

Mastering Unity Scripting

Learn advanced C# tips and techniques to make
professional-grade games with Unity

Alan Thorn

BIRMINGHAM - MUMBAI

Mastering Unity Scripting

Copyright © 2015 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the author, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: January 2015

Production reference: 1230115

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78439-065-5

www.packtpub.com

www.packtpub.com

Credits

Author
Alan Thorn

Reviewers
Dylan Agis

John P. Doran

Alessandro Mochi

Ryan Watkins

Commissioning Editor
Dipika Gaonkar

Acquisition Editor
Subho Gupta

Content Development Editors
Melita Lobo

Rikshith Shetty

Technical Editors
Shashank Desai

Pankaj Kadam

Copy Editors
Karuna Narayanan

Laxmi Subramanian

Project Coordinator
Kinjal Bari

Proofreaders
Samuel Redman Birch

Ameesha Green

Indexer
Rekha Nair

Production Coordinator
Shantanu N. Zagade

Cover Work
Shantanu N. Zagade

About the Author

Alan Thorn is a London-based game developer, freelance programmer, and author
with over 13 years of industry experience. He founded Wax Lyrical Games in 2010,
and is the creator of the award-winning game, Baron Wittard: Nemesis of Ragnarok.
He is the author of 10 video-training courses and 11 books on game development,
including Unity 4 Fundamentals: Get Started at Making Games with Unity, Focal Press,
UDK Game Development, and Pro Unity Game Development with C#, Apress. He is also
a visiting lecturer on the Game Design & Development Masters Program at the
National Film and Television School.

Alan has worked as a freelancer on over 500 projects, including games, simulators,
kiosks, serious games, and augmented reality software for game studios, museums,
and theme parks worldwide. He is currently working on an upcoming adventure
game, Mega Bad Code, for desktop computers and mobile devices. Alan enjoys
graphics. He is fond of philosophy, yoga, and also likes to walk in the countryside.
His e-mail ID is directx_user_interfaces@hotmail.com.

About the Reviewers

Dylan Agis is a programmer and game designer, currently doing freelance work
on a few projects while also developing a few projects of his own. He has a strong
background in C++ and C# as well as Unity, and loves to solve problems.

I would like to thank Packt Publishing for giving me the chance to
review the book, and the author for making it an interesting read.

John P. Doran is a technical game designer who has been creating games for
over 10 years. He has worked on an assortment of games in teams with members
ranging from just himself to over 70 in student, mod, and professional projects.

He previously worked at LucasArts on Star Wars: 1313 as a game design
intern—the only junior designer on a team of seniors. He was also the lead
instructor of DigiPen®-Ubisoft® Campus Game Programming Program,
instructing graduate-level students in an intensive, advanced-level game
programming curriculum.

John is currently a technical designer in DigiPen's Research & Development
department. In addition to that, he also tutors and assists students on various
subjects while giving lectures on game development, including C++, Unreal,
Flash, Unity, and more.

He has been a technical reviewer for nine game development titles, and is the
author of Unity Game Development Blueprints, Getting Started with UDK, UDK Game
Development [Video], and Mastering UDK Game Development HOTSHOT, all by Packt
Publishing. He has also co-authored UDK iOS Game Development Beginner's Guide,
Packt Publishing.

Alessandro Mochi has been playing video games since the Amstrad and NES era,
tackling all the possible fields: PC, console, and mobile. Large or small video games
are his love and passion. RPGs, strategy, action platformers… nothing can escape
his grasp.

With a professional field degree in IT, a distinction in project management diploma,
and fluent in Spanish, Italian, and English, he gained sound knowledge of many
programs. New challenges are always welcome.

Currently a freelance designer and programmer, he helps young developers turn
their concepts into reality. Always traveling all over the world, he is still easy to
find on his portfolio at www.amochi-portfolio.com.

Ryan Watkins likes to party. He can be found on LinkedIn at www.linkedin.com/
in/ryanswatkins/.

www.amochi-portfolio.com
www.linkedin.com/in/ryanswatkins/
www.linkedin.com/in/ryanswatkins/

www.PacktPub.com

Support files, eBooks, discount offers, and more
For support files and downloads related to your book, please visit www.PacktPub.com.

Did you know that Packt offers eBook versions of every book published, with PDF
and ePub files available? You can upgrade to the eBook version at www.PacktPub.com
and as a print book customer, you are entitled to a discount on the eBook copy. Get in
touch with us at service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign
up for a range of free newsletters and receive exclusive discounts and offers on Packt
books and eBooks.

TM

https://www2.packtpub.com/books/subscription/packtlib

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital
book library. Here, you can search, access, and read Packt's entire library of books.

