

Mapping and Visualization with
SuperCollider

Create interactive and responsive audio-visual
applications with SuperCollider

Marinos Koutsomichalis

 BIRMINGHAM - MUMBAI

Mapping and Visualization with SuperCollider

Copyright © 2013 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the authors, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: November 2013

Production Reference: 1191113

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78328-967-7

www.packtpub.com

Cover Image by Aniket Sawant (aniket_sawant_photography@hotmail.com)

Credits

Author
Marinos Koutsomichalis

Reviewers
João Martinho Moura

Joshua Parmenter

Phil Thomson

Acquisition Editor
Vinay Argekar

Commissioning Editor
Poonam Jain

Technical Editors
Kunal Anil Gaikwad

Iram Malik

Shruti Rawool

Copy Editors
Roshni Banerjee

Gladson Monteiro

Deepa Nambiar

Karuna Narayanan

Shambhavi Pai

Project Coordinator
Joel Goveya

Proofreaders
Mario Cecere

Stephen Copestake

Indexer
Monica Ajmera Mehta

Graphics
Ronak Dhruv

Abhinash Sahu

Production Coordinator
Pooja Chiplunkar

Cover Work
Pooja Chiplunkar

About the Author

Marinos Koutsomichalis (Athens, 1981) is an artist and scholar working with
sound and a wide range of other media. His artistic work interrogates the specifics
of site, perception, technology, and material. His academic interests include
computer programming, generative art, new aesthetics, and environmental sound
and noise. He has widely performed, exhibited, and lectured internationally and
has held residencies in miscellaneous research centers and institutions. He has an
MA by research in composition with digital media by the University of York and,
as of writing, he is a candidate PhD in Music, Sound, and Media Art at the De
Montfort University. He is in the board of the Contemporary Music Research
Center (KSYME-CMRC) and also the director of its class of Electronic Music and
Sound Synthesis. As of writing, he is a research fellow in the University of Turin.

I would like to thank Packt Publishing for offering me the amazing
opportunity to write this book, and in particular Shreerang
Deshpande, Joel Goveya, Poonam Jain, Kunal Anil Gaikwad, Iram
Malik, and Shruti Rawool for guiding me through the complexities
of such a task. I would also like to thank the reviewers of this title,
namely Josh Parmenter, João Martinho Moura, and Phil Thomson,
for their invaluable comments and suggestions. I would also like to
thank my parents, Anna and Georgios, as well as my sister, Danai,
for their long term understanding and support. Part of this book
was written in Milatos, North Crete, while being accommodated
by my partner's parents, Maria and Michalis, who deserve a special
mention for making me feel comfortable during my stay there. Last
but not least, I would like to express my profound gratitude towards
my partner, Phaedra Logariastaki, for her unconditional support and
for spending the whole of her summer vacations watching me sitting
in front of a laptop instead of being with her. Without the support of
all these people, this book would have been impossible to finish.

About the Reviewers

João Martinho Moura is a researcher and media artist born in Portugal. His interests
lie in digital art, intelligent interfaces, digital music, and computational aesthetics. He
was invited as a professor at the Master Program in Technology and Digital Arts at the
University of Minho, Portugal, teaching Programming for Digital Arts.

In 2013, he received the National Multimedia Award-Art & Culture from the APMP
Multimedia Association in Portugal.

He has presented his work and research in a variety of conferences related to arts
and technology, including:

•	 The International Festival for the Post-Digital Creation Culture OFFF (2008)
•	 World Congress on Communication and Arts (2010)
•	 SHiFT—Social and Human Ideas for Technology (2009)
•	 International Symposium on Computational Aesthetics in Graphics,

Visualization, and Imaging CAe (2008)
•	 ARTECH (2008)
•	 ARTECH (2010)
•	 Computer Interaction (2009)
•	 ZON Digital Games (2007)
•	 International Creative Arts Fair (2008)
•	 ZON Multimédia Premium (2008)
•	 Le Corps Numérique-entre Culturel Saint-Exupéry (2011)
•	 Semibreve Award (2012)
•	 TEI International Conference on Tangible, Embedded, and Embodied

Interaction (2011)
•	 Guimarães European Capital of Culture 2012

•	 Bodycontrolled Series LEAP—Lab for Electronic Arts and
Performance Berlin (2012)

•	 Future Places (2012)
•	 The Ars Electronica Animation Festival (2012)
•	 SLSA Conference-Society for Literature, Science, and the Arts (2013),

xCoAx—Computation Communication Aesthetics and X (2013)
His work has been presented in a variety of places in Portugal, Italy, USA, Brazil,
UK, France, Hong Kong, Belgium, Germany, Israel, Spain, and Austria.

