues!

http://nummist.com

Steven Puttemans is a PhD research candidate at the KU Leuven, Department
of Industrial Engineering Sciences. At this university, he is working for the
EAVISE research group, which focuses on combining computer vision and
artificial intelligence. He obtained a master of science degree in Electronics-ICT
and further expanded his interest in computer vision by obtaining a master of
science in artificial intelligence.

As an enthusiastic researcher, his goal is to combine state-of-the-art computer
vision algorithms with real-life industrial problems to provide robust and complete
object detection solutions for the industry. His previous projects include TOBCAT,
an open source object detection framework for industrial object detection problems,
and a variety of smaller computer vision-based industrial projects. During these
projects, Steven worked closely with the industry.

Steven is also an active participant in the OpenCV community. He is a moderator
of the OpenCV Q&A forum, and has submitted or reviewed many bug fixes and
improvements for OpenCV 3. He also focuses on putting as much of his research
as possible back into the framework to further support the open source spirit.

More info about Steven's research, projects, and interests can be found at
https://stevenputtemans.github.io.

Firstly, I would like to thank my girlfriend and family for
supporting me through the long journey of writing my first
computer vision-based book. They stood by me at every step of
the way. Secondly, I would like to thank the OpenCV Q&A
community who have been supporting me with all the technical
problems that arose while writing this book.

https://stevenputtemans.github.io

Quan Hua is a software engineer at Autonomous, a start-up company in robotics,
where he focuses on developing computer vision and machine learning applications
for personal robots. He earned a bachelor of science degree from the University of
Science, Vietnam, specializing in computer vision, and published a research paper
in CISIM 2014. As the owner of Quan404.com, he also blogs about various computer
vision techniques to share his experience with the community.

I wish to thank everyone who has encouraged me on the way while
writing this book.
I want to express my sincere gratitude to my coauthors, editors,
and reviewers for their advice and assistance. Thank you, Neha
Bhatnagar, Harsha Bharwani, and Merwyn D'souza for giving me a
golden opportunity to join this project.
I would like to thank the members of my family and my girlfriend,
Kim Ngoc, who supported and encouraged me in spite of all the
time it took me away from them. They all kept me going, and this
book would not have been possible without them.
I would also like to thank my teachers who gave me the knowledge
in computer vision and machine learning.

Quan404.com

Utkarsh Sinha lives in Pittsburgh, Pennsylvania, where he is pursuing a master's
in computer vision at Carnegie Mellon University. He intends to learn the state of
the art of computer vision at the university and work on real-life industrial scale
computer vision challenges.

Before joining CMU, he worked as a Technical Director at Dreamworks Animation
on movies such as Home, How to Train your Dragon 2, and Madagascar 3. His
work spans multiple movies and multiple generations of graphics technology.

He earned his bachelor of engineering degree in computer science and his master
of science degree in mathematics from BITS-Pilani, Goa. He has been working in the
field of computer vision for about 6 years as a consultant and as a software engineer
at start-ups.

He blogs at http://utkarshsinha.com/ about various topics in technology—most
of which revolve around computer vision. He also publishes computer vision tutorials
on the Internet through his website, AI Shack (http://aishack.in/). His articles help
people understand concepts in computer vision every day.

I would like to thank my parents for supporting me through the long
journey of writing my first book on computer vision. Without them,
this book wouldn't have been possible.
I am indebted to the technical reviewers and editors who have
helped polish the book to be what it is now. Their efforts have really
brought the book together—thinking of aspects such as planning
and marketing. Harsha Bharwani and Merwyn D'souza have been
linchpins in this project—managing the team of authors, editors,
and reviewers. I am grateful to them for providing me with such
an excellent opportunity.
My friends, teachers, and the computer vision community have
helped me understand computer vision and have supported me by
answering questions, and having good debates and discussions. This
has been vital, and I would like to acknowledge and thank everyone
for the efforts they put in.
I would also like to express my gratitude to the Packt community
and OpenCV users. Computer vision is a very exciting place to be
right now—and we're just getting started!

http://utkarshsinha.com/
http://aishack.in/

About the Reviewers

Walter Lucetti, known on internet as Myzhar, is an Italian computer engineer
with a specialization in Robotics and Robotics Perception. He received the laurea
degree in 2005 studying at Research Center E. Piaggio in Pisa (Italy), with a thesis
on 3D mapping of the real world using a 2D laser tilted using a servo motor, fusing
3D with RGB data. During the writing of the thesis, he was introduced to OpenCV
for the first time; it was early 2004 and OpenCV was at its larval stage.

After the laurea, he started working as software developer for a low-level embedded
system and high-level desktop system. He deeply improved his knowledge about
computer vision and machine learning as a researcher, for a little lapse of time,
at Gustavo Stefanini Advanced Robotics Center in La Spezia (Italy), a spinoff of
PERCRO Laboratory of the Scuola Superiore Sant'Anna of Pisa (Italy).

Now, he works in the industry, writing firmware for embedded ARM systems and
software for desktop systems based on Qt framework and intelligent algorithms
for video surveillance systems based on OpenCV and CUDA.

He is also working on a personal robotics project, MyzharBot. MyzharBot is a tracked
ground mobile robot that uses computer vision to detect obstacles and analyze and
explore the environment. The robot is guided by algorithms based on ROS, CUDA,
and OpenCV. You can follow the project on its website: http://myzharbot.robot-
home.it.

He has reviewed several books on OpenCV with Packt Publishing, including
OpenCV Computer Vision Application Programming Cookbook, Second Edition.

http://myzharbot.robot-home.it
http://myzharbot.robot-home.it

Luca Del Tongo is a computer engineer with a strong passion for algorithms,
computer vision, and image processing techniques. He's the coauthor of a free eBook
called Data Structures and Algorithms (DSA) with over 100k downloads to date and has
published several image processing tutorials on his YouTube channel using Emgu
CV. While working on his master's thesis, he developed an image forensic algorithm
published in a scientific paper called Copy Move forgery detection and localization by
means of robust clustering with J-Linkage. Currently, Luca works as a software engineer
in the field of ophthalmology, developing corneal topography, processing algorithms,
IOL calculation, and computerized chart projectors. He loves to practice sport and
follow MOOC courses in his spare time. You can contact him through his blog at
http://blogs.ugidotnet.org/wetblog.

Theodore Tsesmelis is an engineer working in the fields of computer vision
and image processing. He holds a master of science degree with specialization
in computer vision and image processing from Aalborg University in the study
programme of Vision Graphics and Interactive Systems (VGIS).

His main interests lie in everything that deals with computer science and especially
with computer vision and image processing. In his free time, he likes to contribute
to his favorite OpenCV library as well as to consult and help others to get familiar
with it through the official OpenCV forum.