Why subscribe?
• Fully searchable across every book published by Packt
• Copy and paste, print, and bookmark content
• On demand and accessible via a web browser

Free access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view 9 entirely free books. Simply use your login credentials for
immediate access.

www.PacktPub.com
www.PacktPub.com
www.PacktPub.com
https://www2.packtpub.com/books/subscription/packtlib
www.PacktPub.com

Table of Contents
Preface 1
Chapter 1: Unity C# Refresher 7

Why C#? 8
Creating script files 8
Instantiating scripts 12
Variables 13
Conditional statements 15

The if statement 15
The switch statement 18

Arrays 21
Loops 24

The foreach loop 24
The for loop 26
The while loop 27
Infinite loops 29

Functions 29
Events 32
Classes and object-oriented programming 34
Classes and inheritance 36
Classes and polymorphism 37
C# properties 42
Commenting 44
Variable visibility 47
The ? operator 48
SendMessage and BroadcastMessage 49
Summary 51

Table of Contents

[ii]

Chapter 2: Debugging 53
Compilation errors and the console 54
Debugging with Debug.Log – custom messages 57
Overriding the ToString method 59
Visual debugging 63
Error logging 66
Editor debugging 71
Using the profiler 74
Debugging with MonoDevelop – getting started 77
Debugging with MonoDevelop – the Watch window 82
Debugging with MonoDevelop – continue and stepping 85
Debugging with MonoDevelop – call stack 87
Debugging with MonoDevelop – the Immediate window 89
Debugging with MonoDevelop – conditional breakpoints 90
Debugging with MonoDevelop – tracepoints 91
Summary 94

Chapter 3: Singletons, Statics, GameObjects, and the World 95
The GameObject 96
Component interactions 99

GetComponent 99
Getting multiple components 101
Components and messages 103

GameObjects and the world 104
Finding GameObjects 105
Comparing objects 107
Getting the nearest object 108
Finding any object of a specified type 109
Clearing a path between GameObjects 110
Accessing object hierarchies 112

The world, time, and updates 113
Rule #1 – frames are precious 115
Rule #2 – motion must be relative to time 116

Immortal objects 117
Understanding singleton objects and statics 119
Summary 123

Chapter 4: Event-driven Programming 125
Events 126
Event management 130

Starting event management with interfaces 131
Creating an EventManager 133

Table of Contents

[iii]

Code folding in MonoDevelop with #region and #endregion 139
Using EventManager 140
Alternative with delegates 141
MonoBehaviour events 147
Mouse and tap events 147
Application focus and pausing 151

Summary 153
Chapter 5: Cameras, Rendering, and Scenes 155

Camera gizmos 156
Being seen 159

Detecting the object visibility 160
More on the object visibility 161
Frustum testing – renderers 162
Frustum testing – points 163
Frustum testing – occlusion 164
Camera vision – front and back 165

Orthographic cameras 167
Camera rendering and postprocessing 171
Camera shake 178
Cameras and animation 180

Follow cameras 180
Cameras and curves 183

Camera paths – iTween 186
Summary 189

Chapter 6: Working with Mono 191
Lists and collections 192

The List class 193
The Dictionary class 196
The Stack class 197

IEnumerable and IEnumerator 199
Iterating through enemies with IEnumerator 200

Strings and regular expressions 205
Null, empty strings, and white space 205
String comparison 206
String formatting 208
String looping 208
Creating strings 209
Searching strings 209
Regular expressions 210

Infinite arguments 211

Table of Contents

[iv]

Language Integrated Query 212
Linq and regular expressions 215
Working with Text Data Assets 216

Text Assets – static loading 216
Text Assets – loading from the local files 218

Text Assets – loading from the INI files 219
Text Assets – loading from the CSV files 221
Text Assets – loading from the Web 222

Summary 222
Chapter 7: Artificial Intelligence 223

Artificial Intelligence in games 224
Starting the project 225
Baking a navigation mesh 227
Starting an NPC agent 231
Finite State Machines in Mecanim 233
Finite State Machines in C# – getting started 240
Creating the Idle state 242
Creating the Patrol state 245
Creating the Chase state 249
Creating the Attack state 251
Creating the Seek-Health (or flee) state 253
Summary 256

Chapter 8: Customizing the Unity Editor 259
Batch renaming 259
C# attributes and reflection 265
Color blending 269
Property exposing 275
Localization 281
Summary 291

Chapter 9: Working with Textures, Models, and 2D 293
Skybox 294
Procedural meshes 300
Animating UVs – scrolling textures 308
Texture painting 310

Step 1 – creating a texture blending shader 312
Step 2 – creating a texture painting script 315
Step 3 – setting up texture painting 322

Summary 327

Table of Contents

[v]

Chapter 10: Source Control and Other Tips 329
Git – source control 329

Step #1 – downloading 330
Step #2 – building a Unity project 332
Step #3 – configuring Unity for source control 333
Step #4 – creating a Git repository 335
Step #5 – ignoring files 336
Step #6 – creating the first commit 336
Step #7 – changing files 337
Step #8 – getting files from the repo 339
Step #9 – browsing the repo 342

Resources folder and external files 343
AssetBundles and external files 345
Persistent data and saved games 348
Summary 354

Index 355

Preface
Mastering Unity Scripting is a concise and dedicated exploration of some
advanced, unconventional, and powerful ways to script games with C# in
Unity. This makes the book very important right now because, although plenty
of "beginner" literature and tutorials exist for Unity, comparatively little has been
said of more advanced subjects in a dedicated and structured form. The book
assumes you're already familiar with the Unity basics, such as asset importing, level
designing, light-mapping, and basic scripting in either C# or JavaScript. From the
very beginning, it looks at practical case studies and examples of how scripting can
be applied creatively to achieve more complex ends, which include subjects such
as Debugging, Artificial Intelligence, Customized Rendering, Editor Extending,
Animation and Motion, and lots more. The central purpose is not to demonstrate
abstract principles and tips at the level of theory, but to show how theory can
be put into practice in real-world examples, helping you get the most from your
programming knowledge to build solid games that don't just work but work
optimally. To get the most out of this book, read each chapter in sequence, from
start to finish, and when reading, use a general and abstract mindset. That is, see
each chapter as being simply a particular example and demonstration of more
general principles that persist across time and spaces; ones that you can remove from
the specific context in which I've used them and redeploy elsewhere to serve your
needs. In short, see the knowledge here not just as related to the specific examples
and case studies I've chosen, but as being highly relevant for your own projects.
So, let's get started.

