

Qt 5 Blueprints

Design, build, and deploy cross-platform GUI projects
using the amazingly powerful Qt 5 framework

Symeon Huang

BIRMINGHAM - MUMBAI

Qt 5 Blueprints

Copyright © 2015 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the author, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: March 2015

Production reference: 1240315

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78439-461-5

www.packtpub.com

Credits

Author
Symeon Huang

Reviewers
Lee Zhi Eng

Sudhendu Kumar

Mickael Minarie

Acquisition Editor
Shaon Basu

Content Development Editor
Sriram Neelakantan

Technical Editors
Novina Kewalramani

Shruti Rawool

Copy Editor
Sonia Michelle Cheema

Project Coordinator
Judie Jose

Proofreaders
Simran Bhogal

Safis Editing

Indexer
Rekha Nair

Graphics
Sheetal Aute

Disha Haria

Abhinash Sahu

Production Coordinator
Conidon Miranda

Cover Work
Conidon Miranda

About the Author

Symeon Huang is an amateur developer who's currently doing his master's degree
at Trinity College, Dublin. He has been contributing to open source projects for
several years. He has worked in various areas, including the maintenance of Linux
servers, desktop application development, and image recognition and analysis.

Symeon has always been passionate about cool technology and elegant programming
techniques. He has been programming Qt and QML applications for 2 years and has
also been developing pure C and C++ programs for many years. Most of the projects
he's working on can be found on his GitHub and Gitorious pages.

I would like to thank my family, especially my parents, for
supporting me all through this process. I would never have been
able to achieve what I have today without their hard work and
unconditional love.

I would also like to thank my mentor, Ting Dai, from Southeast
University, China, for his teaching. Without the things I have learned
from him, I wouldn't have started programming in C++ with Qt. He
also taught me a lot about common software development and gave
me helpful programming tips.

About the Reviewers

Lee Zhi Eng is a 3D artist-turned-programmer who worked as a game artist and
programmer in several local game studios in his native country before becoming
a contractor and a part-time lecturer at a local university and teaching game
development subjects, particularly those related to Unity Engine and Unreal
Engine 4. You can find more information about him at http://www.zhieng.com.

Sudhendu Kumar has been a GNU/Linux user for more than 7 years. Currently,
he is a software developer for a networking giant, and in his free time, he also
contributes to KDE.

I would like to thank the publishers for giving me the opportunity
to review this book. I hope readers find it useful and enjoy reading it
and playing around with Qt/Qml applications, not only on desktop
devices but also on mobile platforms.

Mickael Minarie is a software developer who graduated from the University of
Clermont-Ferrand (bachelor's in embedded systems) and Robert Gordon University,
Aberdeen (bachelor's in computer science). He has worked on freelance projects,
developing some programs in C++/Qt for embedded systems or in programs linked
with photos and videos.

He now lives in France, but he has lived in the UK and Canada for some years.

He is an analog photography and video enthusiast and has written articles for
photography fanzines.

www.PacktPub.com

Support files, eBooks, discount offers,
and more
For support files and downloads related to your book, please visit www.PacktPub.com.

Did you know that Packt offers eBook versions of every book published, with PDF and
ePub files available? You can upgrade to the eBook version at www.PacktPub.com and
as a print book customer, you are entitled to a discount on the eBook copy. Get in touch
with us at service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up
for a range of free newsletters and receive exclusive discounts and offers on Packt books
and eBooks.

TM

https://www2.packtpub.com/books/subscription/packtlib

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital
book library. Here, you can search, access, and read Packt's entire library of books.

Why subscribe?
• Fully searchable across every book published by Packt
• Copy and paste, print, and bookmark content
• On demand and accessible via a web browser

Free access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view 9 entirely free books. Simply use your login credentials for
immediate access.

