

OpenCV for Secret Agents

Use OpenCV in six secret projects to augment your
home, car, phone, eyesight, and any photo or drawing

Joseph Howse

BIRMINGHAM - MUMBAI

OpenCV for Secret Agents

Copyright © 2015 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the author, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: January 2015

Production reference: 1230115

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78328-737-6

www.packtpub.com

Cover image by Jeremy Segal (info@jsegalphoto.com)

www.packtpub.com

Credits

Author
Joseph Howse

Reviewers
Karan Kedar Balkar

Michael Beyeler

Demetris Gerogiannis

Kevin Hughes

Ganesh Iyer

Andrew Colin Kissa

Lihang Li

Ryohei Tanaka

Commissioning Editor
Sam Birch

Acquisition Editors
Sam Birch

Richard Brookes-Bland

Content Development Editor
Arwa Manasawala

Technical Editor
Aman Preet Singh

Copy Editor
Neha Vyas

Project Coordinator
Sageer Parkar

Proofreaders
Simran Bhogal

Ameesha Green

Paul Hindle

Clyde Jenkins

Indexer
Monica Ajmera Mehta

Graphics
Sheetal Aute
Abhinash Sahu

Production Coordinator
Arvindkumar Gupta

Cover Work
Arvindkumar Gupta

About the Author

Joseph Howse has four first-rate cats; yet, if his books sell well, he could build a
menagerie fit for a pharaoh.

OpenCV for Secret Agents is Joseph's third book, following OpenCV Computer Vision
with Python and Android Application Programming with OpenCV. When not writing
books or grooming cats, Joseph is working to grow the augmented reality industry
by providing software development and training services through his company,
Nummist Media (http://nummist.com).

http://nummist.com

Acknowledgments

Many people, near and far, have guided this book to completion.

My parents, Jan and Bob, have given me nine full lives or so it seems. My four
cats, Plasma Tigerlily Zoya, Sanibel Delphinium Andromeda, Lambda Catculus
Puddingcat, and Josephine Antoinette Puddingcat, have provided constant
supervision and contributed to testing the cat recognition software in Chapter 3,
Training a Smart Alarm to Recognize the Villain and His Cat.

My readers and listeners have taken time to provide valuable feedback and ask
questions about my previous books and presentations. Thanks to their loyalty and
dedication to discovery, our shared exploration of OpenCV goes on!

My clients at Market Beat, in El Salvador, have inspired several of the book's topics,
including detection, recognition, tracking, and the use of Raspberry Pi.

Thanks, Steven Puttemans, for the helpful discussion on Haar features. Thanks,
Tanya Suhodolska, for icons used in the application bundles.

My editors at Packt Publishing have once again given me all the benefit of their skill,
experience, and professionalism in the planning, polishing, and marketing of this
book. Writing one of Packt's "Secret Agent" books has been a uniquely fun project!
Thanks, Sam Birch, for suggesting Eulerian video magnification as the topic of
Chapter 6, Seeing a Heartbeat with a Motion Amplifying Camera.

My technical reviewers have once again saved me from sundry errors and omissions.
Read their biographies here! They are fine members of the OpenCV community.

Sam Howse, Bunny Moir, and dear old cats—you are remembered for the love,
laughter, learning, and long journeys home.

About the Reviewers

Karan Kedar Balkar has been working as an independent Android application
developer since the past 4 years. Born and brought up in Mumbai, he holds a
bachelor's degree in computer engineering. He has written over 50 programming
tutorials on his personal blog (http://karanbalkar.com) that covers popular
technologies and frameworks.

At present, he is working as a software engineer. He has been trained on various
technologies, including Java, Oracle, and .NET. Apart from being passionate about
technology, he loves to write poems and travel to different places. He likes listening
to music and enjoys playing the guitar.

First, I would like to thank my parents for their constant support and
encouragement. I would also like to thank my friends, Srivatsan Iyer,
Ajit Pillai, and Prasaanth Neelakandan, for always inspiring and
motivating me.

I would like to express my deepest gratitude to Packt Publishing for
giving me a chance to be a part of the reviewing process.