Preface

[2]

What this book covers
Chapter 1, Unity C# Refresher, summarizes in very brief terms the basics of C# and
scripting in Unity. It's not intended as a complete or comprehensive guide to the
basics. Rather, it's intended as a refresher course for those who've previously studied
the basics, but perhaps haven't scripted for a while and who'd appreciate a quick
recap before getting started with the later chapters. If you're comfortable with the
basics of scripting (such as classes, inheritance, properties, and polymorphism),
then you can probably skip this chapter.

Chapter 2, Debugging, explores debugging in depth. Being able to write solid and
effective code depends partially on your ability to find and successfully fix errors
as and when they occur. This makes debugging is critical skill. This chapter will not
only look at the basics, but will go deeper into debugging through the MonoDevelop
interface, as well as establish a useful error-logging system.

Chapter 3, Singletons, Statics, GameObjects, and the World, explores a wide range of
features for accessing, changing, and managing game objects. Specifically, we'll see
the singleton design pattern for building global and persistent objects, as well as
many other techniques for searching, listing, sorting, and arranging objects. Scripting
in Unity relies on manipulating objects in a unified game world, or coordinate space
to achieve believable results.

Chapter 4, Event-driven Programming, considers event-driven programming as an
important route to re-conceiving the architecture of your game for optimization. By
transferring heavy workloads from update and frequent events into an event-driven
system, we'll free up lots of valuable processing time for achieving other tasks.

Chapter 5, Cameras, Rendering, and Scenes, dives deep into seeing how cameras work,
not just superficially, but how we can dig into their architecture and customize
their rendered output. We'll explore frustum testing, culling issues, line of sight,
orthographic projection, depth and layers, postprocess effects, and more.

Chapter 6, Working with Mono, surveys the vast Mono library and some of its most
useful classes, from dictionaries, lists, and stacks, to other features and concepts,
such as strings, regular expressions and Linq. By the end of this chapter, you'll be
better positioned to work with large quantities of data quickly and effectively.

Chapter 7, Artificial Intelligence, manages to apply pretty much everything covered
previously in one single example project that considers Artificial Intelligence:
creating a clever enemy that performs a range of behaviors, from wandering,
chasing, patrolling, attacking, fleeing and searching for health-power ups. In creating
this character, we'll cover line-of-sight issues, proximity detection, and pathfinding.

Preface

[3]

Chapter 8, Customizing the Unity Editor, focuses on the Unity Editor, which is feature
filled in many respects, but sometimes you need or want it to do more. This chapter
examines how to create editor classes for customizing the editor itself, to behave
differently and work better. We'll create customized inspector properties, and even
a fully functional localization system for switching your game seamlessly across
multiple languages.

Chapter 9, Working with Textures, Models, and 2D, explores many things you can do
with 2D elements, such as sprites, textures, and GUI elements. Even for 3D games,
2D elements play an important role, and here we'll look at a range of 2D problems
and also explore effective and powerful solutions.

Chapter 10, Source Control and Other Tips, closes the book on a general note. It
considers a wide range of miscellaneous tips and tricks (useful concepts and
applications) that don't fit into any specific category but are critically important
when taken as a whole. We'll see good coding practices, tips for writing clear code,
data serialization, source and version control integration, and more.

What you need for this book
This book is a Unity-focused title, which means you only need a copy of Unity.
Unity comes with everything you need to follow along with the book, including a
code editor. Unity can be downloaded from http://unity3d.com/. Unity is a single
application that supports two main licenses, free and pro. The free license restricts
access to certain features, but nonetheless still gives you access to a powerful feature
set. In general, most chapters and examples in this book are compliant with the free
version, meaning that you can usually follow along with the free version. Some
chapters and examples will, however, require the professional version.

Who this book is for
This is an advanced book intended for students, educators, and professionals
familiar with Unity basics as well as the basics of scripting. Whether you've
been using Unity for a short time, or are an experienced user, this book has
something important and valuable to offer to help you improve your game
development workflow.

Conventions
In this book, you will find a number of text styles that distinguish between different
kinds of information. Here are some examples of these styles and an explanation of
their meaning.

http://unity3d.com/

Preface

[4]

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows:
"Once created, a new script file will be generated inside the Project folder with a
.cs file extension."