[i]

Table of Contents
Preface v
Chapter 1: Creating Your First Qt Application 1

Creating a new project 2
Changing the layout of widgets 6
Understanding the mechanism of signals and slots 7
Connecting two signals 16
Creating a Qt Quick application 17
Connecting C++ slots to QML signals 20
Summary 23

Chapter 2: Building a Beautiful Cross-platform Clock 25
Creating a basic digital clock 25
Tweaking the digital clock 30
Saving and restoring settings 36
Building on the Unix platforms 47
Summary 50

Chapter 3: Cooking an RSS Reader with Qt Quick 51
Understanding model and view 51
Parsing RSS Feeds by XmlListModel 57
Tweaking the categories 64
Utilizing ScrollView 67
Adding BusyIndicator 70
Making a frameless window 71
Debugging QML 76
Summary 78

Table of Contents

[ii]

Chapter 4: Controlling Camera and Taking Photos 79
Accessing the camera in Qt 79
Controlling the camera 87
Displaying errors on the status bar 88
Permanent widgets in the status bar 90
Utilizing the menu bar 93
Using QFileDialog 96
QML camera 97
Summary 104

Chapter 5: Extending Paint Applications with Plugins 105
Drawing via QPainter 105
Writing static plugins 113
Writing dynamic plugins 121
Merging plugins and main program projects 127
Creating a C++ plugin for QML applications 128
Summary 134

Chapter 6: Getting Wired and Managing Downloads 135
Introducing Qt network programming 135
Utilizing QNetworkAccessManager 137
Making use of the progress bar 142
Writing multithreaded applications 146
Managing a system network session 150
Summary 158

Chapter 7: Parsing JSON and XML Documents to
Use Online APIs 159

Setting up Qt for Android 159
Parsing JSON results 165
Parsing XML results 177
Building Qt applications for Android 183
Parsing JSON in QML 185
Summary 190

Chapter 8: Enabling Your Qt Application to Support
Other Languages 191

Internationalization of Qt applications 191
Translating Qt Widgets applications 193
Disambiguating identical texts 197
Changing languages dynamically 200
Translating Qt Quick applications 204
Summary 208

Table of Contents

[iii]

Chapter 9: Deploying Applications on Other Devices 209
Releasing Qt applications on Windows 209
Creating an installer 213
Packaging Qt applications on Linux 218
Deploying Qt applications on Android 225
Summary 230

Chapter 10: Don't Panic When You Encounter These Issues 231
Commonly encountered issues 231

C++ syntax mistakes 232
Pointer and memory 233
Incompatible shared libraries 234
Doesn't run on Android! 236

Debugging Qt applications 236
Debugging Qt Quick applications 243
Useful resources 246
Summary 247

Index 249

[v]

Preface
Qt has been developed as a cross-platform framework and has been provided free
to the public for years. It's mainly used to build GUI applications. It also provides
thousands of APIs for easier development.

Qt 5, the latest major version of Qt, has once again proven to be the most popular
cross-platform toolkit. With all these platform-independent classes and functions,
you only need to code once, and then you can make it run everywhere.

In addition to the traditional and powerful C++, Qt Quick 2, which is more mature,
can help web developers to develop dynamic and reliable applications, since QML
is very similar to JavaScript.

What this book covers
Chapter 1, Creating Your First Qt Application, takes you through the fundamental
concepts of Qt, such as signals and slots, and helps you create your first Qt and
Qt Quick applications.

Chapter 2, Building a Beautiful Cross-platform Clock, teaches you how to read and
write configurations and handle cross-platform development.

Chapter 3, Cooking an RSS Reader with Qt Quick, demonstrates how to develop a
stylish RSS Reader in QML, which is a script language quite similar to JavaScript.

Chapter 4, Controlling Camera and Taking Photos, shows you how to access camera
devices through the Qt APIs and make use of the status and menu bars.

Chapter 5, Extending Paint Applications with Plugins, teaches you how to make
applications extendable and write plugins, by using the Paint application
as as an example.

Preface

[vi]

Chapter 6, Getting Wired and Managing Downloads, shows you how to utilize Qt's
network module using the progress bar, as well as learning about threaded
programming in Qt.