With the chance that this part of the book provides me, I would
like to thank Steven Puttemans and Neha Bhatnagar for the nice
collaboration and opportunity that they provided me to participate
in this project.

http://blogs.ugidotnet.org/wetblog

www.PacktPub.com

Support files, eBooks, discount offers, and more
For support files and downloads related to your book, please visit www.PacktPub.com.

Did you know that Packt offers eBook versions of every book published, with PDF
and ePub files available? You can upgrade to the eBook version at www.PacktPub.
com and as a print book customer, you are entitled to a discount on the eBook copy.
Get in touch with us at service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign
up for a range of free newsletters and receive exclusive discounts and offers on
Packt books and eBooks.

TM

https://www2.packtpub.com/books/subscription/packtlib

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital
book library. Here, you can search, access, and read Packt's entire library of books.

Why subscribe?
•	 Fully searchable across every book published by Packt
•	 Copy and paste, print, and bookmark content
•	 On demand and accessible via a web browser

Free access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view 9 entirely free books. Simply use your login credentials for
immediate access.

www.PacktPub.com
www.PacktPub.com
www.PacktPub.com
www.PacktPub.com
https://www2.packtpub.com/books/subscription/packtlib
www.PacktPub.com

[i]

Table of Contents
Preface	 vii
Chapter 1: Getting the Most out of Your Camera System	 1

Coloring the light	 4
Capturing the subject in the moment	 8
Rounding up the unusual suspects	 13
Supercharging the PlayStation Eye	 14
Supercharging the ASUS Xtion PRO Live and other
OpenNI-compliant depth cameras	 19
Supercharging the GS3-U3-23S6M-C and other
Point Grey Research cameras	 31
Shopping for glass	 49
Summary	 59

Chapter 2: Photographing Nature and Wildlife with an
Automated Camera	 61

Planning the camera trap	 62
Controlling a photo camera with gPhoto2	 65

Writing a shell script to unmount camera drives	 67
Setting up and testing gPhoto2	 69
Writing a shell script for exposure bracketing	 70
Writing a Python script to wrap gPhoto2	 72
Finding libgphoto2 and wrappers	 77

Detecting the presence of a photogenic subject	 77
Detecting a moving subject	 81
Detecting a colorful subject	 87
Detecting the face of a mammal	 93

Table of Contents

[ii]

Processing images to show subtle colors and motion	 98
Creating HDR images	 98
Creating time-lapse videos	 100

Further study	 101
Summary	 102

Chapter 3: Recognizing Facial Expressions with
Machine Learning	 103

Introducing facial expression recognition	 103
Facial expression dataset	 105

Finding the face region in the image	 105
Extracting the face region using a face detection algorithm	 106
Extracting facial landmarks from the face region	 108

Introducing the flandmark library	 108
Downloading and compiling the flandmark library	 110
Detecting facial landmarks with flandmark	 111
Visualizing the landmarks in an image	 111

Extracting the face region	 112
Software usage guide	 113

Feature extraction	 114
Extracting image features from facial component regions	 115

Contributed features	 116
Advanced features	 119
Visualizing key points for each feature type	 120

Computing the distribution of feature representation over k clusters	 121
Clustering image features space into k clusters	 121
Computing a final feature for each image	 123
Dimensionality reduction	 123

Software usage guide	 124
Classification	 125

Classification process	 126
Splitting the dataset into a training set and testing set	 126
Support vector machines	 127

Training stage	 128
Testing stage	 130

Multi-layer perceptron	 130
Training stage	 132
Testing stage	 134

K-Nearest Neighbors (KNN)	 135
Training stage	 136
The testing stage	 136

Table of Contents

[iii]

Normal Bayes classifier	 137
Training stage	 137
Testing stage	 137

Software usage guide	 138
Evaluation	 138

Evaluation with different learning algorithms	 140
Evaluation with different features	 143
Evaluation with a different number of clusters	 143

System overview	 143
Further reading	 145

Compiling the opencv_contrib module	 145
Kaggle facial expression dataset	 145
Facial landmarks	 146

What are facial landmarks?	 146
How do you detect facial landmarks?	 147
How do you use facial landmarks?	 147

Improving feature extraction	 147
K-fold cross validation	 148

Summary	 148
Chapter 4: Panoramic Image Stitching Application
Using Android Studio and NDK	 149

Introducing the concept of panorama	 149
The Android section – an application user interface	 152

The setup activity layout	 154
Capturing the camera frame	 155

Using the Camera API to get the camera frame	 157
Implementing the Capture button	 160
Implementing the Save button	 163

Integrating OpenCV into the Android Studio	 164
Compiling OpenCV Android SDK to the Android Studio project	 164
Setting up the Android Studio to work with OpenCV	 167

Importing the OpenCV Android SDK	 167
Creating a Java and C++ interaction with Java Native Interface (JNI)	 168
Compiling OpenCV C++ with NDK/JNI	 170

Implementing the OpenCV Java code	 173
Implementing the OpenCV C++ code	 174

Application showcase	 176
Further improvement	 178
Summary	 179

Table of Contents

[iv]

Chapter 5: Generic Object Detection for
Industrial Applications	 181

Difference between recognition, detection, and categorization	 182
Smartly selecting and preparing application specific
training data	 186

The amount of training data	 186
Creating object annotation files for the positive samples	 189
Parsing your positive dataset into the OpenCV data vector	 193

Parameter selection when training an object model	 195
Training parameters involved in training an object model	 196
The cascade classification process in detail	 200

Step 1 – grabbing positive and negative samples	 203
Step 2 – precalculation of integral image and all possible features from
the training data	 203
Step 3 – firing up the boosting process	 204
Step 4 – saving the temporary result to a stage file	 205

The resulting object model explained in detail	 205
HAAR-like wavelet feature models	 207
Local binary pattern models	 209
Visualization tool for object models	 210

Using cross-validation to achieve the best model possible	 212
Using scene specific knowledge and constraints to optimize
the detection result	 212

Using the parameters of the detection command to influence
your detection result	 212
Increasing object instance detection and reducing false
positive detections	 215

Obtaining rotation invariance object detection	 217
2D scale space relation	 222
Performance evaluation and GPU optimizations	 225

Object detection performance testing	 226
Optimizations using GPU code	 228

Practical applications	 232
Summary	 234

Chapter 6: Efficient Person Identification Using
Biometric Properties	 235

Biometrics, a general approach	 236
Step 1 – getting a good training dataset and applying
application-specific normalization	 236
Step 2 – creating a descriptor of the recorded biometric	 238
Step 3 – using machine learning to match the retrieved