A block of code is set as follows:

01 using UnityEngine;
02 using System.Collections;
03
04 public class MyNewScript : MonoBehaviour
05 {

When we wish to draw your attention to a particular part of a code block,
the relevant lines or items are set in bold:

//We should hide this object if its Y position is above 100 units
bool ShouldHideObject = (transform.position.y > 100) ? true :
false;

//Update object visibility
gameObject.SetActive(!ShouldHideObject);

New terms and important words are shown in bold. Words that you see on
the screen, for example, in menus or dialog boxes, appear in the text like this:
"One way is to go to Assets | Create | C# Script from the application menu."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or disliked. Reader feedback is important for us as it helps
us develop titles that you will really get the most out of.

To send us general feedback, simply e-mail feedback@packtpub.com, and mention
the book's title in the subject of your message.

Preface

[5]

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide at www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Downloading the example code
You can download the example code files from your account at http://www.
packtpub.com for all the Packt Publishing books you have purchased. If you
purchased this book elsewhere, you can visit http://www.packtpub.com/support
and register to have the files e-mailed directly to you.

Downloading the color images of this book
We also provide you with a PDF file that has color images of the screenshots/
diagrams used in this book. The color images will help you better understand the
changes in the output. You can download this file from: https://www.packtpub.
com/sites/default/files/downloads/0655OT_ColoredImages.pdf.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in the text or
the code—we would be grateful if you could report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
book. If you find any errata, please report them by visiting http://www.packtpub.
com/submit-errata, selecting your book, clicking on the Errata Submission Form
link, and entering the details of your errata. Once your errata are verified, your
submission will be accepted and the errata will be uploaded to our website or
added to any list of existing errata under the Errata section of that title.

To view the previously submitted errata, go to https://www.packtpub.com/books/
content/support and enter the name of the book in the search field. The required
information will appear under the Errata section.

www.packtpub.com/authors
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com/support
https://www.packtpub.com/sites/default/files/downloads/0655OT_ColoredImages.pdf
https://www.packtpub.com/sites/default/files/downloads/0655OT_ColoredImages.pdf
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support

Preface

[6]

Piracy
Piracy of copyrighted material on the Internet is an ongoing problem across all
media. At Packt, we take the protection of our copyright and licenses very seriously.
If you come across any illegal copies of our works in any form on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors and our ability to bring you
valuable content.

Questions
If you have a problem with any aspect of this book, you can contact us at
questions@packtpub.com, and we will do our best to address the problem.

Unity C# Refresher
This book is about mastering scripting for Unity, specifically mastering C# in the
context of Unity game development. The concept of mastering needs a definition and
qualification, before proceeding further. By mastering, I mean this book will help you
transition from having intermediate and theoretical knowledge to having more fluent,
practical, and advanced knowledge of scripting. Fluency is the keyword here. From the
outset of learning any programming language, the focus invariably turns to language
syntax and its rules and laws—the formal parts of a language. This includes concepts
such as variables, loops, and functions. However, as a programmer gets experience,
the focus shifts from language specifically to the creative ways in which language
is applied to solve real-world problems. The focus changes from language-oriented
problems to questions of context-sensitive application. Consequently, most of this
book will not primarily be about the formal language syntax of C#.

After this chapter, I'll assume that you already know the basics. Instead, the book
will be about case studies and real-world examples of the use of C#. However, before
turning to that, this chapter will focus on the C# basics generally. This is intentional.
It'll cover, quickly and in summary, all the C# foundational knowledge you'll need
to follow along productively with subsequent chapters. I strongly recommend
that you read it through from start to finish, whatever your experience. It's aimed
primarily at readers who are reasonably new to C# but fancy jumping in at the deep
end. However, it can also be valuable to experienced developers to consolidate their
existing knowledge and, perhaps, pick up new advice and ideas along the way. In this
chapter, then, I'll outline the fundamentals of C# from the ground up, in a step-by-step,
summarized way. I will speak as though you already understand the very basics of
programming generally, perhaps with another language, but have never encountered
C#. So, let's go.

Unity C# Refresher

[8]

Why C#?
When it comes to Unity scripting, an early question when making a new game
is which language to choose, because Unity offers a choice. The official choices
are C# or JavaScript. However, there's a debate about whether JavaScript should
more properly be named "JavaScript" or "UnityScript" due to the Unity-specific
adaptations made to the language. This point is not our concern here. The question is
which language should be chosen for your project. Now, it initially seems that as we
have a choice, we can actually choose all two languages and write some script files
in one language and other script files in another language, thus effectively mixing
up the languages. This is, of course, technically possible. Unity won't stop you from
doing this. However, it's a "bad" practice because it typically leads to confusion
as well as compilation conflicts; it's like trying to calculate distances in miles and
kilometers at the same time.

The recommended approach, instead, is to choose one of the three languages and
apply it consistently across your project as the authoritative language. This is a
slicker, more efficient workflow, but it means one language must be chosen at the
expense of others. This book chooses C#. Why? First, it's not because C# is "better"
than the others. There is no absolute "better" or "worse" in my view. Each and every
language has its own merits and uses, and all the Unity languages are equally
serviceable for making games. The main reason is that C# is, perhaps, the most
widely used and supported Unity language, because it connects most readily to the
existing knowledge that most developers already have when they approach Unity.
Most Unity tutorials are written with C# in mind, as it has a strong presence in other
fields of application development. C# is historically tied to the .NET framework,
which is also used in Unity (known as Mono there), and C# most closely resembles
C++, which generally has a strong presence in game development. Further, by
learning C#, you're more likely to find that your skill set aligns with the current
demand for Unity programmers in the contemporary games industry. Therefore, I've
chosen C# to give this book the widest appeal and one that connects to the extensive
body of external tutorials and literature. This allows you to more easily push your
knowledge even further after reading this book.