Michael Beyeler is a PhD student in the department of computer science at the
University of California, Irvine, where he is working on large-scale cortical models
of biological vision, motion, learning, and memory, as well as their implementation
on GPGPUs and their applications for cognitive robotics. He received a bachelor's
of science degree in electrical engineering and information technology in 2009
as well as a master's of science degree in biomedical engineering in 2011 from
ETH Zurich, Switzerland.

http://karanbalkar.com

Demetris Gerogiannis received his bachelor's of science, master's of science, and
PhD degrees from the department of Computer Science & Engineering, University
of Ioannina, Greece in 2004, 2007, and 2014, respectively. He is an active researcher
of computer vision, and his research interests include image segmentation and
registration, point set registration, feature extraction, pattern recognition, and
autonomous navigation. His work has been presented in international conferences,
and it has been published in international journals. He is an IEEE student member,
and from October 2012 till June 2013, he was the interim chair at the IEEE student
branch of the University of Ioannina. Since his early years in the university, he
was interested in entrepreneurship. He was involved in several entrepreneurial
technological ventures, and he has participated in several international business
competitions. The most important one was the participation at the Startupbootcamp
for NFC & Contactless, communication selection days, in Amsterdam in September
2013. His start-up was selected among 250 plus international start-ups that had
applied for this accelerator project. He is also involved in the development of his
local region start-up ecosystem. To that end, he has cofounded in 2014 a nonprofit
team (StartupLake) with a view to provide mentorship to young ambitious people
who want to have their own start-ups.

Ryohei Tanaka is a software engineer at Yahoo! Japan Corporation. His focus is
now on machine learning, information extraction, and distributed computing. He has
sound knowledge of image processing on web browser (HTML5/JavaScript). More
details on his programming skills, interests, and experience about computer vision
can be found at http://rest-term.com.

Congrats to the author and all those who worked on this book, and
thanks to the editors and publishers who gave me a chance to work
on the publication of this book.

http://rest-term.com

www.PacktPub.com

Support files, eBooks, discount offers, and more
For support files and downloads related to your book, please visit www.PacktPub.com.

Did you know that Packt offers eBook versions of every book published, with PDF
and ePub files available? You can upgrade to the eBook version at www.PacktPub.com
and as a print book customer, you are entitled to a discount on the eBook copy. Get in
touch with us at service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign
up for a range of free newsletters and receive exclusive discounts and offers on Packt
books and eBooks.

TM

http://PacktLib.PacktPub.com

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital
book library. Here, you can search, access, and read Packt's entire library of books.

Why subscribe?
• Fully searchable across every book published by Packt
• Copy and paste, print, and bookmark content
• On demand and accessible via a web browser

Free access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view 9 entirely free books. Simply use your login credentials for
immediate access.

www.PacktPub.com
www.PacktPub.com
www.PacktPub.com
http://PacktLib.PacktPub.com
www.PacktPub.com

Table of Contents
Preface 1
Chapter 1: Preparing for the Mission 7

Setting up a development machine 8
Windows 10

OpenCV on Windows with binary installers 12
OpenCV on Windows with CMake and compilers 12

Mac 15
Mac with MacPorts 16
Mac with Homebrew 18

Debian Wheezy and its derivatives, including Raspbian,
Ubuntu, and Linux Mint 20
Fedora and its derivatives, including RHEL and CentOS 22
openSUSE and its derivatives 22
Tegra Android Development Pack 23

Building OpenCV Android sample projects with Eclipse 25
Unity 34

Setting up Raspberry Pi 34
Setting up the Raspberry Pi Camera Module 39

Finding OpenCV documentation, help, and updates 40
Alternatives to Raspberry Pi 41
Summary 42

Chapter 2: Searching for Luxury Accommodations Worldwide 43
Planning the Luxocator app 44
Creating, comparing, and storing histograms 45
Training the classifier with reference images 52
Acquiring images from the Web 53
Acquiring images from Bing image search 55
Preparing images and resources for the app 60

Table of Contents

[ii]

Integrating everything into the GUI 63
Building Luxocator for distribution 71
Summary 74