Table of Contents

[v]

feature vector	 238
Step 4 – think about your authentication process	 240

Face detection and recognition	 241
Face detection using the Viola and Jones boosted cascade
classifier algorithm	 242
Data normalization on the detected face regions	 244

Various face recognition approaches and their corresponding feature space	 247
Eigenface decomposition through PCA	 249
Linear discriminant analysis using the Fisher criterion	 252
Local binary pattern histograms	 255

The problems with facial recognition in its current OpenCV 3
based implementation	 258

Fingerprint identification, how is it done?	 259
Implementing the approach in OpenCV 3	 260

Iris identification, how is it done?	 267
Implementing the approach in OpenCV 3	 269

Combining the techniques to create an efficient
people-registration system	 275
Summary	 277

Chapter 7: Gyroscopic Video Stabilization	 279
Stabilization with images	 280
Stabilization with hardware	 282
A hybrid of hardware and software	 283
The math	 283

The camera model	 284
The Camera motion	 284
Rolling shutter compensation	 285
Image warping	 286

Project overview	 287
Capturing data	 288

Recording video	 288
Recording gyro signals	 297

Android specifics	 300
Threaded overlay	 300
Reading media files	 311

Calibration	 316
Data structures	 317

Reading the gyroscope trace	 318
The training video	 321

Handling rotations	 325
Rotating an image	 325
Accumulated rotations	 328

Table of Contents

[vi]

The calibration class	 331
Undistorting images	 337
Testing calibration results	 339

Rolling shutter compensation	 339
Calibrating the rolling shutter	 339
Warping with grid points	 341
Unwarping with calibration	 343

What's next?	 345
Identifying gyroscope axes	 345
Estimating the rolling shutter direction	 345
Smoother timelapses	 345
Repository of calibration parameters	 346
Incorporating translations	 346
Additional tips	 346

Use the Python pickle module	 346
Write out single images	 347
Testing without the delta	 347

Summary	 347
Index	 349

[vii]

Preface
Open source computer vision projects, such as OpenCV 3, enable all kinds of users
to harness the forces of machine vision, machine learning, and artificial intelligence.
By mastering these powerful libraries of code and knowledge, professionals and
hobbyists can create smarter, better applications wherever they are needed.

This is exactly where this book is focused, guiding you through a set of hands-on
projects and templates, which will teach you to combine fantastic techniques in
order to solve your specific problem.

As we study computer vision, let's take inspiration from these words:

"I saw that wisdom is better than folly, just as light is better than darkness."

 – Ecclesiastes, 2:13

Let's build applications that see clearly, and create knowledge.

What this book covers
Chapter 1, Getting the Most out of Your Camera System, discusses how to select and
configure camera systems to see invisible light, fast motion, and distant objects.

Chapter 2, Photographing Nature and Wildlife with an Automated Camera, shows how
to build a "camera trap", as used by nature photographers, and process photos to
create beautiful effects.

Chapter 3, Recognizing Facial Expressions with Machine Learning, explores ways to
build a facial expression recognition system with various feature extraction
techniques and machine learning methods.

Preface

[viii]

Chapter 4, Panoramic Image Stitching Application Using Android Studio and NDK,
focuses on the project of building a panoramic camera app for Android with
the help of OpenCV 3's stitching module. We will use C++ with Android NDK.

Chapter 5, Generic Object Detection for Industrial Applications, investigates ways
to optimize your object detection model, make it rotation invariant, and apply
scene-specific constraints to make it faster and more robust.

Chapter 6, Efficient Person Identification Using Biometric Properties, is about building a
person identification and registration system based on biometric properties of that
person, such as their fingerprint, iris, and face.

Chapter 7, Gyroscopic Video Stabilization, demonstrates techniques for fusing data
from videos and gyroscopes, how to stabilize videos shot on your mobile phone,
and how to create hyperlapse videos.

What you need for this book
As a basic setup, the complete book is based on the OpenCV 3 software. If a chapter
does not have a specific OS requirement, then it will run on Windows, Linux, and
Mac. As authors, we encourage you to take the latest master branch from the official
GitHub repository (https://github.com/Itseez/opencv/) for setting up your
OpenCV installation, rather then using the downloadable packages at the official
OpenCV website (http://opencv.org/downloads.html), since the latest master
branch contains a huge number of fixes compared to the latest stable release.

For hardware, the authors expect that you have a basic computer system setup,
either a desktop or a laptop, with at least 4 GB of RAM memory available. Other
hardware requirements are mentioned below.

The following chapters have specific requirements that come on top of the
OpenCV 3 installation:

Chapter 1, Getting the Most out of Your Camera System:

•	 Software: OpenNI2 and FlyCapture 2.
•	 Hardware: PS3 Eye camera or any other USB webcam, an Asus Xtion

PRO live or any other OpenNI-compatible depth camera, and a Point
Grey Research (PGR) camera with one or more lenses.

•	 Remarks: The PGR camera setup (with FlyCapture 2) will not run on Mac.
Even if you do not have all the required hardware, you can still benefit from
some sections of this chapter.

https://github.com/Itseez/opencv/
http://opencv.org/downloads.html

Preface

[ix]

Chapter 2, Photographing Nature and Wildlife with an Automated Camera:

•	 Software: Linux or Mac operating system.
•	 Hardware: A portable laptop or a single-board computer (SBC) with

battery, combined with a photo camera.

Chapter 4, Panoramic Image Stitching Application Using Android Studio and NDK:

•	 Software: Android 4.4 or later, Android NDK.
•	 Hardware: Any mobile device that supports Android 4.4 or later.

Chapter 7, Gyroscopic Video Stabilization:

•	 Software: NumPy, SciPy, Python, and Android 5.0 or later, and the
Android NDK.

•	 Hardware: A mobile phone that supports Android 5.0 or later for
capturing video and gyroscope signals.

Basic installation guides
As authors, we acknowledge that installing OpenCV 3 on your system can sometimes
be quite cumbersome. Therefore, we have added a series of basic installation
guides for installing OpenCV 3, based on the latest OpenCV 3 master branch on
your system, and getting the necessary modules for the different chapters to work.
For more information, take a look at https://github.com/OpenCVBlueprints/
OpenCVBlueprints/tree/master/installation_tutorials.

Keep in mind that the book also uses modules from the OpenCV "contrib"
(contributed) repository. The installation manual will have directions on how to install
these. However, we encourage you to only install those modules that we need, because
we know that they are stable. For other modules, this might not be the case.