He is a researcher at engageLab, a laboratory at the intersection of arts and
technology, established by two research centers at University of Minho, the
Centre for Communication and Society Studies and the Centre Algoritmi.

I would like to thank the engageLab laboratory, at University of
Minho, with a special mention to Pedro Branco and Nelson Zagalo.

Joshua Parmenter is a composer and performer of contemporary music with a
focus on interactive live electronics. His works have been performed throughout
America and Europe. Over the past decade, he has also been one of the developers
in the open-source SuperCollider project. He also contributed to the SuperCollider
Book available from MIT Press.

Phil Thomson is a Vancouver-based listener, composer, and writer/editor.
His works have been heard in concerts and broadcasts in Canada, US, and
abroad. His works for dance routines have been integrated with performances by
choreographers, such as Jennifer Clarke Arora, James Gnam, and Sara Coffin. His
writings have been published online by the Canadian Electroacoustic Community
and in print by the Cambridge University Press.

www.PacktPub.com

Support files, eBooks, discount offers and more
You might want to visit www.PacktPub.com for support files and downloads related
to your book.

Did you know that Packt offers eBook versions of every book published, with PDF
and ePub files available? You can upgrade to the eBook version at www.PacktPub.
com and as a print book customer, you are entitled to a discount on the eBook copy.
Get in touch with us at service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign
up for a range of free newsletters and receive exclusive discounts and offers on Packt
books and eBooks.

TM

http://PacktLib.PacktPub.com

Do you need instant solutions to your IT questions? PacktLib is Packt's online
digital book library. Here, you can access, read and search across Packt's entire
library of books.

Why Subscribe?
•	 Fully searchable across every book published by Packt
•	 Copy and paste, print and bookmark content
•	 On demand and accessible via web browser

Free Access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view nine entirely free books. Simply use your login credentials
for immediate access.

http://www.PacktPub.com
http://www.PacktPub.com
http://www.PacktPub.com
http://www.PacktPub.com
mailto:service@packtpub.com
http://www.PacktPub.com
http://PacktLib.PacktPub.com
http://www.packtpub.com/

Table of Contents
Preface	 1
Chapter 1: Scoping, Plotting, and Metering	 7

Plotting audio, numerical datasets, and functions	 7
Using plot and plot graph	 8
Using plotter	 10
Using SoundFileView	 12

Scoping signals	 13
Scoping waveforms	 14
Scoping spectra	 16

Metering levels	 17
Monitoring signals	 17
Monitoring numerical data	 19

Nonstandard and complex visualizers	 20
Nonstandard visualizers	 20
A complex scope	 21

Summary	 22
Chapter 2: Waveform Synthesis	 23

Waveform synthesis fundamentals	 24
Time domain representation	 24

Waveform species	 26
DC, amplitude, frequency, and phase	 27

Custom waveform generators	 29
Wavetable lookup synthesis	 29
Using envelopes as wavetables	 31
Custom aperiodic waveform generators	 32

Waveform transformations	 33
Waveshaping	 34

Unary operations	 36

Table of Contents

[ii]

Binary operations	 38
Bitwise operations	 39

Summary	 41
Chapter 3: Synthesizing Spectra	 43

Introducing the frequency domain	 43
Spectra	 44
Fast Fourier Transform in SuperCollider	 45

Creating and manipulating spectra	 46
Aggregating and enriching spectra	 46
Sculpting and freezing spectra	 48
Shifting, stretching, and scrambling spectra	 50
Using the pvcalc method	 52

Visualizing spectra	 53
Limitations of spectral scoping	 53
Optimizing spectra for scoping	 54

Summary	 56
Chapter 4: Vector Graphics	 57

Learning the vector graphics fundamentals	 58
Drawing primitive shapes and loading images	 59
Complex shapes and graphics state	 60
Introducing colors, transparency, and gradients	 61