Chapter 3: Training a Smart Alarm to Recognize the
Villain and His Cat 75

Understanding machine learning in general 77
Planning the Interactive Recognizer app 78
Understanding Haar cascades and LBPH 80
Implementing the Interactive Recognizer app 84
Planning the cat detection model 98
Implementing the training script for the cat detection model 100
Planning the Angora Blue app 114
Implementing the Angora Blue app 115
Building Angora Blue for distribution 122
Further fun with finding felines 122
Summary 122

Chapter 4: Controlling a Phone App with Your Suave Gestures 123
Planning the Goldgesture app 124
Understanding optical flow 126
Setting up the Eclipse Workspace 129
Getting a cascade file and audio files 138
Specifying the app's requirements 138
Laying out a camera preview as the main view 139
Tracking back and forth gestures 140
Playing audio clips as questions and answers 143
Capturing images and tracking faces in an activity 147
Summary 164

Chapter 5: Equipping Your Car with a Rearview
Camera and Hazard Detection 165

Planning The Living Headlights app 167
Detecting lights as blobs 169
Estimating distances (a cheap approach) 172
Implementing The Living Headlights app 175
Testing The Living Headlights app at home 189
Testing The Living Headlights app in a car 193
Summary 199

Table of Contents

[iii]

Chapter 6: Seeing a Heartbeat with a Motion
Amplifying Camera 201

Planning the Lazy Eyes app 203
Understanding what Eulerian video magnification can do 205
Extracting repeating signals from video using the
Fast Fourier Transform (FFT) 206

Choosing and setting up an FFT library 207
Compositing two images using image pyramids 210
Implementing the Lazy Eyes app 211
Configuring and testing the app for various motions 220
Seeing things in another light 228
Summary 229

Chapter 7: Creating a Physics Simulation Based on a
Pen and Paper Sketch 231

Planning the Rollingball app 233
Detecting circles and lines 236
Setting up OpenCV for Unity 239
Configuring and building the Unity project 242
Creating the Rollingball scene in Unity 244
Creating Unity assets and adding them to the scene 247

Writing shaders and creating materials 247
Creating physics materials 250
Creating prefabs 252
Writing our first Unity script 256
Writing the main Rollingball script 258

Tidying up and testing 278
Summary 279

Index 281

Preface
Computer vision systems are deployed in the Arctic Ocean to spot icebergs at night.
They are flown over the Amazon rainforest to create aerial maps of fires, blights,
and illegal logging. They are set up in ports and airports worldwide to scan for
suspects and contraband. They are sent to the depths of the Marianas Trench to guide
autonomous submarines. They are used in operating rooms to help surgeons visualize
the planned procedure and the patient's current condition. They are launched from
battlefields as the steering systems of heat-seeking, anti-aircraft rockets.

We might seldom—or never—visit these places. However, stories often encourage
us to imagine extreme environments and a person's dependence on tools in these
unforgiving conditions. Perhaps fittingly, one of contemporary fiction's most popular
characters is an almost ordinary man (handsome but not too handsome, clever but
not too clever) who wears a suit, works for the British Government, always chooses
the same drink, the same kind of woman, the same tone for delivering a pun, and is
sent to do dangerous jobs with a peculiar collection of gadgets.

Bond. James Bond.

This book teaches seriously useful technologies and techniques with a healthy dose
of inspiration from spy fiction. The Bond franchise is rich in ideas about detection,
disguise, smart devices, image capture, and sometimes even computer vision
specifically. With imagination, plus dedication of learning new skills, we can
become the next generation of gadget makers to rival Bond's engineer, Q!

Preface

[2]

What this book covers
Chapter 1, Preparing for the Mission helps us to install OpenCV, a Python development
environment, and an Android development environment on Windows, Mac, or
Linux systems. In this chapter, we also install a Unity development environment on
Windows or Mac.

Chapter 2, Searching for Luxury Accommodations Worldwide helps us to classify images
of real estate based on color schemes. Are we outside a luxury dwelling or inside a
Stalinist apartment? In this chapter, we use the classifier in a search engine that labels
its image results.

Chapter 3, Training a Smart Alarm to Recognize the Villain and His Cat helps us to detect
and recognize human faces and cat faces as a means of controlling an alarm. Has
Ernst Stavro Blofeld returned with his blue-eyed Angora cat?