Who this book is for
This book is ideal for you if you aspire to build computer vision systems that are
smarter, faster, more complex, and more practical than the competition. This is an
advanced book, intended for those who already have some experience in setting up
an OpenCV development environment and building applications with OpenCV.
You should be comfortable with computer vision concepts, object-oriented
programming, graphics programming, IDEs, and the command line.

https://github.com/OpenCVBlueprints/OpenCVBlueprints/tree/master/installation_tutorials
https://github.com/OpenCVBlueprints/OpenCVBlueprints/tree/master/installation_tutorials

Preface

[x]

Conventions
In this book, you will find a number of text styles that distinguish between different
kinds of information. Here are some examples of these styles and an explanation of
their meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows:
"You can find the OpenCV software by going to http://opencv.org and clicking on
the download link."

A block of code is set as follows:

Mat input = imread("/data/image.png", LOAD_IMAGE_GRAYSCALE);
GaussianBlur(input, input, Size(7,7), 0, 0);
imshow("image", input);
waitKey(0);

When we wish to draw your attention to a particular part of a code block, the
relevant lines or items are set in bold:

Mat input = imread("/data/image.png", LOAD_IMAGE_GRAYSCALE);
GaussianBlur(input, input, Size(7,7), 0, 0);
imshow("image", input);
waitKey(0);

Any command-line input or output is written as follows:

New terms and important words are shown in bold. Words that you see on the
screen, for example, in menus or dialog boxes, appear in the text like this: "Clicking
the Next button moves you to the next screen."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

http://opencv.org

Preface

[xi]

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or disliked. Reader feedback is important for us as it
helps us develop titles that you will really get the most out of.

To send us general feedback, simply e-mail feedback@packtpub.com, and mention
the book's title in the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide at www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Downloading the example code
You can download the example code files from your account at http://www.
packtpub.com for all the Packt Publishing books you have purchased. If you
purchased this book elsewhere, you can visit http://www.packtpub.com/support
and register to have the files e-mailed directly to you.

The code is also maintained on a GitHub repository by the authors of this book.
This code repository can be found at https://github.com/OpenCVBlueprints/
OpenCVBlueprints.

Downloading the color images of this book
We also provide you with a PDF file that has color images of the screenshots/
diagrams used in this book. The color images will help you better understand
the changes in the output. You can download this file from https://www.packtpub.
com/sites/default/files/downloads/B04028_ColorImages.pdf.

www.packtpub.com/authors
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com/support
https://github.com/OpenCVBlueprints/OpenCVBlueprints
https://github.com/OpenCVBlueprints/OpenCVBlueprints
https://www.packtpub.com/sites/default/files/downloads/B04028_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/B04028_ColorImages.pdf

Preface

[xii]

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in the text or
the code—we would be grateful if you could report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
book. If you find any errata, please report them by visiting http://www.packtpub.
com/submit-errata, selecting your book, clicking on the Errata Submission Form
link, and entering the details of your errata. Once your errata are verified, your
submission will be accepted and the errata will be uploaded to our website or added
to any list of existing errata under the Errata section of that title.

To view the previously submitted errata, go to https://www.packtpub.com/books/
content/support and enter the name of the book in the search field. The required
information will appear under the Errata section.

Since this book also has a GitHub repository assigned to it, you can also report
content errata by creating an issue at the following page: https://github.com/
OpenCVBlueprints/OpenCVBlueprints/issues.

Piracy
Piracy of copyrighted material on the Internet is an ongoing problem across all
media. At Packt, we take the protection of our copyright and licenses very seriously.
If you come across any illegal copies of our works in any form on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors and our ability to bring you
valuable content.

Questions
If you have a problem with any aspect of this book, you can contact us at questions@
packtpub.com, and we will do our best to address the problem. Or as mentioned
before, you could open up an issue on the GitHub repository and one of the authors
will help you as soon as possible.

http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://github.com/OpenCVBlueprints/OpenCVBlueprints/issues
https://github.com/OpenCVBlueprints/OpenCVBlueprints/issues

[1]

Getting the Most out of Your
Camera System

Claude Monet, one of the founders of French Impressionist painting, taught his
students to paint only what they saw, not what they knew. He even went as far as
to say:

"I wish I had been born blind and then suddenly gained my sight so that I could
begin to paint without knowing what the objects were that I could see before me."

Monet rejected traditional artistic subjects, which tended to be mystical,
heroic, militaristic, or revolutionary. Instead, he relied on his own observations
of middle-class life: of social excursions; of sunny gardens, lily ponds, rivers, and
the seaside; of foggy boulevards and train stations; and of private loss. With deep
sadness, he told his friend, Georges Clemenceau (the future President of France):

"I one day found myself looking at my beloved wife's dead face and just
systematically noting the colors according to an automatic reflex!"

Monet painted everything according to his personal impressions. Late in life, he
even painted the symptoms of his own deteriorating eyesight. He adopted a reddish
palette while he suffered from cataracts and a brilliant bluish palette after cataract
surgery left his eyes more sensitive, possibly to the near ultraviolet range.

Getting the Most out of Your Camera System

[2]

Like Monet's students, we as scholars of computer vision must confront a distinction
between seeing and knowing and likewise between input and processing. Light, a lens, a
camera, and a digital imaging pipeline can grant a computer a sense of sight. From the
resulting image data, machine-learning (ML) algorithms can extract knowledge or at
least a set of meta-senses such as detection, recognition, and reconstruction (scanning).
Without proper senses or data, a system's learning potential is limited, perhaps
even nil. Thus, when designing any computer vision system, we must consider the
foundational requirements in terms of lighting conditions, lenses, cameras, and
imaging pipelines.

What do we require in order to clearly see a given subject? This is the central
question of our first chapter. Along the way, we will address five subquestions:

•	 What do we require to see fast motion or fast changes in light?
•	 What do we require to see distant objects?
•	 What do we require to see with depth perception?
•	 What do we require to see in the dark?
•	 How do we obtain good value-for-money when purchasing lenses

and cameras?

For many practical applications of computer vision, the environment
is not a well-lit, white room, and the subject is not a human face at a
distance of 0.6m (2')!

The choice of hardware is crucial to these problems. Different cameras and lenses
are optimized for different imaging scenarios. However, software can also make or
break a solution. On the software side, we will focus on the efficient use of OpenCV.
Fortunately, OpenCV's videoio module supports many classes of camera systems,
including the following:

•	 Webcams in Windows, Mac, and Linux via the following frameworks,
which come standard with most versions of the operating system:

°° Windows: Microsoft Media Foundation (MSMF), DirectShow,
or Video for Windows (VfW)

°° Mac: QuickTime
°° Linux: Video4Linux (V4L), Video4Linux2 (V4L2), or libv4l

•	 Built-in cameras in iOS and Android devices
•	 OpenNI-compliant depth cameras via OpenNI or OpenNI2, which are

open-source under the Apache license

Chapter 1

[3]

•	 Other depth cameras via the proprietary Intel Perceptual Computing SDK
•	 Photo cameras via libgphoto2, which is open source under the GPL license.