Abstractions and models	 63
Objects and prototypes	 64
Factories	 65
Geometrical transformations, matrices, and trailing effects	 68

Complex structures	 71
Particle systems	 71
Fractals	 74

Summary	 79
Chapter 5: Animation	 81

Fundamentals of motion	 81
Motion species	 82
Using UserView	 82
Animating complex shapes and sprites	 84

Fundamental animation techniques	 85
Trailing effects	 85
Interaction and event-driven programming	 86
Particle systems	 88

Advanced concepts	 90
Animating fractals	 91

Table of Contents

[iii]

Adding dynamics to simulate physical forces	 94
Kinematics	 98

Summary	 101
Chapter 6: Data Acquisition and Mapping	 103

Data acquisition	 104
Dealing with local files	 104
Accessing data remotely	 107
Using OSC	 109
Using MIDI	 112
Using Serial Port	 113

Machine listening	 115
Tracking amplitude and loudness	 117
Tracking frequency	 118
Timbre analysis and feature detection	 119
Onset detection and rhythmical analysis	 120

Basic mappings	 121
Preparing and preprocessing data on the client side	 122
Preparing and preprocessing data on the server side	 124
Basic encodings and interpolation schemes	 126
Sharing and distributing data	 128

Summary	 130
Chapter 7: Advanced Visualizers	 131

Audio visualizers	 131
Trailing waveforms	 132
Spectrogram	 133

Music visualizers	 136
Rotating windmills	 137
Kinematic patterns	 138

Visualizing and sonifying data	 140
Particles and grains	 141
Fractalizer	 144

Summary	 148
Chapter 8: Intelligent Encodings and Automata	 149

Analyzing data	 150
Statistical analyses and metadata	 150
Probabilities and histograms	 152
Dealing with textual datasets	 153

Advanced mappings	 156
Complex and intelligent encodings	 156
Neural networks	 159

Table of Contents

[iv]

Automata	 162
Cellular automata	 163
Game of Life	 166

Summary	 169
Chapter 9: Design Patterns and Methodologies	 171

Blackboard	 172
Methodology	 172
Model-View-Controller	 174
Handling multiple files and environments	 176
Threads, semaphores, and guards	 179

The View	 182
Clients and interfaces	 182
Implementation	 184
Strategies and policies	 186

The Model	 188
Aggregates and wrappers	 188
Software agents	 190
Introducing software actors and finalizing the model	 192

The Controller	 193
Game of Life	 194
Finalizing the Controller	 197

Summary	 199
Index	 201

Preface
Welcome to the Mapping and Visualization with SuperCollider book. As of this
writing, SuperCollider is almost two decades old and has already proven itself
as a solid, state-of-the-art environment for all sorts of audio-oriented applications.
Albeit, SuperCollider is primarily known as a sound synthesis environment; it does
feature a powerful graphics engine and, to a certain extent, is an excellent choice
for prototyping and implementing visual and audiovisual applications. This may
come as a surprise to some, given that there does exist an abundance of specialized
environments and frameworks out there; many of them are also more featured
and optimized than SuperCollider will ever be. Nonetheless, and at least as far as
visualization is concerned, the latter constitutes a very rational choice, as it exhibits
several advantages over the former. Namely, it features one of the most powerful
sound synthesis engines available on the planet; it has a powerful interpreted,
dynamic, object-oriented, and quite easy-to-learn high-level programming language;
it has built-in features to facilitate algorithmic music composition, which can easily
integrate with computer graphics; it is easy to learn and use compared to other
specialized frameworks; and it is relatively fast and stable.

This book pinpoints mapping and visualization with SuperCollider. It elaborates both
fundamental and more advanced techniques and illustrates how SuperCollider can
offer solutions to a wide range of typical mapping/visualization scenarios,
varying from very rudimentary to highly complex ones. The explicit focus herein is
mapping and visualization, yet a wide range of prerequisites, or merely relevant to the
latter topics are discussed; these include sonification, generative
art, statistical analysis, communication protocols, automata, and neural networks.
These are all approached practically and from a hands-on perspective through
numerous examples. Notwithstanding, theoretical issues are also discussed
whenever appropriate, so that the reader develops a more in-depth understanding
of the various topics. Throughout this book, the importance of object modeling is
explicitly highlighted too, and software architecture itself is elaborated upon. In
general, these are very important aspects of programming and given the minimal, or
even nonexistent, presence of relevant resources regarding SuperCollider. This book
aspires to be interesting to all seasoned and causal SuperCollider users.