Chapter 4, Controlling a Phone App with Your Suave Gestures helps us to detect motion
and recognize gestures as a means of controlling a guessing game on a smartphone.
The phone knows why Bond is nodding even if no one else does.

Chapter 5, Equipping Your Car with a Rearview Camera and Hazard Detection helps us
to detect car headlights, classify their color, estimate distances to them, and provide
feedback to a driver. Is that car tailing us?

Chapter 6, Seeing a Heartbeat with a Motion Amplifying Camera helps us to amplify
motion in live video, in real time, so that a person's heartbeat and breathing
become clearly visible. See the passion!

Chapter 7, Creating a Physics Simulation Based on a Pen and Paper Sketch helps us
to draw a ball-in-a-maze puzzle on paper and see it come to life as a physics
simulation on a smartphone. Physics and timing are everything!

What you need for this book
This book supports several operating systems as development environments, including
Windows XP or a later version, Mac OS X 10.6 or a later version, Debian Wheezy,
Raspbian, Ubuntu 12.04 or a later version, Linux Mint 13 or a later version, Fedora 18 or
a later version, CentOS 7 or a later version, and openSUSE 13.1 or a later version.

The book contains six projects with the following requirements:

• Four of these six projects run on Windows, Mac, or Linux and require
a webcam. Optionally, these projects can use Raspberry Pi or another
single-board computer that runs Linux.

Preface

[3]

• One project runs on Android 2.2 or a later version and requires a
front-facing camera (which most Android devices have).

• One project runs on Android 2.3 or a later version and requires a
rear-facing camera and gravity sensor (which most Android devices have).
For development, it requires a Windows or Mac machine and approximately
$75 worth of game development software.

Setup instructions for all required libraries and tools are covered in the book.
Optional setup instructions for Raspberry Pi are also included.

Who this book is for
This book is for tinkerers (and spies) who want to make computer vision a practical
and fun part of their lifestyle. You should already be comfortable with 2D graphic
concepts, object-oriented languages, GUIs, networking, and command line. This
book does not assume experience with any specific libraries or platforms. Detailed
instructions cover everything from setting up the development environment to
deploying finished apps.

A desire to learn multiple technologies and techniques and to integrate them is
highly beneficial! This book will help you branch out to understand several types
of systems and application domains where computer vision is relevant, and it will
help you to apply several approaches to detect, recognize, track, and augment faces,
objects, and motions.

Conventions
In this book, you will find a number of text styles that distinguish between different
kinds of information. Here are some examples of these styles and an explanation of
their meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows: "You
can edit /etc/modules to check whether bcm2835-v4l2 is already listed there."

A block of code is set as follows:

set PYINSTALLER=C:\PyInstaller\pyinstaller.py

REM Remove any previous build of the app.
rmdir build /s /q

Preface

[4]

rmdir dist /s /q

REM Train the classifier.
python HistogramClassifier.py

When we wish to draw your attention to a particular part of a code block, the
relevant lines or items are set in bold:

<activity
 android:name="com.nummist.goldgesture.CameraActivity"
 android:label="@string/app_name"
 android:screenOrientation="landscape"
 android:theme="@android:style/Theme.NoTitleBar.Fullscreen">
 <intent-filter>
 <action android:name="android.intent.action.MAIN" />
 <category android:name=
 "android.intent.category.LAUNCHER" />
 </intent-filter>
</activity>

Any command-line input or output is written as follows:

$ echo "bcm2835-v4l2" | sudo tee -a /etc/modules

New terms and important words are shown in bold. Words that you see on the
screen, for example, in menus or dialog boxes, appear in the text like this: "Click
on the link for Bing Search API (not any variant such as Bing Search API – Web
Results Only)."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or disliked. Reader feedback is important for us as it
helps us develop titles that you will really get the most out of.

To send us general feedback, simply e-mail feedback@packtpub.com, and mention
the book's title in the subject of your message.

Preface

[5]

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide at www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Downloading the example code
You can download the example code files from your account at http://www.
packtpub.com for all the Packt Publishing books you have purchased. If you purchased
this book elsewhere, you can visit http://www.packtpub.com/support and register
to have the files e-mailed directly to you. The latest and updated example code for this
book is also available from the author's website at http://nummist.com/opencv/.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in the text or
the code—we would be grateful if you could report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
book. If you find any errata, please report them by visiting http://www.packtpub.
com/submit-errata, selecting your book, clicking on the ErrataSubmissionForm
link, and entering the details of your errata. Once your errata are verified, your
submission will be accepted and the errata will be uploaded to our website or added
to any list of existing errata under the Errata section of that title.