For a list of libgphoto2's supported cameras, see http://gphoto.org/proj/
libgphoto2/support.php.

Note that the GPL license is not appropriate for use in closed
source software.

•	 IIDC/DCAM-compliant industrial cameras via libdc1394, which is
open-source under the LGPLv2 license

•	 For Linux, unicap can be used as an alternative interface for
IIDC/DCAM-compliant cameras, but unicap is GPL-licensed
and thus not appropriate for use in closed-source software.

•	 Other industrial cameras via the following proprietary frameworks:

°° Allied Vision Technologies (AVT) PvAPI for GigE Vision cameras
°° Smartek Vision Giganetix SDK for GigE Vision cameras
°° XIMEA API

The videoio module is new in OpenCV 3. Previously, in OpenCV
2, video capture and recording were part of the highgui module,
but in OpenCV 3, the highgui module is only responsible for GUI
functionality. For a complete index of OpenCV's modules, see the
official documentation at http://docs.opencv.org/3.0.0/.

However, we are not limited to the features of the videoio module; we can use
other APIs to configure cameras and capture images. If an API can capture an array
of image data, OpenCV can readily use the data, often without any copy operation
or conversion. As an example, we will capture and use images from depth cameras
via OpenNI2 (without the videoio module) and from industrial cameras via the
FlyCapture SDK by Point Grey Research (PGR).

http://gphoto.org/proj/libgphoto2/support.php
http://gphoto.org/proj/libgphoto2/support.php
http://docs.opencv.org/3.0.0/

Getting the Most out of Your Camera System

[4]

An industrial camera or machine vision camera typically has
interchangeable lenses, a high-speed hardware interface (such as
FireWire, Gigabit Ethernet, USB 3.0, or Camera Link), and a complete
programming interface for all camera settings.
Most industrial cameras have SDKs for Windows and Linux. PGR's
FlyCapture SDK supports single-camera and multi-camera setups on
Windows as well as single-camera setups on Linux. Some of PGR's
competitors, such as Allied Vision Technologies (AVT), offer better
support for multi-camera setups on Linux.

We will learn about the differences among categories of cameras, and we will test the
capabilities of several specific lenses, cameras, and configurations. By the end of the
chapter, you will be better qualified to design either consumer-grade or industrial-
grade vision systems for yourself, your lab, your company, or your clients. I hope to
surprise you with the results that are possible at each price point!

Coloring the light
The human eye is sensitive to certain wavelengths of electromagnetic radiation. We
call these wavelengths "visible light", "colors", or sometimes just "light". However,
our definition of "visible light" is anthropocentric as different animals see different
wavelengths. For example, bees are blind to red light, but can see ultraviolet light
(which is invisible to humans). Moreover, machines can assemble human-viewable
images based on almost any stimulus, such as light, radiation, sound, or magnetism.
To broaden our horizons, let's consider eight kinds of electromagnetic radiation and
their common sources. Here is the list, in order of decreasing wavelength:

•	 Radio waves radiate from certain astronomical objects and from lightning.
They are also generated by wireless electronics (radio, Wi-Fi, Bluetooth,
and so on).

•	 Microwaves radiated from the Big Bang and are present throughout
the Universe as background radiation. They are also generated by
microwave ovens.

•	 Far infrared (FIR) light is an invisible glow from warm or hot things such
as warm-blooded animals and hot-water pipes.

•	 Near infrared (NIR) light radiates brightly from our sun, from flames, and
from metal that is red-hot or nearly red-hot. However, it is a relatively weak
component in commonplace electric lighting. Leaves and other vegetation
brightly reflect NIR light. Skin and certain fabrics are slightly transparent
to NIR.

Chapter 1

[5]

•	 Visible light radiates brightly from our sun and from commonplace
electric light sources. Visible light includes the colors red, orange, yellow,
green, blue, and violet (in order of decreasing wavelength).

•	 Ultraviolet (UV) light, too, is abundant in sunlight. On a sunny day, UV
light can burn our skin and can become slightly visible to us as a blue-gray
haze in the distance. Commonplace, silicate glass is nearly opaque to UV
light, so we do not suffer sunburn when we are behind windows (indoors
or in a car). For the same reason, UV camera systems rely on lenses made
of non-silicate materials such as quartz. Many flowers have UV markings
that are visible to insects. Certain bodily fluids such as blood and urine are
more opaque to UV than to visible light.

•	 X-rays radiate from certain astronomical objects such as black holes. On
Earth, radon gas, and certain other radioactive elements are natural X-ray
sources.

•	 Gamma rays radiate from nuclear explosions, including supernovae. To
lesser extents the sources of gamma rays also include radioactive decay
and lightning strikes.

NASA provides the following visualization of the wavelength and temperature
associated with each kind of light or radiation:

Getting the Most out of Your Camera System

[6]

Passive imaging systems rely on ambient (commonplace) light or radiation sources
as described in the preceding list. Active imaging systems include sources of their
own so that the light or radiation is structured in more predictable ways. For
example, an active night vision scope might use a NIR camera plus a NIR light.

For astronomy, passive imaging is feasible across the entire electromagnetic
spectrum; the vast expanse of the Universe is flooded with all kinds of light
and radiation from sources old and new. However, for terrestrial (Earth-bound)
purposes, passive imaging is mostly limited to the FIR, NIR, visible, and UV ranges.
Active imaging is feasible across the entire spectrum, but the practicalities of power
consumption, safety, and interference (between our use case and others) limit the
extent to which we can flood an environment with excess light and radiation.

Whether active or passive, an imaging system typically uses a lens to bring light or
radiation into focus on the surface of the camera's sensor. The lens and its coatings
transmit some wavelengths while blocking others. Additional filters may be placed
in front of the lens or sensor to block more wavelengths. Finally, the sensor itself
exhibits a varying spectral response, meaning that for some wavelengths, the sensor
registers a strong (bright) signal, but for other wavelengths, it registers a weak (dim)
signal or no signal. Typically, a mass-produced digital sensor responds most strongly
to green, followed by red, blue, and NIR. Depending on the use case, such a sensor
might be deployed with a filter to block a range of light (whether NIR or visible)
and/or a filter to superimpose a pattern of varying colors. The latter filter allows
for the capture of multichannel images, such as RGB images, whereas the unfiltered
sensor would capture monochrome (gray) images.