Chapter 7, Parsing JSON and XML Documents to Use Online APIs, teaches you how
to parse JSON and XML documents in both Qt/C++ and Qt Quick/QML, which is
essential to obtain data from online APIs.

Chapter 8, Enabling Your Qt Application to Support Other Languages, demonstrates how
to make internationalized applications, translate strings using Qt Linguist, and then
load translation files dynamically.

Chapter 9, Deploying Applications on Other Devices, shows you how to package and
make your applications redistributable on Windows, Linux, and Android.

Chapter 10, Don't Panic When You Encounter These Issues, gives you some solutions
and advice for common issues during Qt and Qt Quick application development and
shows you how to debug Qt and Qt Quick applications.

What you need for this book
Qt is cross-platform, which means you can use it on almost all operating systems,
including Windows, Linux, BSD, and Mac OS X. The hardware requirements are
listed as follows:

• A computer (PC or Macintosh)
• A webcam or a connected camera device
• Available Internet connection

An Android phone or tablet is not required, but is recommended so that you can test
applications on a real Android device.

All the software mentioned in this book, including Qt itself, is free of charge and can
be downloaded from the Internet.

Who this book is for
If you are a programmer looking for a truly cross-platform GUI framework to help
you save time by side-stepping issues involving incompatibility between different
platforms and building applications using Qt 5 for multiple targets, this book is
most certainly intended for you. It is assumed that you have basic programming
experience of C++.

Preface

[vii]

Conventions
In this book, you will find a number of text styles that distinguish between different
kinds of information. Here are some examples of these styles and an explanation of
their meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows:
"The UI files are under the Forms directory."

A block of code is set as follows:

#include "mainwindow.h"
#include <QApplication>

int main(int argc, char *argv[])
{
 QApplication a(argc, argv);
 MainWindow w;
 w.show();

 return a.exec();
}

When we wish to draw your attention to a particular part of a code block, the
relevant lines or items are set in bold:

#include <QStyleOption>
#include <QPainter>
#include <QPaintEvent>
#include <QMouseEvent>
#include <QResizeEvent>
#include "canvas.h"

Canvas::Canvas(QWidget *parent) :
 QWidget(parent)
{
}

void Canvas::paintEvent(QPaintEvent *e)
{
 QPainter painter(this);

 QStyleOption opt;
 opt.initFrom(this);

Preface

[viii]

 this->style()->drawPrimitive(QStyle::PE_Widget, &opt, &painter,
 this);

 painter.drawImage(e->rect().topLeft(), image);
}

void Canvas::updateImage()
{
 QPainter painter(&image);
 painter.setPen(QColor(Qt::black));
 painter.setRenderHint(QPainter::Antialiasing);
 painter.drawPolyline(m_points.data(), m_points.count());
 this->update();
}

void Canvas::mousePressEvent(QMouseEvent *e)
{
 m_points.clear();
 m_points.append(e->localPos());
 updateImage();
}

void Canvas::mouseMoveEvent(QMouseEvent *e)
{
 m_points.append(e->localPos());
 updateImage();
}

void Canvas::mouseReleaseEvent(QMouseEvent *e)
{
 m_points.append(e->localPos());
 updateImage();
}

void Canvas::resizeEvent(QResizeEvent *e)
{
 QImage newImage(e->size(), QImage::Format_RGB32);
 newImage.fill(Qt::white);
 QPainter painter(&newImage);
 painter.drawImage(0, 0, image);
 image = newImage;
 QWidget::resizeEvent(e);
}

Preface

[ix]

Any command-line input or output is written as follows:

..\..\bin\binarycreator.exe -c config\config.xml -p packages
internationalization_installer.exe

New terms and important words are shown in bold. Words that you see on the
screen, for example, in menus or dialog boxes, appear in the text like this: " Navigate
to File | New File or Project."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or disliked. Reader feedback is important for us as it helps
us develop titles that you will really get the most out of.