Creating script files
If you need to define a logic or behavior for your game, then you'll need to write
a script. Scripting in Unity begins by creating a new script file, which is a standard
text file added to the project. This file defines a program that lists all the instructions
for Unity to follow. As mentioned, the instructions can be written in either C#,
JavaScript, or Boo; for this book, the language will be C#. There are multiple ways
to create a script file in Unity.

Chapter 1

[9]

One way is to go to Assets | Create | C# Script from the application menu,
as shown in the following screenshot:

Creating a script file via the application menu

Another way is to right-click on the empty space anywhere within the Project panel
and choose the C# Script option in the Create menu from the context menu, as
shown in the following screenshot. This creates the asset in the currently open folder.

Creating a script file via the Project panel context menu

Unity C# Refresher

[10]

Once created, a new script file will be generated inside the Project folder with a
.cs file extension (representing C Sharp). The filename is especially important and
has serious implications on the validity of your script files because Unity uses the
filename to determine the name of a C# class to be created inside the file. Classes are
considered in more depth later in this chapter. In short, be sure to give your file a
unique and meaningful name.

By unique, we mean that no other script file anywhere in your project should have
the same name, whether it is located in a different folder or not. All the script files
should have a unique name across the project. The name should also be meaningful
by expressing clearly what your script intends to do. Further, there are rules of
validity governing filenames as well as class names in C#. The formal definition of
these rules can be found online at http://msdn.microsoft.com/en-us/library/
aa664670%28VS.71%29.aspx. In short, the filename should start with a letter or
underscore character only (numbers are not permitted for the first character),
and the name should include no spaces, although underscores (_) are allowed:

Name your script files in a unique way and according
to the C# class naming conventions

Unity script files can be opened and examined in any text editor or IDE, including
Visual Studio and Notepad++, but Unity provides the free and open source editor,
MonoDevelop. This software is part of the main Unity package included in the
installation and doesn't need to be downloaded separately. By double-clicking on
the script file from the Project panel, Unity will automatically open the file inside
MonoDevelop. If you later decide to, or need to, rename the script file, you also need
to rename the C# class inside the file to match the filename exactly, as shown in the
following screenshot. Failure to do so will result in invalid code and compilation
errors or problems when attaching the script file to your objects.

http://msdn.microsoft.com/en-us/library/aa664670%28VS.71%29.aspx
http://msdn.microsoft.com/en-us/library/aa664670%28VS.71%29.aspx

Chapter 1

[11]

Renaming classes to match the renamed script files

Compiling code
To compile code in Unity, you just need to save your script file in
MonoDevelop by choosing the Save option in the File menu from the
application menu (or by pressing Ctrl + S on the keyboard) and then
return to the main Unity Editor. On refocusing on the Unity window,
Unity automatically detects code changes in the files and then compiles
your code in response. If there are errors, the game cannot be run,
and the errors are printed to the Console window. If the compile was
successful, you don't need to do anything else, except press Play on the
Editor toolbar and test run your game. Take care here; if you forget to
save your file in MonoDevelop after making code changes, then Unity
will still use the older, compiled version of your code. For this reason
as well as for the purpose of backup, it's really important to save your
work regularly, so be sure to press Ctrl + S to save in MonoDevelop.

Unity C# Refresher

[12]

Instantiating scripts
Each script file in Unity defines one main class that is like a blueprint or design
that can be instantiated. It is a collection of related variables, functions, and events
(as we'll see soon). By default, a script file is like any other kind of Unity asset, such
as meshes and audio files. Specifically, it remains dormant in the Project folder
and does nothing until it's added to a specific scene (by being added to an object
as a component), where it comes alive at runtime. Now, scripts, being logical and
mathematical in nature, are not added to the scene as tangible, independent objects
as meshes are. You cannot see or hear them directly, because they have no visible or
audible presence. Instead, they're added onto existing game objects as components,
where they define the behavior of those objects. This process of bringing scripts to
life as a specific component on a specific object is known as instantiation. Of course,
a single script file can be instantiated on multiple objects to replicate the behavior for
them all, saving us from making multiple script files for each object, such as when
multiple enemy characters must use the same artificial intelligence. The point of the
script file, ideally, is to define an abstract formula or behavior pattern for an object
that can be reused successfully across many similar objects in all possible scenarios.
To add a script file onto an object, simply drag-and-drop the script from the Project
panel onto the destination object in the scene. The script will be instantiated as a
component, and its public variables will be visible in the Object Inspector whenever
the object is selected, as shown in the following screenshot:

Attaching scripts onto game objects as components

Chapter 1

[13]

Variables are considered in more depth in the next section.

More information on creating and using scripts in Unity can be found
online at http://docs.unity3d.com/412/Documentation/
Manual/Scripting.html.