The sensor's surface consists of many sensitive points or photosites. These are
analogous to pixels in the captured digital image. However, photosites and pixels
do not necessarily correspond one-to-one. Depending on the camera system's design
and configuration, the signals from several photosites might be blended together to
create a neighborhood of multichannel pixels, a brighter pixel, or a less noisy pixel.

Consider the following pair of images. They show a sensor with a Bayer filter, which
is a common type of color filter with two green photosites per red or blue photosite.
To compute a single RGB pixel, multiple photosite values are blended. The left-hand
image is a photo of the filtered sensor under a microscope, while the right-hand
image is a cut-away diagram showing the filter and underlying photosites:

Chapter 1

[7]

The preceding images come from Wikimedia. They are contributed by
the users Natural Philo, under the Creative Commons Attribution-Share
Alike 3.0 Unported license (left), and Cburnett, under the GNU Free
Documentation License (right).

As we see in this example, a simplistic model (an RGB pixel) might hide
important details about the way data are captured and stored. To build efficient
image pipelines, we need to think about not just pixels, but also channels and
macropixels—neighborhoods of pixels that share some channels of data and are
captured, stored, and processed in one block. Let's consider three categories of
image formats:

•	 A raw image is a literal representation of the photosites' signals, scaled
to some range such as 8, 12, or 16 bits. For photosites in a given row of the
sensor, the data are contiguous but for photosites in a given column, they
are not.

•	 A packed image stores each pixel or macropixel contiguously in memory.
That is to say, data are ordered according to their neighborhood. This is
an efficient format if most of our processing pertains to multiple color
components at a time. For a typical color camera, a raw image is not packed
because each neighborhood's data are split across multiple rows. Packed
color images usually use RGB channels, but alternatively, they may use
YUV channels, where Y is brightness (grayscale), U is blueness (versus
greenness), and V is redness (also versus greenness).

Getting the Most out of Your Camera System

[8]

•	 A planar image stores each channel contiguously in memory. That is to
say, data are ordered according to the color component they represent.
This is an efficient format if most of our processing pertains to a single
color component at a time. Packed color images usually use YUV channels.
Having a Y channel in a planar format is efficient for computer vision
because many algorithms are designed to work on grayscale data alone.

An image from a monochrome camera can be efficiently stored and processed in its
raw format or (if it must integrate seamlessly into a color imaging pipeline) as the Y
plane in a planar YUV format. Later in this chapter, in the sections Supercharging the
PlayStation Eye and Supercharging the GS3-U3-23S6M-C and other Point Grey Research
cameras, we will discuss code samples that demonstrate efficient handling of various
image formats.

Until now, we have covered a brief taxonomy of light, radiation, and color—their
sources, their interaction with optics and sensors, and their representation as
channels and neighborhoods. Now, let's explore some more dimensions of image
capture: time and space.

Capturing the subject in the moment
Robert Capa, a photojournalist who covered five wars and shot images of the first
wave of D-Day landings at Omaha Beach, gave this advice:

"If your pictures aren't good enough, you're not close enough."

Like a computer vision program, a photographer is the intelligence behind the lens.
(Some would say the photographer is the soul behind the lens.) A good photographer
continuously performs detection and tracking tasks—scanning the environment,
choosing the subject, predicting actions and expressions that will create the right
moment for the photo, and choosing the lens, settings, and viewpoint that will most
effectively frame the subject.

By getting "close enough" to the subject and the action, the photographer can observe
details quickly with the naked eye and can move to other viewpoints quickly because
the distances are short and because the equipment is typically light (compared to a
long lens on a tripod for a distant shot). Moreover, a close-up, wide-angle shot pulls
the photographer, and viewer, into a first-person perspective of events, as if we
become the subject or the subject's comrade for a single moment.

Chapter 1

[9]

Photographic aesthetics concern us further in Chapter 2, Photographing Nature and
Wildlife with an Automated Camera. For now, let's just establish two cardinal rules:
don't miss the subject and don't miss the moment! Poor visibility and unfortunate
timing are the worst excuses a photographer or a practitioner of computer vision
can give. To hold ourselves to account, let us define some measurements that are
relevant to these cardinal rules.

Resolution is the finest level of detail that the lens and camera can see. For many
computer vision applications, recognizable details are the subject of the work, and
if the system's resolution is poor, we might miss this subject completely. Resolution
is often expressed in terms of the sensor's photosite counts or the captured image's
pixel counts, but at best these measurements only tell us about one limiting factor. A
better, empirical measurement, which reflects all characteristics of the lens, sensor, and
setup, is called line pairs per millimeter (lp/mm). This means the maximum density
of black-on-white lines that the lens and camera can resolve, in a given setup. At any
higher density than this, the lines in the captured image blur together. Note that lp/
mm varies with the subject's distance and the lens's settings, including the focal length
(optical zoom) of a zoom lens. When you approach the subject, zoom in, or swap out a
short lens for a long lens, the system should of course capture more detail! However,
lp/mm does not vary when you crop (digitally zoom) a captured image.

Lighting conditions and the camera's ISO speed setting also have an effect on lp/
mm. High ISO speeds are used in low light and they boost both the signal (which
is weak in low light) and the noise (which is as strong as ever). Thus, at high ISO
speeds, some details are blotted out by the boosted noise.

To achieve anything near its potential resolution, the lens must be properly focused.
Dante Stella, a contemporary photographer, describes a problem with modern
camera technology:

"For starters, it lacks … thought-controlled predictive autofocus."

That is to say, autofocus can fail miserably when its algorithm is mismatched to a
particular, intelligent use or a particular pattern of evolving conditions in the scene.
Long lenses are especially unforgiving with respect to improper focus. The depth
of field (the distance between the nearest and farthest points in focus) is shallower
in longer lenses. For some computer vision setups—for example, a camera hanging
over an assembly line—the distance to the subject is highly predictable and in such
cases manual focus is an acceptable solution.

Getting the Most out of Your Camera System

[10]

Field of view (FOV) is the extent of the lens's vision. Typically, FOV is measured as
an angle, but it can be measured as the distance between two peripherally observable
points at a given depth from the lens. For example, a FOV of 90 degrees may also be
expressed as a FOV of 2m at a depth of 1m or a FOV of 4m at a depth of 2m. Where
not otherwise specified, FOV usually means diagonal FOV (the diagonal of the lens's
vision), as opposed to horizontal FOV or vertical FOV. A longer lens has a narrower
FOV. Typically, a longer lens also has higher resolution and less distortion. If our
subject falls outside the FOV, we miss the subject completely! Toward the edges of
the FOV, resolution tends to decrease and distortion tends to increase, so preferably
the FOV should be wide enough to leave a margin around the subject.