To view the previously submitted errata, go to https://www.packtpub.com/books/
content/support and enter the name of the book in the search field. The required
information will appear under the Errata section.

Piracy
Piracy of copyrighted material on the Internet is an ongoing problem across all
media. At Packt, we take the protection of our copyright and licenses very seriously.
If you come across any illegal copies of our works in any form on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

www.packtpub.com/authors
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com/support
http://nummist.com/opencv/
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support

Preface

[6]

We appreciate your help in protecting our authors and our ability to bring you
valuable content.

Questions
If you have a problem with any aspect of this book, you can contact us at
questions@packtpub.com, and we will do our best to address the problem.
You can also contact the author directly at josephhowse@nummist.com or you
can check his website, http://nummist.com/opencv/, for answers to common
questions about this book.

josephhowse@nummist.com
http://nummist.com/opencv/

Preparing for the Mission
Q: I've been saying for years, sir, that our special equipment is obsolete. And now,
computer analysis reveals an entirely new approach: miniaturization.

On Her Majesty's Secret Service (1969)

James Bond is not a pedestrian. He cruises in a submarine car, he straps on a rocket
belt, and oh, how he skis, how he skis! He always has the latest stuff and he is never
afraid to put a dent in it, much to the dismay of Q, the engineer.

As software developers in the 2010s, we are witnessing an explosion in the adoption
of new platforms. Under one family's roof, we might find a mix of Windows, Mac,
iOS, and Android devices. Mom and Dad's workplaces provide different platforms.
The kids have three game consoles or five if you count the mobile versions. The
toddler has a LeapFrog learning tablet. Smart glasses are becoming more affordable.

We must not be afraid to try new platforms and consider new ways to combine
them. After all, most users do.

This book embraces multi-platform development. It presents weird and wonderful
applications that we can deploy in unexpected places. It uses several of the computer's
senses, but especially uses computer vision to breathe new life into the humdrum,
heterogeneous clutter of devices that surround us.

Before Agent 007 runs amok with the gadgets, he is obligated to listen to Q's briefing.
This chapter performs Q's role. This is the setup chapter.

By the end of this chapter, you will obtain all the tools to develop OpenCV
applications in C++ or Python for Windows, Mac, or Linux, and in C++ or Java
for Android. You will also be the proud new user of a Raspberry Pi single-board
computer (this additional hardware is optional). You will even know a bit about
Unity, a game engine into which we can integrate OpenCV.

Preparing for the Mission

[8]

If you find yourself a bit daunted by the extent of this setup chapter, be reassured that
not all of the tools are required and no single project uses all of them in combination.
Although Q and I live for the big event of setting up multiple technologies at once, you
could just skim this chapter and refer back to it later when the tools become useful, one
by one, in our projects.

Where basic OpenCV setup and reference materials are concerned,
this chapter includes excerpts from my introductory books, OpenCV
Computer Vision with Python and Android Application Programming with
OpenCV, published by Packt Publishing. All contents are retested,
updated, and expanded to cover newer OpenCV versions and
additional operating systems. Also, there are all new sections on the
optional hardware and game engine used in this book.

Setting up a development machine
We can develop our OpenCV applications on a desktop, a notebook, or even the
humble Raspberry Pi (covered later in the Setting up a Raspberry Pi section). Most of
our apps have a memory footprint of less than 128 MB, so they can still run (albeit
slowly) on old or low-powered machines. To save time, develop on your fastest
machine first and test on slower machines later.

This book assumes that you have one of the following operating systems on your
development machine:

• Windows XP or a later version
• Mac OS 10.6 or a later version
• Debian Wheezy or a derivative such as the following:

 ° Raspbian
 ° Ubuntu 12.04 or a later version
 ° Linux Mint 13 or a later version

• Fedora 18 or a later version, or a derivative such as the following:
 ° Red Hat Enterprise Linux (RHEL) 7 or a later version
 ° CentOS 7 or a later version

• openSUSE 13.1 or a later version, or a derivative

Other Unix-like systems can also work but they are not covered in this book.