Variables
Perhaps, the core concept in programming and in C# is the variable. Variables often
correspond to the letters used in algebra and stand in for numerical quantities, such as
X, Y, and Z and a, b, and c. If you need to keep track of information, such as the player
name, score, position, orientation, ammo, health, and a multitude of other types of
quantifiable data (expressed by nouns), then a variable will be your friend. A variable
represents a single unit of information. This means that multiple variables are needed
to hold multiple units, one variable for each. Further, each unit will be of a specific type
or kind. For example, the player's name represents a sequence of letters, such as "John",
"Tom", and "David". In contrast, the player's health refers to numerical data, such as
100 percent (1) or 50 percent (0.5), depending on whether the player has sustained
damage. So, each variable necessarily has a data type. In C#, variables are created
using a specific kind of syntax or grammar. Consider the following code sample 1-1
that defines a new script file and class called MyNewScript, which declares three
different variables with class scope, each of a unique type. The word "declare" means
that we, as programmers, are telling the C# compiler about the variables required:

01 using UnityEngine;
02 using System.Collections;
03
04 public class MyNewScript : MonoBehaviour
05 {
06 public string PlayerName = "";
07 public int PlayerHealth = 100;
08 public Vector3 Position = Vector3.zero;
09
10 // Use this for initialization
11 void Start () {
12
13 }
14
15 // Update is called once per frame
16 void Update () {
17
18 }
19 }

http://docs.unity3d.com/412/Documentation/Manual/Scripting.html
http://docs.unity3d.com/412/Documentation/Manual/Scripting.html

Unity C# Refresher

[14]

Variable data types
Each variable has a data type. A few of the most common ones include
int, float, bool, string, and Vector3. Here, are a few examples
of these types:

• int (integer or whole number) = -3, -2, -1, 0, 1, 2, 3…
• float (floating point number or decimal) = -3.0, -2.5, 0.0, 1.7,

3.9…
• bool (Boolean or true/false) = true or false (1 or 0)
• string (string of characters) = "hello world", "a", "another

word…"
• Vector3 (a position value) = (0, 0, 0), (10, 5, 0)…

Notice from lines 06-08 of code sample 1-1 that each variable is assigned a starting
value, and its data type is explicitly stated as int (integer), string, and Vector3,
which represent the points in a 3D space (as well as directions, as we'll see). There's no
full list of possible data types, as this will vary extensively, depending on your project
(and you'll also create your own!). Throughout this book, we'll work with the most
common types, so you'll see plenty of examples. Finally, each variable declaration line
begins with the keyword public. Usually, variables can be either public or private
(and there is another one called protected, which is not covered here).The public
variables will be accessible and editable in Unity's Object Inspector (as we'll see soon,
you can also refer to the preceding screenshot), and they can also be accessed by
other classes.

Variables are so named because their values might vary (or change) over time.
Of course, they don't change in arbitrary and unpredictable ways. Rather, they
change whenever we explicitly change them, either through direct assignment in
code, from the Object Inspector, or through methods and function calls. They can
be changed both directly and indirectly. Variables can be assigned values directly,
such as the following one:

PlayerName = "NewName";

They can also be assigned indirectly using expressions, that is, statements whose
final value must be evaluated before the assignment can be finally made to the
variable as follows:

//Variable will result to 50, because: 100 x 0.5 = 50
PlayerHealth = 100 * 0.5;

Chapter 1

[15]

Variable scope
Each variable is declared with an implicit scope. The scope determines
the lifetime of a variable, that is, the places inside a source file where
a variable can be successfully referenced and accessed. Scope is
determined by the place where the variable is declared. The variables
declared in code sample 1-1 have class scope, because they are declared
at the top of a class and outside any functions. This means they can
be accessed everywhere throughout the class, and (being public) they
can also be accessed from other classes. Variables can also be declared
inside specific functions. These are known as local variables, because
their scope is restricted to the function, that is, a local variable cannot
be accessed outside the function in which it was declared. Classes and
functions are considered later in this chapter.
More information on variables and their usage in C# can be
found at http://msdn.microsoft.com/en-us/library/
aa691160%28v=vs.71%29.aspx.

Conditional statements
Variables change in potentially many different circumstances: when the player
changes their position, when enemies are destroyed, when the level changes, and so
on. Consequently, you'll frequently need to check the value of a variable to branch the
execution of your scripts that perform different sets of actions, depending on the value.
For example, if PlayerHealth reaches 0 percent, you'll perform a death sequence, but
if PlayerHealth is at 20 percent, you might only display a warning message. In this
specific example, the PlayerHealth variable drives the script in a specified direction.
C# offers two main conditional statements to achieve a program branching like this.
These are the if statement and the Switch statement. Both are highly useful.

The if statement
The if statement has various forms. The most basic form checks for a condition
and will perform a subsequent block of code if, and only if, that condition is true.
Consider the following code sample 1-2:

01 using UnityEngine;
02 using System.Collections;
03

http://msdn.microsoft.com/en-us/library/aa691160%28v=vs.71%29.aspx
http://msdn.microsoft.com/en-us/library/aa691160%28v=vs.71%29.aspx

Unity C# Refresher

[16]

04 public class MyScriptFile : MonoBehaviour
05 {
06 public string PlayerName = "";
07 public int PlayerHealth = 100;
08 public Vector3 Position = Vector3.zero;
09
10 // Use this for initialization
11 void Start () {
12 }
13
14 // Update is called once per frame
15 void Update ()
16 {
17 //Check player health - the braces symbol {} are option
 for one-line if-statements
18 if(PlayerHealth == 100)
19 {
20 Debug.Log ("Player has full health");
21 }
22 }
23 }