The camera's throughput is the rate at which it captures image data. For many
computer vision applications, a visual event might start and end in a fleeting
moment and if the throughput is low, we might miss the moment completely or
our image of it might suffer from motion blur. Typically, throughput is measured
in frames per second (FPS), though measuring it as a bitrate can be useful, too.
Throughput is limited by the following factors:

•	 Shutter speed (exposure time): For a well-exposed image, the shutter speed
is limited by lighting conditions, the lens's aperture setting, and the camera's
ISO speed setting. (Conversely, a slower shutter speed allows for a narrower
aperture setting or slower ISO speed.) We will discuss aperture settings after
this list.

•	 The type of shutter: A global shutter synchronizes the capture across all
photosites. A rolling shutter does not; rather, the capture is sequential such
that photosites at the bottom of the sensor register their signals later than
photosites at the top. A rolling shutter is inferior because it can make an
object appear skewed when the object or the camera moves rapidly. (This is
sometimes called the "Jell-O effect" because of the video's resemblance to a
wobbling mound of gelatin.) Also, under rapidly flickering lighting, a rolling
shutter creates light and dark bands in the image. If the start of the capture is
synchronized but the end is not, the shutter is referred to as a rolling shutter
with global reset.

•	 The camera's onboard image processing routines, such as conversion of
raw photosite signals to a given number of pixels in a given format. As the
number of pixels and bytes per pixel increase, the throughput decreases.

•	 The interface between the camera and host computer: Common camera
interfaces, in order of decreasing bit rates, include CoaXPress full, Camera
Link full, USB 3.0, CoaXPress base, Camera Link base, Gigabit Ethernet,
IEEE 1394b (FireWire full), USB 2.0, and IEEE 1394 (FireWire base).

Chapter 1

[11]

A wide aperture setting lets in more light to allow for a faster exposure, a lower
ISO speed, or a brighter image. However, a narrower aperture has the advantage of
offering a greater depth of field. A lens supports a limited range of aperture settings.
Depending on the lens, some aperture settings exhibit higher resolution than others.
Long lenses tend to exhibit more stable resolution across aperture settings.

A lens's aperture size is expressed as an f-number or f-stop, which is the ratio of the
lens's focal length to the diameter of its aperture. Roughly speaking, focal length
is related to the length of the lens. More precisely, it is the distance between the
camera's sensor and the lens system's optical center when the lens is focused at an
infinitely distant target. The focal length should not be confused with the focus
distance—the distance to objects that are in focus. The following diagram illustrates
the meanings of focal length and focal distance as well as FOV:

With a higher f-number (a proportionally narrower aperture), a lens transmits a
smaller proportion of incoming light. Specifically, the intensity of the transmitted
light is inversely proportional to the square of the f-number. For example, when
comparing the maximum apertures of two lenses, a photographer might write,
"The f/2 lens is twice as fast as the f/2.8 lens." This means that the former lens can
transmit twice the intensity of light, allowing an equivalent exposure to be taken in
half the time.

Getting the Most out of Your Camera System

[12]

A lens's efficiency or transmittance (the proportion of light transmitted) depends
on not only the f-number but also non-ideal factors. For example, some light is
reflected off the lens elements instead of being transmitted. The T-number or T-stop
is an adjustment to the f-number based on empirical findings about a given lens's
transmittance. For example, regardless of its f-number, a T/2.4 lens has the same
transmittance as an ideal f/2.4 lens. For cinema lenses, manufacturers often provide
T-number specifications but for other lenses, it is much more common to see only
f-number specifications.

The sensor's efficiency is the proportion of the lens-transmitted light that reaches
photosites and gets converted to a signal. If the efficiency is poor, the sensor misses
much of the light! A more efficient sensor will tend to take well-exposed images
for a broader range of camera settings, lens settings, and lighting conditions. Thus,
efficiency gives the system more freedom to auto-select settings that are optimal for
resolution and throughput. For the common type of sensor described in the previous
section, Coloring the light, the choice of color filters has a big effect on efficiency. A
camera designed to capture visible light in grayscale has high efficiency because it
can receive all visible wavelengths at each photosite. A camera designed to capture
visible light in multiple color channels typically has much lower efficiency because
some wavelengths are filtered out at each photosite. A camera designed to capture
NIR alone, by filtering out all visible light, typically has even lower efficiency.

Efficiency is a good indication of the system's ability to form some kind of image under
diverse lighting (or radiation) conditions. However, depending on the subject and
the real lighting, a relatively inefficient system could have higher contrast and better
resolution. The advantages of selectively filtering wavelengths are not necessarily
reflected in lp/mm, which measures black-on-white resolution.

By now, we have seen many quantifiable tradeoffs that complicate our efforts to
capture a subject in a moment. As Robert Capa's advice implies, getting close with
a short lens is a relatively robust recipe. It allows for good resolution with minimal
risk of completely missing the framing or the focus. On the other hand, such a setup
suffers from high distortion and, by definition, a short working distance. Moving
beyond the capabilities of cameras in Capa's day, we have also considered the
features and configurations that allow for high-throughput and high-efficiency
video capture.

Having primed ourselves on wavelengths, image formats, cameras, lenses,
capture settings, and photographers' common sense, let us now select several
systems to study.

Chapter 1

[13]

Rounding up the unusual suspects
This chapter's demo applications are tested with three cameras, which are described
in the following table. The demos are also compatible with many additional cameras;
we will discuss compatibility later as part of each demo's detailed description. The
three chosen cameras differ greatly in terms of price and features but each one can
do things that an ordinary webcam cannot!

Name Price Purposes Modes Optics
Sony PlayStation Eye $10 Passive, color

imaging in
visible light

640x480 @
60 FPS
320x240 @
187 FPS

FOV: 75 degrees
or 56 degrees (two
zoom settings)

ASUS Xtion PRO Live $230 Passive, color
imaging in
visible light
Active,
monochrome
imaging in NIR
light
Depth estimation

Color
or NIR:
1280x1024
@ 60 FPS
Depth:
640x480 @
30 FPS

FOV: 70 degrees

PGR Grasshopper 3
GS3-U3-23S6M-C

$1000 Passive,
monochrome
imaging in
visible light

1920x1200
@ 162 FPS

C-mount lens (not
included)

For examples of lenses that we can use with the GS3-U3-23S6M-C
camera, refer to the Shopping for glass section, later in this chapter.

We will try to push these cameras to the limits of their capabilities. Using multiple
libraries, we will write applications to access unusual capture modes and to process
frames so rapidly that the input remains the bottleneck. To borrow a term from the
automobile designers who made 1950s muscle cars, we might say that we want to
"supercharge" our systems; we want to supply them with specialized or excess
input to see what they can do!