To send us general feedback, simply e-mail feedback@packtpub.com, and mention
the book's title in the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide at www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Downloading the example code
You can download the example code files from your account at http://www.
packtpub.com for all the Packt Publishing books you have purchased. If you
purchased this book elsewhere, you can visit http://www.packtpub.com/support
and register to have the files e-mailed directly to you.

Preface

[x]

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in the text or
the code—we would be grateful if you could report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
book. If you find any errata, please report them by visiting http://www.packtpub.
com/submit-errata, selecting your book, clicking on the Errata Submission Form
link, and entering the details of your errata. Once your errata are verified, your
submission will be accepted and the errata will be uploaded to our website or added
to any list of existing errata under the Errata section of that title.

To view the previously submitted errata, go to https://www.packtpub.com/books/
content/support and enter the name of the book in the search field. The required
information will appear under the Errata section.

Piracy
Piracy of copyrighted material on the Internet is an ongoing problem across all
media. At Packt, we take the protection of our copyright and licenses very seriously.
If you come across any illegal copies of our works in any form on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors and our ability to bring you
valuable content.

Questions
If you have a problem with any aspect of this book, you can contact us at
questions@packtpub.com, and we will do our best to address the problem.

Chapter 1

[1]

Creating Your First
Qt Application

GUI programming is not as difficult as you think. At least it's not when you come to
the world of Qt. This book will take you through this world and give you an insight
into this incredibly amazing toolkit. It doesn't matter whether you've heard of it or
not, as long as you have essential knowledge of C++ programming.

In this chapter, we will get you comfortable with the development of Qt applications.
Simple applications are used as a demonstration for you to cover the following
topics:

• Creating a new project
• Changing the layout of widgets
• Understanding the mechanism of signals and slots
• Connecting two signals
• Creating a Qt Quick application
• Connecting C++ slots to QML signals

Creating Your First Qt Application

[2]

Creating a new project
If you haven't installed Qt 5, refer to http://www.qt.io/download to install the
latest version of it. It's recommended that you install the Community version, which
is totally free and compliant with GPL/LGPL. Typically, the installer will install both
Qt Library and Qt Creator for you. In this book, we will use Qt 5.4.0 and Qt Creator
3.3.0. Later versions may have slight differences but the concept remains the same.
It's highly recommended that you install Qt Creator if you don't have it on your
computer, because all the tutorials in this book are based on it. It is also the official
IDE for the development of Qt applications. Although you may be able to develop Qt
applications with other IDEs, it tends to be much more complex. So if you're ready,
let's go for it by performing the following steps:

1. Open Qt Creator.
2. Navigate to File | New File or Project.
3. Select Qt Widgets Application.
4. Enter the project's name and location. In this case, the project's name is

layout_demo.

You may wish to follow the wizard and keep the default values. After this process,
Qt Creator will generate the skeleton of the project based on your choices. The UI
files are under the Forms directory. When you double-click on a UI file, Qt Creator
will redirect you to the integrated designer. The mode selector should have Design
highlighted, and the main window should contain several sub-windows to let you
design the user interface. This is exactly what we are going to do. For more details
about Qt Creator UI, refer to http://doc.qt.io/qtcreator/creator-quick-
tour.html.

Drag three push buttons from the widget box (widget palette) into the frame
of MainWindow in the center. The default text displayed on these buttons is
PushButton, but you can change the text if you want by double-clicking on the
button. In this case, I changed the buttons to Hello, Hola, and Bonjour, accordingly.
Note that this operation won't affect the objectName property. In order to keep it neat
and easy to find, we need to change the objectName property. The right-hand side of
the UI contains two windows. The upper-right section includes Object Inspector and
the lower-right side includes Property Editor. Just select a push button; you can easily
change objectName in Property Editor. For the sake of convenience, I changed these
buttons' objectName properties to helloButton, holaButton, and bonjourButton
respectively.

http://www.qt.io/download
http://doc.qt.io/qtcreator/creator-quick-tour.html
http://doc.qt.io/qtcreator/creator-quick-tour.html

Chapter 1

[3]

It's a good habit to use lowercase for the first letter of objectName
and an uppercase letter for Class name. This helps your code to be
more readable by people who are familiar with this convention.