The preceding code is executed like all other types of code in Unity, by pressing the
Play button from the toolbar, as long as the script file has previously been instantiated
on an object in the active scene. The if statement at line 18 continually checks the
PlayerHealth class variable for its current value. If the PlayerHealth variable is
exactly equal to (==) 100, then the code inside the {} braces (in lines 19–21) will be
executed. This works because all conditional checks result in a Boolean value of either
true or false; the conditional statement is really checked to see whether the queried
condition (PlayerHealth == 100) is true. The code inside the braces can, in theory,
span across multiple lines and expressions. However, here, there is just a single line
in line 20: the Debug.Log Unity function outputs the Player has full health string to
the console, as shown in the following screenshot. Of course, the if statement could
potentially have gone the other way, that is, if PlayerHealth was not equal to 100
(perhaps, it was 99 or 101), then no message would be printed. Its execution always
depends on the previous if statement evaluating to true.

Chapter 1

[17]

The Unity Console is useful for printing and viewing debug messages

More information on the if statements, the if-else statement, and their usage in C#
can be found online at http://msdn.microsoft.com/en-GB/library/5011f09h.
aspx.

Unity Console
As you can see in the preceding screenshot, the console is a debugging
tool in Unity. It's a place where messages can be printed from the code
using the Debug.Log statement (or the Print function) to be viewed by
developers. They are helpful to diagnose issues at runtime and compile
time. If you get a compile time or runtime error, it should be listed in
the Console tab. The Console tab should be visible in the Unity Editor
by default, but it can be displayed manually by selecting Console in the
Window menu from the Unity application file menu. More information
on the Debug.Log function can be found at http://docs.unity3d.
com/ScriptReference/Debug.Log.html.

You can, of course, check for more conditions than just equality (==), as we did in
code sample 1-2. You can use the > and < operators to check whether a variable
is greater than or less than another value, respectively. You can also use the !=
operator to check whether a variable is not equal to another value. Further, you
can even combine multiple conditional checks into the same if statement using
the && (AND) operator and the || (OR) operator. For example, check out the
following if statement. It performs the code block between the {} braces only if the
PlayerHealth variable is between 0 and 100 and is not equal to 50, as shown here:

if(PlayerHealth >= 0 && PlayerHealth <= 100 && PlayerHealth !=50)
{

http://msdn.microsoft.com/en-GB/library/5011f09h.aspx
http://msdn.microsoft.com/en-GB/library/5011f09h.aspx
http://docs.unity3d.com/ScriptReference/Debug.Log.html
http://docs.unity3d.com/ScriptReference/Debug.Log.html

Unity C# Refresher

[18]

Debug.Log ("Player has full health");
}

The if-else statement
One variation of the if statement is the if-else statement. The if
statement performs a code block if its condition evaluates to true.
However, the if-else statement extends this. It would perform
an X code block if its condition is true and a Y code block if its
condition is false:

if(MyCondition)

{

//X - perform my code if MyCondition is true

}

else

{

//Y – perform my code if MyCondition is false
}

The switch statement
As we've seen, the if statement is useful to determine whether a single and specific
condition is true or false and to perform a specific code block on the basis of this.
The switch statement, in contrast, lets you check a variable for multiple possible
conditions or states, and then lets you branch the program in one of many possible
directions, not just one or two as is the case with if statements. For example, if
you're creating an enemy character that can be in one of the many possible states of
action (CHASE, FLEE, FIGHT, HIDE, and so on), you'll probably need to branch your
code appropriately to handle each state specifically. The break keyword is used to
exit from a state returning to the end of the switch statement. The following code
sample 1-3 handles a sample enemy using enumerations:

01 using UnityEngine;
02 using System.Collections;
03
04 public class MyScriptFile : MonoBehaviour
05 {
06 //Define possible states for enemy using an enum
07 public enum EnemyState {CHASE, FLEE, FIGHT, HIDE};
08

Chapter 1

[19]

09 //The current state of enemy
10 public EnemyState ActiveState = EnemyState.CHASE;
11
12 // Use this for initialization
13 void Start () {
14 }
15
16 // Update is called once per frame
17 void Update ()
18 {
19 //Check the ActiveState variable
20 switch(ActiveState)
21 {
22 case EnemyState.FIGHT:
23 {
24 //Perform fight code here
25 Debug.Log ("Entered fight state");
26 }
27 break;
28
29
30 case EnemyState.FLEE:
31 case EnemyState.HIDE:
32 {
33 //Flee and hide performs the same behaviour
34 Debug.Log ("Entered flee or hide state");
35 }
36 break;
37
38 default:
39 {
40 //Default case when all other states fail
41 //This is used for the chase state
42 Debug.Log ("Entered chase state");
43 }
44 break;
45 }
46 }
47 }

Unity C# Refresher

[20]

Enumerations
This line 07 in code sample 1-3 declares an enumeration (enum) named
EnemyState. An enum is a special structure used to store a range of
potential values for one or more other variables. It's not a variable itself
per se, but a way of specifying the limits of values that a variable might
have. In code sample 1-3, the ActiveState variable declared in line
10 makes use of EnemyState. Its value can be any valid value from
the ActiveState enumeration. Enums are a great way of helping you
validate your variables, limiting their values within a specific range and
series of options.