Getting the Most out of Your Camera System

[14]

Supercharging the PlayStation Eye
Sony developed the Eye camera in 2007 as an input device for PlayStation 3 games.
Originally, no other system supported the Eye. Since then, third parties have created
drivers and SDKs for Linux, Windows, and Mac. The following list describes the
current state of some of these third-party projects:

•	 For Linux, the gspca_ov534 driver supports the PlayStation Eye and works
out of the box with OpenCV's videoio module. This driver comes standard
with most recent Linux distributions. Current releases of the driver support
modes as fast as 320x240 @ 125 FPS and 640x480 @ 60 FPS. An upcoming
release will add support for 320x240 @187 FPS. If you want to upgrade to
this future version today, you will need to familiarize yourself with the
basics of Linux kernel development, and build the driver yourself.

See the driver's latest source code at https://github.com/
torvalds/linux/blob/master/drivers/media/usb/gspca/
ov534.c. Briefly, you would need to obtain the source code of your
Linux distribution's kernel, merge the new ov534.c file, build the driver
as part of the kernel, and finally, load the newly built gspca_ov534 driver.

•	 For Mac and Windows, developers can add PlayStation Eye support to their
applications using an SDK called PS3EYEDriver, available from https://
github.com/inspirit/PS3EYEDriver. Despite the name, this project is
not a driver; it supports the camera at the application level, but not the OS
level. The supported modes include 320x240 @ 187 FPS and 640x480 @ 60
FPS. The project comes with sample application code. Much of the code in
PS3EYEDriver is derived from the GPL-licensed gspca_ov534 driver, and
thus, the use of PS3EYEDriver is probably only appropriate to projects that
are also GPL-licensed.

•	 For Windows, a commercial driver and SDK are available from Code
Laboratories (CL) at https://codelaboratories.com/products/eye/
driver/. At the time of writing, the CL-Eye Driver costs $3. However, the
driver does not work with OpenCV 3's videoio module. The CL-Eye Platform
SDK, which depends on the driver, costs an additional $5. The fastest
supported modes are 320x240 @ 187 FPS and 640x480 @ 75 FPS.

•	 For recent versions of Mac, no driver is available. A driver called macam
is available at http://webcam-osx.sourceforge.net/, but it was last
updated in 2009 and does not work on Mac OS X Mountain Lion and
newer versions.

Thus, OpenCV in Linux can capture data directly from an Eye camera, but
OpenCV in Windows or Mac requires another SDK as an intermediary.

https://github.com/torvalds/linux/blob/master/drivers/media/usb/gspca/ov534.c
https://github.com/torvalds/linux/blob/master/drivers/media/usb/gspca/ov534.c
https://github.com/torvalds/linux/blob/master/drivers/media/usb/gspca/ov534.c
https://github.com/inspirit/PS3EYEDriver
https://github.com/inspirit/PS3EYEDriver
https://codelaboratories.com/products/eye/driver/
https://codelaboratories.com/products/eye/driver/
http://webcam-osx.sourceforge.net/

Chapter 1

[15]

First, for Linux, let us consider a minimal example of a C++ application that uses
OpenCV to record a slow-motion video based on high-speed input from an Eye. Also,
the program should log its frame rate. Let's call this application Unblinking Eye.

Unblinking Eye's source code and build files are in this book's GitHub
repository at https://github.com/OpenCVBlueprints/
OpenCVBlueprints/tree/master/chapter_1/UnblinkingEye.
Note that this sample code should also work with other OpenCV-
compatible cameras, albeit at a slower frame rate compared to the Eye.

Unblinking Eye can be implemented in a single file, UnblinkingEye.cpp, containing
these few lines of code:

#include <stdio.h>
#include <time.h>

#include <opencv2/core.hpp>
#include <opencv2/videoio.hpp>

int main(int argc, char *argv[]) {

 const int cameraIndex = 0;
 const bool isColor = true;
 const int w = 320;
 const int h = 240;
 const double captureFPS = 187.0;
 const double writerFPS = 60.0;
 // With MJPG encoding, OpenCV requires the AVI extension.
 const char filename[] = "SlowMo.avi";
 const int fourcc = cv::VideoWriter::fourcc('M','J','P','G');
 const unsigned int numFrames = 3750;

 cv::Mat mat;

 // Initialize and configure the video capture.
 cv::VideoCapture capture(cameraIndex);
 if (!isColor) {
 capture.set(cv::CAP_PROP_MODE, cv::CAP_MODE_GRAY);
 }
 capture.set(cv::CAP_PROP_FRAME_WIDTH, w);

https://github.com/OpenCVBlueprints/OpenCVBlueprints/tree/master/chapter_1/UnblinkingEye
https://github.com/OpenCVBlueprints/OpenCVBlueprints/tree/master/chapter_1/UnblinkingEye

Getting the Most out of Your Camera System

[16]

 capture.set(cv::CAP_PROP_FRAME_HEIGHT, h);
 capture.set(cv::CAP_PROP_FPS, captureFPS);

 // Initialize the video writer.
 cv::VideoWriter writer(
 filename, fourcc, writerFPS, cv::Size(w, h), isColor);

 // Get the start time.
 clock_t startTicks = clock();

 // Capture frames and write them to the video file.
 for (unsigned int i = 0; i < numFrames;) {
 if (capture.read(mat)) {
 writer.write(mat);
 i++;
 }
 }

 // Get the end time.
 clock_t endTicks = clock();

 // Calculate and print the actual frame rate.
 double actualFPS = numFrames * CLOCKS_PER_SEC /
 (double)(endTicks - startTicks);
 printf("FPS: %.1f\n", actualFPS);
}

Note that the camera's specified mode is 320x240 @ 187 FPS. If our version of the
gspca_ov534 driver does not support this mode, we can expect it to fall back to
320x240 @ 125 FPS. Meanwhile, the video file's specified mode is 320x240 @ 60 FPS,
meaning that the video will play back at slower-than-real speed as a special effect.
Unblinking Eye can be built using a Terminal command such as the following:

$ g++ UnblinkingEye.cpp -o UnblinkingEye -lopencv_core -lopencv_videoio

Build Unblinking Eye, run it, record a moving subject, observe the frame rate, and play
back the recorded video, SlowMo.avi. How does your subject look in slow motion?

On a machine with a slow CPU or slow storage, Unblinking Eye might drop some
of the captured frames due to a bottleneck in video encoding or file output. Do not be
fooled by the low resolution! The rate of data transfer for a camera in 320x240 @ 187
FPS mode is greater than for a camera in 1280x720 @ 15 FPS mode (an HD resolution
at a slightly choppy frame rate). Multiply the pixels by the frame rate to see how
many pixels per second are transferred in each mode.