Okay, it's time to see what you have done to the user interface of your first Qt
application. Click on Run on the left-hand side panel. It will build the project
automatically and then run it. It's amazing to see that the application has the exact
same interface as the design, isn't it? If everything is alright, the application should
appear similar to what is shown in the following screenshot:

You may want to look at the source code and see what happened there. So, let's go
back to the source code by returning to the Edit mode. Click on the Edit button in the
mode selector. Then, double-click on main.cpp in the Sources folder of the Projects
tree view. The code for main.cpp is shown as follows:

#include "mainwindow.h"
#include <QApplication>

int main(int argc, char *argv[])
{
 QApplication a(argc, argv);
 MainWindow w;
 w.show();

 return a.exec();
}

Creating Your First Qt Application

[4]

The QApplication class manages the GUI application's control flow
and the main settings.

Actually, you don't need to and you probably won't change too much in this file.
The first line of the main scope just initializes the applications on a user's desktop
and handles some events. Then there is also an object, w, which belongs to the
MainWindow class. As for the last line, it ensures that the application won't terminate
after execution but will keep in an event loop, so that it is able to respond to external
events such as mouse clicks and window state changes.

Last but not least, let's see what happens during the initialization of the MainWindow
object, w. It is the content of mainwindow.h, shown as follows:

#ifndef MAINWINDOW_H
#define MAINWINDOW_H

#include <QMainWindow>

namespace Ui {
 class MainWindow;
}

class MainWindow : public QMainWindow
{
 Q_OBJECT

public:
 explicit MainWindow(QWidget *parent = 0);
 ~MainWindow();

private:
 Ui::MainWindow *ui;
};

#endif // MAINWINDOW_H

You may feel a bit surprised seeing a Q_OBJECT macro if this is your first time writing
a Qt application. In the QObject documentation, it says:

The Q_OBJECT macro must appear in the private section of a class definition that
declares its own signals and slots or that uses other services provided by Qt's meta-
object system.

Chapter 1

[5]

Well, this means that QObject has to be declared if you're going to use Qt's meta-
object system and (or) its signals and slots mechanism. The signals and slots, which
are almost the core of Qt, will be included later in this chapter.

There is a private member named ui, which is a pointer of the MainWindow class of
the Ui namespace. Do you remember the UI file we edited before? What the magic
of Qt does is that it links the UI file and the parental source code. We can manipulate
the UI through code lines as well as design it in Qt Creator's integrated designer.
Finally, let's look into the construction function of MainWindow in mainwindow.cpp:

#include "mainwindow.h"
#include "ui_mainwindow.h"

MainWindow::MainWindow(QWidget *parent) :
 QMainWindow(parent),
 ui(new Ui::MainWindow)
{
 ui->setupUi(this);
}

MainWindow::~MainWindow()
{
 delete ui;
}

Did you see where the user interface comes from? It's the member setupUi function
of Ui::MainWindow that initializes it and sets it up for us. You may want to check
what happens if we change the member function to something like this:

MainWindow::MainWindow(QWidget *parent) :
 QMainWindow(parent),
 ui(new Ui::MainWindow)
{
 ui->setupUi(this);
 ui->holaButton->setEnabled(false);
}

What happened here? The Hola button can't be clicked on because we disabled it! It
has the same effect if the enabled box is unchecked in the designer instead of writing
a statement here. Please apply this change before heading to the next topic, because
we don't need a disabled push button to do any demonstrations in this chapter.

Creating Your First Qt Application

[6]

Changing the layout of widgets
You already know how to add and move widgets in the Design mode. Now, we
need to make the UI neat and tidy. I'll show you how to do this step by step.