Chapter 1

[9]

You should have a USB webcam and any necessary drivers. Most webcams come
with instructions for installing drivers on Windows and Mac. Linux distributions
typically include the USB Video Class (UVC) Linux driver, which supports many
webcams, listed at http://www.ideasonboard.org/uvc/#devices.

We are going to set up the following components:

• A C++ development environment. On Windows, we will use Visual
Studio 2010 or a later version. Alternatively, Windows users can follow
Kevin Hughes' helpful tutorial on setting up OpenCV with MinGW and
the Code::Blocks IDE at http://kevinhughes.ca/tutorials/opencv-
install-on-windows-with-codeblocks-and-mingw/. On Mac, we will
use Xcode. On Linux, we will use GCC, which comes as standard.

• On Mac, we will use a third-party package manager to help us install
libraries and their dependencies. We will use either MacPorts or Homebrew.

• A Python 2.7 development environment. At the time of writing, the best
option is to use version 2.7 as it is the most recent Python version supported by
OpenCV's stable branch. (Python 2.6 is also supported by the stable branch.)

• Popular libraries such as NumPy (for numeric functions), SciPy (for numeric
and scientific functions), Requests (for web requests), and wxPython (for
cross-platform GUIs).

• PyInstaller, a cross-platform tool used for bundling Python scripts, libraries,
and data as redistributable apps, such that users machines do not require
installations of Python, OpenCV, and other libraries. For this book's
purposes, building redistributables of Python projects is an optional topic.
We will cover the basics in Chapter 2, Searching for Luxury Accommodations
Worldwide, but you might need to do your own testing and debugging
as PyInstaller (like other Python bundling tools) does not show entirely
consistent behavior across operating systems, Python versions, and library
versions. It is not well supported on Raspberry Pi or other ARM systems.

• A build of OpenCV with C++ and Python support plus optimizations for
certain desktop hardware. At the time of writing, OpenCV 2.4.x is the stable
branch and our instructions are tailored for this branch.

• Another build of OpenCV with C++ and Java support plus optimizations
for certain Android hardware. Specifically, we will use the OpenCV build
that comes with Tegra Android Development Pack (TADP). At the time of
writing, TADP 3.0r4 is the most recent release.

• An Android development environment, including Eclipse, ADT, Android
SDK, and Android NDK. TADP includes these too.

• On Windows or Mac, a 3D game engine called Unity.

http://www.ideasonboard.org/uvc/#devices
http://kevinhughes.ca/tutorials/opencv-install-on-windows-with-codeblocks-and-mingw/
http://kevinhughes.ca/tutorials/opencv-install-on-windows-with-codeblocks-and-mingw/

Preparing for the Mission

[10]

Eclipse has a big memory footprint. Even if you want to
use Raspberry Pi for developing desktop and Pi apps, use
something with more RAM for developing Android apps.

Let's break this setup down into three sets of platform-dependent steps, plus a set
of platform-independent steps for TADP, and another set of platform-independent
steps for Unity.

Windows
On Windows, we have the option of setting up a 32-bit development environment
(to make apps that are compatible with both 32-bit and 64-bit Windows) or a 64-bit
development environment (to make optimized apps that are compatible with 64-bit
Windows only). Recent versions of OpenCV are available in 32-bit and 64-bit versions.

We also have a choice of either using binary installers or compiling OpenCV from
source. For our Windows apps in this book, the binary installers provide everything
we need. However, we will also discuss the option of compiling from source because
it enables us to configure additional features, such as support for Kinect and Asus
depth cameras, which might be relevant to your future work or to our projects in
other books.

For an OpenCV project that uses a depth camera, refer to
my book OpenCV Computer Vision with Python, published
by Packt Publishing.

Regardless of our approach to obtain OpenCV, we need a general-purpose
C++ development environment and a general-purpose Python 2.7 development
environment. We will set up these environments using binary installers.