Preface

[2]

What this book covers
Chapter 1, Scoping, Plotting, and Metering, examines basic built-in scoping, plotting,
and the metering of waveforms, signals, and numerical datasets in Supercollider.
In this chapter, we will discuss how to visualize numerical datasets, signals, and
functions; how to scope waveforms and spectra in real time; how to monitor audio
levels and numerical data; and how to implement more complex and nonstandard
visualizers using various built-in GUI elements.

Chapter 2, Waveform Synthesis, elaborates various waveform synthesis techniques,
with emphasis on the visual, rather than acoustic, aspects of audio. In this chapter,
we will discuss waveform synthesis fundamentals and learn how to generate custom
and good-looking (in any subjective way) waveforms based on a series of techniques.

Chapter 3, Synthesizing Spectra, is similar in spirit to the Chapter 2, Waveform Synthesis,
yet it deals with spectra rather than with waveforms. In this chapter, we will focus
on the visual aspects of audio spectra and learn to synthesize custom and good-
looking (again in any subjective way) spectra using a variety of both time-domain
and frequency-domain techniques.

Chapter 4, Vector Graphics, deals with vector graphics and discusses both fundamental
theoretical concepts as well as how to create static drawings of arbitrary complexity
in SuperCollider using a wide range of techniques. Color, matrix operations, as
well as complex visual structures such as particle systems and fractals are discussed.
In this chapter, we will also discuss object modeling with Event and the factory
design pattern.

Chapter 5, Animation, elaborates on video animation. Therein, we will demonstrate
how to implement different kinds of motion, how to create trailing effects, as well
as how to animate complex visual structures and systems. We will also introduce
ourselves with more advanced techniques, such as emulating environmental forces
and real-life systems or designing articulated bodies using kinematics.

Chapter 6, Data Acquisition and Mapping, explains how arbitrary real-world numerical
data can be retrieved, accessed, processed, and used in SuperCollider, This chapter
elaborates on machine listening (that is, how to extract information out of audio
signals) and discusses basic mappings and encodings.

Chapter 7, Advanced Visualizers, elaborates on a series of advanced examples wherein
audio and data are visualized/sonified in various ways. The examples range from
trailing waveforms and spectrogram implementations to more imaginative ones
featuring kinematic structures, fractals, and particle systems.

Preface

[3]

Chapter 8, Intelligent Encodings and Automata, serves as an introduction to more
advanced topics such as statistical analysis, textual parsing, advanced encodings,
neural networks, and cellular automata. Therein we will also discuss a possible
implementation of the famous game of life automaton.

Chapter 9, Design Patterns and Methodologies, discusses software architecture
and explains how certain design patterns and methodologies can be used by
programmers and computer scientists to solve certain recurring problems.
Starting with the requirements for a quite complex generative project, we will
proceed step-by-step, designing and materializing it in an efficient and
conceptually understandable way.

What you need for this book
To use the code provided with this book, you need the latest version of the
SuperCollider programming environment, which may be downloaded from
http://supercollider.sourceforge.net/downloads/. As of this writing,
Version 3.6.5 is the official stable release, while 3.7 is still under development.
While some of the code heretofore is backward compatible with older versions of
the program, the reader is encouraged to use version 3.6.5 or newer. Bear in
mind that the GUI part of SuperCollider, on which this book relies a lot, has been
substantially changed over the last major updates and, thus, you need to have at
least Version 3.5 installed. Other than the SuperCollider programming environment,
several examples rely on the SC3-plugins library, which can be downloaded from
http://sourceforge.net/projects/sc3-plugins/. In some exceptional cases,
you will also have to install some Quark extensions or even third-party softwares;
these are all discussed in the relevant chapters. Yet, you should know how to use
the Quarks system. Finally, for those examples that depend on a working Internet
connection, you should make sure that your computer has access to it.

To make the best of this book, it is both expected and assumed that you are already
familiar with the fundamentals of sound synthesis and have some experience with
SuperCollider. In particular, you should be comfortable with variables, SynthDef/
Synths, functions, routines, object-oriented programming, writing classes, scheduling,
client/server architecture, and so on. Those readers who are not sure whether their
SuperCollider skills are sufficient are encouraged to study the tutorials found on
http://supercollider.sourceforge.net/learning/.