A quick way to delete a widget is to select it and press the Delete button. Meanwhile,
some widgets, such as the menu bar, status bar, and toolbar can't be selected, so
we have to right-click on them in Object Inspector and delete them. Since they are
useless in this example, it's safe to remove them and we can do this for good.

Okay, let's understand what needs to be done after the removal. You may want to
keep all these push buttons on the same horizontal axis. To do this, perform the
following steps:

1. Select all the push buttons either by clicking on them one by one while
keeping the Ctrl key pressed or just drawing an enclosing rectangle
containing all the buttons.

2. Right-click and select Layout | LayOut Horizontally, The keyboard shortcut
for this is Ctrl + H.

3. Resize the horizontal layout and adjust its layoutSpacing by selecting it and
dragging any of the points around the selection box until it fits best.

Hmm…! You may have noticed that the text of the Bonjour button is longer than the
other two buttons, and it should be wider than the others. How do you do this? You
can change the property of the horizontal layout object's layoutStretch property
in Property Editor. This value indicates the stretch factors of the widgets inside the
horizontal layout. They would be laid out in proportion. Change it to 3,3,4, and
there you are. The stretched size definitely won't be smaller than the minimum size
hint. This is how the zero factor works when there is a nonzero natural number,
which means that you need to keep the minimum size instead of getting an error
with a zero divisor.

Now, drag Plain Text Edit just below, and not inside, the horizontal layout.
Obviously, it would be neater if we could extend the plain text edit's width.
However, we don't have to do this manually. In fact, we could change the layout of
the parent, MainWindow. That's it! Right-click on MainWindow, and then navigate
to Lay out | Lay Out Vertically. Wow! All the children widgets are automatically
extended to the inner boundary of MainWindow; they are kept in a vertical order.
You'll also find Layout settings in the centralWidget property, which is exactly the
same thing as the previous horizontal layout.

Chapter 1

[7]

The last thing to make this application halfway decent is to change the title of the
window. MainWindow is not the title you want, right? Click on MainWindow in the
object tree. Then, scroll down its properties to find windowTitle. Name it whatever
you want. In this example, I changed it to Greeting. Now, run the application again
and you will see it looks like what is shown in the following screenshot:

Understanding the mechanism of signals
and slots
It is really important to keep your curiosity and to explore what on earth these
properties do. However, please remember to revert the changes you made to the
app, as we are about to enter the core part of Qt, that is, signals and slots.

Signals and slots are used for communication between objects.
The signals and slots mechanism is a central feature of Qt and
probably the part that differs the most from the features provided
by other frameworks.

Creating Your First Qt Application

[8]

Have you ever wondered why a window closes after the Close button is clicked on?
Developers who are familiar with other toolkits would say that the Close button
being clicked on is an event, and this event is bound with a callback function that is
responsible for closing the window. Well, it's not quite the same in the world of Qt.
Since Qt uses a mechanism called signals and slots, it makes the callback function
weakly coupled to the event. Also, we usually use the terms signal and slot in Qt. A
signal is emitted when a particular event occurs. A slot is a function that is called in
response to a particular signal. The following simple and schematic diagram helps
you understand the relation between signals, events, and slots:

event. i.e.
clicked

Object 1
Object 2

Signal 2A

Signal 1A

Qt has tons of predefined signals and slots, which cover its general purposes.
However, it's indeed commonplace to add your own slots to handle the target
signals. You may also be interested in subclassing widgets and writing your own
signals, which will be covered later. The mechanism of signals and slots was
designed to be type-safe because of its requirement of the list of the same arguments.
In fact, the slot may have a shorter arguments list than the signal since it can ignore
the extras. You can have as many arguments as you want. This enables you to forget
about the wildcard void* type in C and other toolkits.

Since Qt 5, this mechanism is even safer because we can use a new syntax of
signals and slots to deal with the connections. A conversion of a piece of code is
demonstrated here. Let's see what a typical connect statement in old style is:

connect(sender, SIGNAL(textChanged(QString)), receiver,
 SLOT(updateText(QString)));

This can be rewritten in a new syntax style:

connect(sender, &Sender::textChanged, receiver,
 &Receiver::updateText);

In the traditional way of writing code, the verification of signals and slots only
happens at runtime. In the new style, the compiler can detect the mismatches in
the types of arguments and the existence of signals and slots at compile time.