Another great benefit of enums is that variables based on them have their values
appear as selectable options from drop-down boxes in the Object Inspector,
as shown in the following screenshot:

Enumerations offer you drop-down options for your variables from the Object Inspector

More information on enums and their usage in C# can be found online at
http://msdn.microsoft.com/en-us/library/sbbt4032.aspx.

The following are the comments for code sample 1-3:

• Line 20: The switch statement begins. Parentheses, (), are used to select
the variable whose value or state must be checked. In this case, the
ActiveState variable is being queried.

• Line 22: The first case statement is made inside the switch statement. The
following block of code (lines 24 and 25) will be executed if the ActiveState
variable is set to EnemyState.Fight. Otherwise, the code will be ignored.

http://msdn.microsoft.com/en-us/library/sbbt4032.aspx

Chapter 1

[21]

• Lines 30 and 31: Here, two case statements follow one another. The code
block in lines 33 and 34 will be executed if, and only if, ActiveState is
either EnemyState.Flee or EnemyState.Hide.

• Line 38: The default statement is optional for a switch statement. When
included, it will be entered if no other case statements are true. In this
case, it would apply if ActiveState is EnemyState.Chase.

• Lines 27, 36, and 44: The break statement should occur at the end of a case
statement. When it is reached, it will exit the complete switch statement to
which it belongs, resuming program execution in the line after the switch
statement, in this case, line 45.

More information on the switch statement and its usage in
C# can be found at http://msdn.microsoft.com/en-GB/
library/06tc147t.aspx.

Arrays
Lists and sequences are everywhere in games. For this reason, you'll frequently need
to keep track of lists of data of the same type: all enemies in the level, all weapons
that have been collected, all power ups that could be collected, all spells and items
in the inventory, and so on. One type of list is the array. Each item in the array is,
essentially, a unit of information that has the potential to change during gameplay,
and so a variable is suitable to store each item. However, it's useful to collect together
all the related variables (all enemies, all weapons, and so on) into a single, linear, and
traversable list structure. This is what an array achieves. In C#, there are two kinds of
arrays: static and dynamic. Static arrays might hold a fixed and maximum number of
possible entries in memory, decided in advance, and this capacity remains unchanged
throughout program execution, even if you only need to store fewer items than the
capacity. This means some slots or entries could be wasted. Dynamic arrays might
grow and shrink in capacity, on demand, to accommodate exactly the number of
items required. Static arrays typically perform better and faster, but dynamic arrays
feel cleaner and avoid memory wastage. This chapter considers only static arrays,
and dynamic arrays are considered later, as shown in the following code sample 1-4:

01 using UnityEngine;
02 using System.Collections;
03
04 public class MyScriptFile : MonoBehaviour
05 {
06 //Array of game objects in the scene
07 public GameObject[] MyObjects;
08

http://msdn.microsoft.com/en-GB/library/06tc147t.aspx
http://msdn.microsoft.com/en-GB/library/06tc147t.aspx

Unity C# Refresher

[22]

09 // Use this for initialization
10 void Start ()
11 {
12 }
13
14 // Update is called once per frame
15 void Update ()
16 {
17 }
18 }

In code sample 1-4, line 07 declares a completely empty array of GameObjects, named
MyObjects. To create this, it uses the [] syntax after the data type GameObject to
designate an array, that is, to signify that a list of GameObjects is being declared as
opposed to a single GameObject. Here, the declared array will be a list of all objects
in the scene. It begins empty, but you can use the Object Inspector in the Unity Editor
to build the array manually by setting its maximum capacity and populating it with
any objects you need. To do this, select the object to which the script is attached in
the scene and type in a Size value for the My Objects field to specify the capacity of
the array. This should be the total number of objects you want to hold. Then, simply
drag-and-drop objects individually from the scene hierarchy panel into the array
slots in the Object Inspector to populate the list with items, as shown here:

Building arrays from the Unity Object Inspector

Chapter 1

[23]

You can also build the array manually in code via the Start function instead of
using the Object Inspector. This ensures that the array is constructed as the level
begins. Either method works fine, as shown in the following code sample 1-5:

01 using UnityEngine;
02 using System.Collections;
03
04 public class MyScriptFile : MonoBehaviour
05 {
06 //Array of game objects in the scene
07 public GameObject[] MyObjects;
08
09 // Use this for initialization
10 void Start ()
11 {
12 //Build the array manually in code
13 MyObjects = new GameObject[3];
14 //Scene must have a camera tagged as MainCamera
15 MyObjects[0] = Camera.main.gameObject;

16 //Use GameObject.Find function to
17 //find objects in scene by name
18 MyObjects[1] = GameObject.Find("Cube");
19 MyObjects[2] = GameObject.Find("Cylinder");
20 }
21
22 // Update is called once per frame
23 void Update ()
24 {
25 }
26 }

The following are the comments for code sample 1-5:

• Line 10: The Start function is executed at level startup. Functions are
considered in more depth later in this chapter.

• Line 13: The new keyword is used to create a new array with a capacity
of three. This means that the list can hold no more than three elements at
any one time. By default, all elements are set to the starting value of null
(meaning nothing). They are empty.