As our C++ development environment, we will use Visual Studio 2010 or a later
version. Use any installation media you might have purchased, or go to the
downloads page at http://www.visualstudio.com/en-us/downloads/download-
visual-studio-vs.aspx. Download and run the installer for one of the following:

• Visual C++ 2010 Express, which is free
• Visual Studio Express 2013 for Windows desktop, which is free
• Any of the paid versions, which have 90-day free trials

If the installer lists optional C++ components, we should opt to install them all. After
the installer runs till completion, reboot.

http://www.visualstudio.com/en-us/downloads/download-visual-studio-vs.aspx
http://www.visualstudio.com/en-us/downloads/download-visual-studio-vs.aspx

Chapter 1

[11]

If we plan to compile OpenCV from source (as described in the
OpenCV on Windows with CMake and Compilers section), I recommend
you use Visual Studio 2010 (and not any later version). At the time
of writing, OpenCV and some of its optional dependencies do not
compile easily with Visual Studio 2012 or Visual Studio 2013.

Installers for Python 2.7 are available at http://www.python.org/getit/.
Download and run the latest revision of Python 2.7 in either the 32-bit variant
or the 64-bit variant.

To make Python scripts run using our new Python 2.7 installation by default, let's
edit the system's Path variable and append ;C:\Python2.7 (assuming Python 2.7
is installed in the default location). Remove any previous Python paths, such as
;C:\Python2.6. Log out and log back in (or reboot).

Let's assume that we also want to use binary installers for NumPy, SciPy, and
wxPython. Download and run the installers for the latest stable library versions
that target Python 2.7. We can find these installers at the following locations:

1. NumPy: The official installers are 32-bit only and are located at
http://sourceforge.net/projects/numpy/files/NumPy/.
Unofficial 64-bit installers are available at http://www.lfd.uci.
edu/~gohlke/pythonlibs/#numpy.

2. SciPy: The official installers are 32-bit only and are located at
http://sourceforge.net/projects/scipy/files/scipy/.
Unofficial 64-bit installers are available at http://www.lfd.uci.
edu/~gohlke/pythonlibs/#scipy.

3. wxPython: This can be downloaded from http://www.wxpython.org/
download.php. The apps in this book are successfully tested with wxPython
2.8, 2.9, and 3.0. If in doubt, choose version 3.0. However, if you choose
version 2.8, get its Unicode variant.

Requests does not have a binary installer but we can download the latest source
bundle from https://github.com/kennethreitz/requests/archive/master.
zip. Unzip it to any destination, which we will refer to as <unzip_destination>.
Open Command Prompt and run the following commands:

> cd <unzip_destination>

> python setup.py install

http://www.python.org/getit/
http://sourceforge.net/projects/numpy/files/NumPy/
http://www.lfd.uci.edu/~gohlke/pythonlibs/#numpy
http://www.lfd.uci.edu/~gohlke/pythonlibs/#numpy
http://sourceforge.net/projects/scipy/files/scipy/
http://www.lfd.uci.edu/~gohlke/pythonlibs/#scipy
http://www.lfd.uci.edu/~gohlke/pythonlibs/#scipy
http://www.wxpython.org/download.php
http://www.wxpython.org/download.php
https://github.com/kennethreitz/requests/archive/master.zip
https://github.com/kennethreitz/requests/archive/master.zip

Preparing for the Mission

[12]

Next, we can put PyInstaller in any convenient location, since it is treated as a set of
tools rather than a library. Let's download the latest release version from http://
www.pyinstaller.org/ and unzip it to C:\PyInstaller or any another location of
your choice.

Now, we are ready to set up OpenCV and, optionally, other computer vision libraries.

OpenCV on Windows with binary installers
Download OpenCV as a self-extracting ZIP file from http://opencv.org/
downloads.html. Choose the latest version, which should contain both 32-bit and
64-bit binaries. Double-click on the self-extracting ZIP file and, when prompted,
enter any destination folder, which we will refer to as <unzip_destination>. A
subfolder named <opencv_unzip_destination>\opencv is created.

Copy <opencv_unzip_destination>\opencv\build\python\2.7\x86\cv2.pyd
(32-bit) or <opencv_unzip_destination>\opencv\build\python\2.7\x64\cv2.
pyd (64-bit) to C:\Python2.7\Lib\site-packages (assuming Python 2.7 is installed
to the default location). Now, Python 2.7 can find OpenCV.