Chapter 1

[9]

As long as it is possible, all connect statements are written in the
new syntax style in this book.

Now, let's get back to our application. I'll show you how to display some words in
a plain text edit when the Hello button is clicked on. First of all, we need to create
a slot since Qt has already predefined the clicked signal for the QPushButton class.
Edit mainwindow.h and add a slot declaration:

#ifndef MAINWINDOW_H
#define MAINWINDOW_H

#include <QMainWindow>

namespace Ui {
 class MainWindow;
}

class MainWindow : public QMainWindow
{
 Q_OBJECT

public:
 explicit MainWindow(QWidget *parent = 0);
 ~MainWindow();

private slots:
 void displayHello();

private:
 Ui::MainWindow *ui;
};

#endif // MAINWINDOW_H

As you can see, it's the slots keyword that distinguishes slots from ordinary
functions. I declared it private to restrict access permission. You have to declare
it a public slot if you need to invoke it in an object from other classes. After
this declaration, we have to implement it in the mainwindow.cpp file. The
implementation of the displayHello slot is written as follows:

void MainWindow::displayHello()
{
 ui->plainTextEdit->appendPlainText(QString("Hello"));
}

Creating Your First Qt Application

[10]

It simply calls a member function of the plain text edit in order to add a Hello
QString to it. QString is a core class that Qt has introduced. It provides a Unicode
character string, which efficiently solves the internationalization issue. It's also
convenient to convert a QString class to std::string and vice versa. Besides,
just like the other QObject classes, QString uses an implicit sharing mechanism
to reduce memory usage and avoid needless copying. If you don't want to get
concerned about the scenes shown in the following code, just take QString as an
improved version of std::string. Now, we need to connect this slot to the signal
that the Hello push button will emit:

MainWindow::MainWindow(QWidget *parent) :
 QMainWindow(parent),
 ui(new Ui::MainWindow)
{
 ui->setupUi(this);

 connect(ui->helloButton, &QPushButton::clicked, this,
 &MainWindow::displayHello);
}

What I did is add a connect statement to the constructor of MainWindow. In fact, we
can connect signals and slots anywhere and at any time. However, the connection
only exists after this line gets executed. So, it's a common practice to have lots of
connect statements in the construction functions instead of spreading them out. For
a better understanding, run your application and see what happens when you click
on the Hello button. Every time you click, a Hello text will be appended to the plain
text edit. The following screenshot is what happened after we clicked on the Hello
button three times:

Chapter 1

[11]

Getting confused? Let me walk you through this. When you clicked on the Hello
button, it emitted a clicked signal. Then, the code inside the displayHello slot
got executed, because we connected the clicked signal of the Hello button to the
displayHello slot of MainWindow. What the displayHello slot did is that it simply
appended Hello to the plain text edit.

It may take you some time to fully understand the mechanism of signals and slots.
Just take your time. I'll show you another example of how to disconnect such a
connection after we clicked on the Hola button. Similarly, add a declaration of the
slot to the header file and define it in the source file. I pasted the content of the
mainwindow.h header file, as follows:

#ifndef MAINWINDOW_H
#define MAINWINDOW_H

#include <QMainWindow>

namespace Ui {
 class MainWindow;
}

class MainWindow : public QMainWindow
{
 Q_OBJECT

public:
 explicit MainWindow(QWidget *parent = 0);
 ~MainWindow();

private slots:
 void displayHello();
 void onHolaClicked();

private:
 Ui::MainWindow *ui;
};

#endif // MAINWINDOW_H

It's only declaring a onHolaClicked slot that differed from the original. Here's the
content of the source file:

#include "mainwindow.h"
#include "ui_mainwindow.h"