Preface

[4]

Who this book is for
This book is for intermediate and advanced SuperCollider users who are interested in
mapping and visualization for either scientific or artistic applications. Care has been
taken to ensure that the book will be of interest to artists as well as scientists and other
specialists, and even to those only indirectly interested in mapping/visualization. The
book also discusses a wide range of topics related, but not specific, to the latter, such
as automata, generative art, animation, artificial neural networks, and others, and
may, therefore, be of interest to anyone having interest in those fields. To some extent,
this book is also of interest to all SuperCollider users, including seasoned and new
ones because it addresses object modeling and software-architecture-specific topics.
Therefore, it provides the necessary background to all those interested in materializing
more complex projects of any nature. The primary audience of this book is expected
to be artists, scientists, and other specialists interested in mapping, visualization, and
generative audiovisual systems.

Conventions
In this book, you will find a number of styles of text that distinguish between
different kinds of information. Here are some examples of these styles, and an
explanation of their meaning.

Code words in text are shown as follows: "Whenever they are invoked, a
parent Window is created containing an instance of Plotter whose specifics
are configured accordingly."

A block of code is set as follows:

(// MyfancyStereoScope Example
Server.default.waitForBoot({ // wait for server to boot
 MyFancyStereoScope.new();
 {[Saw.ar(400), Saw.ar(402)]}.play(a)
})
)

Preface

[5]

New terms and important words are shown in bold. Words that you see on the
screen, in menus or dialog boxes for example, appear in the text like this: "In order
to make this code work, we also need to load the StandardFirmata code in our
Arduino, which we can find in the Examples | Firmata submenu of the Arduino
Integrating Development Environment (IDE)".

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or may have disliked. Reader feedback is important for us
to develop titles that you really get the most out of.

To send us general feedback, simply sendan e-mail to feedback@packtpub.com, and
mention the book title viathe subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide on www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Downloading the example code
You can download the example code files for all Packt books you have purchased
from your account at http://www.packtpub.com. If you purchased this book
elsewhere, you can visit http://www.packtpub.com/support and register to have
the files e-mailed directly to you.

Preface

[6]

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in the text or
the code—we would be grateful if you would report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
book. If you find any errata, please report them by visiting http://www.packtpub.
com/submit-errata, selecting your book, clicking on the erratasubmissionform link,
and entering the details of your errata. Once your errata are verified, your submission
will be accepted and the errata will be uploaded on our website, or added to any list of
existing errata, under the Errata section of that title. Any existing errata can be viewed
by selecting your title from http://www.packtpub.com/support.

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media.
At Packt, we take the protection of our copyright and licenses very seriously. If you
come across any illegal copies of our works, in any form, on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.comwith a link to the suspected
pirated material.

We appreciate your help in protecting our authors, and our ability to bring
you valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with
any aspect of the book, and we will do our best to address it.

Scoping, Plotting,
and Metering

Visualizing audio signals and numerical datasets can be very straightforward in
SuperCollider with the built-in scoping, plotting, and metering functionalities.
The corresponding GUI objects are simple to use, yet they are highly customizable
and extremely powerful. In this chapter we will introduce a series of fundamental
techniques, and learn how to design both basic as well as more advanced custom
visualizers. However, it should be noted that all the examples herein assume
normalized datasets and test signals, deferring the complexities of data mapping and
signal optimization to be discussed in depth in subsequent chapters.

The topics that will be covered in this chapter are as follows:

•	 Plotting audio, numerical datasets, and functions
•	 Scoping waveforms and spectra
•	 Metering signals and data
•	 Nonstandard and complex visualizers

Plotting audio, numerical datasets,
and functions
Before discussing how we can scope audio signals in real time, it is worth reviewing
the various ways in which we can create static graphs and charts out of arbitrary
numerical datasets or signals.

Scoping, Plotting, and Metering

[8]

Using plot and plot graph
SuperCollider provides us with a very handy plot method. We can use this method
in different situations to create graphs on the fly from instances of Function,
ArrayedCollection, Env, Buffer, SoundFile, WaveTable, and from a series of other
objects (also depending on what extensions we have installed). An example of this is
shown in the following code:

{SinOsc.ar(100)}.plot(0.1); // plot a 0.1 seconds of a
sinewave
[5,10,100, 50, 60].plot; // plot a numerical dataset
Env([0,1,0],[1,1],[-10,2]).plot; // plot an envelope
Signal[0,1,0.5,1,0].plot; // plot a signal
Wavetable.chebyFill(513,[1]).plot; // plot a wavetable

(// plot the contents of a sound file
Server.default.waitForBoot({ // wait for Server to boot
 Buffer.read(Server.default, Platform.resourceDir +/+
 "sounds/a11wlk01.wav").plot;
});
)

Downloading the example code
You can download the example code files for all Packt books you have
purchased from your account at http://www.packtpub.com. If you
purchased this book elsewhere, you can visit http://www.packtpub.
com/support and register to have the files e-mailed directly to you.

In all cases, the resulting graphs will be automatically normalized with respect to
the kind of data plotted so that each dimensions' display range is determined by the
minimum and maximum quantities it has to represent; that is, to say that the plot's
graph is content-dependent. Additionally, their meaning depends upon the receiver
(that is, the kind of object plotted) so that for instances of Array, Wavetable, or
Signal, the graph would represent the value per index; for UGen graphs, amplitude
per unit time; for instances of Env, value per unit time; and for instances of Buffer,
amplitude per frame. Since its behavior is different for different kinds of objects, the
plot is said to be polymorphic. We should always consider the implicit consequences
of these two properties. For example, the following two waveforms could be easily
mistaken as identical, even if they are not:

(// plot two sinusoids of different amplitude
{SinOsc.ar(100)}.plot(bounds:Rect(0,0,400,400));
{SinOsc.ar(100)*2}.plot(bounds:Rect(400,0,400,400));
)

Chapter 1

[9]

To compensate for such a phenomenon, we need to explicitly set the minima (minval)
and maxima (maxval) arguments. Interestingly enough, we can also plot abstract
functions as long as they are one-argument ones and return some arithmetic value.
We can do this with the plotGraph method, as follows:

{arg x; tan(x**2);}.plotGraph(100,-pi,pi); // graph out of a function

Here, the interpreter calculates the output of the given function for 100 different
values in the range of ± π and populates the graph with the results; the horizontal axis
representing node indexes and the vertical axis representing the function's output.

Buffer objects have a finite capacitance measured in frames;
each frame may hold exactly one sample, therefore, a frame is
the container of a sample.
Polymorphism in Computer Science refers to the ability
in programming to present the same interface for different
underlying forms.

Scoping, Plotting, and Metering

[10]

Using plotter
Both plot and plotGraph are convenient methods, which ostensibly are just
abstractions of a series of tasks. Whenever they are invoked, a parent Window is
created containing an instance of Plotter whose specifications are configured
accordingly. Explicitly creating and using Plotter allows sophisticated control over
the way our data is plotted. The following code exemplifies a number of features of
the Plotter object:

(// data visualization using custom plotters
// the parent window
var window = Window.new("Plotter Example", Rect(0,0,640,480)).front;

// the datasets to visualize
var datasetA = Array.fill(1000,{rrand(-1.0,1.0)});// random floats
var datasetB = [// a 2-dimensional array of random floats
 Array.fill(10,{rrand(-1.0,1.0)}),
 Array.fill(10,{rrand(-1.0,1.0)})
];

// the plotters
var plotterA = Plotter("PlotterA",Rect(5,5,630,235),window);
var plotterB = Plotter("PlotterB",Rect(5,240,630,235),window);

// setup and customize plotterA
plotterA.value_(datasetA); // load dataset
plotterA.setProperties(// customize appearance
 \plotColor, Color.red, // plot color
 \backgroundColor, Color.black, // background color
 \gridColorX, Color.white, // gridX color
 \gridColorY, Color.yellow) // gridY color
.editMode_(true) // allow editing with the cursor
.editFunc_({ // this function is evaluated whenever data is edited
 arg plotter,plotIndex,index,val,x,y;
 ("Value: " ++ val ++ " inserted at index: " ++ index ++
 ".").postln;
});

// setup and customize plotterB
plotterB.value_(datasetB); // load datasetB
plotterB.superpose_(true); // allow channels overlay
plotterB.setProperties(