You might want to look at the code samples in <unzip_destination>/opencv/
samples.

At this point, we have everything we need to develop OpenCV applications for
Windows. To also develop the same for Android, we need to set up TADP as
described in the section Tegra Android Development Pack, later in this chapter.

OpenCV on Windows with CMake and compilers
OpenCV uses a set of build tools called CMake, which we must install. Optionally,
we can install several third-party libraries in order to enable extra features in
OpenCV. These libraries include OpenNI (for depth camera support), SensorKinect
(to add Kinect support to OpenNI), and TBB (for Intel multiprocessing). After
installing third-party libraries, we will configure and build OpenCV. Last, we will
ensure that our C++ and Python environments can find our build of OpenCV.

The binary installers for OpenCV do provide TBB support but
do not provide OpenNI or SensorKinect support. Thus, for depth
camera support on Windows, it is necessary to compile OpenCV
from source. Although we do not use depth cameras in this book,
we have used them in OpenCV Computer Vision with Python and you
might want to use them in your future projects.

http://www.pyinstaller.org/
http://www.pyinstaller.org/
http://opencv.org/downloads.html
http://opencv.org/downloads.html

Chapter 1

[13]

Here are the detailed steps to build OpenCV on Windows:

1. Download and install the latest stable version of CMake from http://www.
cmake.org/cmake/resources/software.html. Even if we are using 64-bit
libraries and compilers, 32-bit CMake is compatible. When the installer asks
about modifying PATH, select either Add CMake to the system PATH for all
users or Add CMake to the system PATH for current user.

2. Optionally, download and install the development version of OpenNI 1.5.4.0
(not any other version) from http://www.nummist.com/opencv/openni-
win32-1.5.4.0-dev.zip (32 bit) or http://www.nummist.com/opencv/
openni-win64-1.5.4.0-dev.zip (64 bit). Other versions besides OpenNI's
1.5.4.0 development version are not recommended. At least some of them do
not work with OpenCV, in my experience.

3. Optionally, download and install SensorKinect 0.93 (not any other version)
from https://github.com/avin2/SensorKinect/blob/unstable/
Bin/SensorKinect093-Bin-Win32-v5.1.2.1.msi?raw=true (32-bit)
or https://github.com/avin2/SensorKinect/blob/unstable/Bin/
SensorKinect093-Bin-Win64-v5.1.2.1.msi?raw=true (64-bit). Other
versions besides SensorKinect 0.93 are not recommended. In my experience,
a few of them do not work with OpenCV.

4. Download OpenCV as a self-extracting ZIP file from http://opencv.org/
downloads.html. Choose the latest version, which should contain both
32-bit and 64-bit binaries. Double-click the self-extracting ZIP file and, when
prompted, enter any destination folder, which we will refer to as <opencv_
unzip_destination>. A subfolder named <opencv_unzip_destination>\
opencv is created.

5. Download the latest stable version of TBB from https://www.
threadingbuildingblocks.org/download. It includes both 32-bit
and 64-bit binaries. Unzip it to any destination, which we will refer
to as <tbb_unzip_destination>.

6. Open Command Prompt. Create a folder to store our build:
> mkdir <build_folder>

Change the directory to the newly created build folder:
> cd <build_folder>

7. Having set up our dependencies, we can now configure OpenCV's build
system. To understand all the configuration options, we could read the code
in <opencv_unzip_destination>\opencv\sources\CMakeLists.txt.
However, as an example, we will just use the options for a release build that
includes Python bindings, depth camera support via OpenNI and SensorKinect,
and multiprocessing via TBB.

http://www.cmake.org/cmake/resources/software.html
http://www.cmake.org/cmake/resources/software.html
http://www.nummist.com/opencv/openni-win32-1.5.4.0-dev.zip
http://www.nummist.com/opencv/openni-win32-1.5.4.0-dev.zip
http://www.nummist.com/opencv/openni-win64-1.5.4.0-dev.zip
http://www.nummist.com/opencv/openni-win64-1.5.4.0-dev.zip
https://github.com/avin2/SensorKinect/blob/unstable/Bin/SensorKinect093-Bin-Win32-v5.1.2.1.msi?raw=true
https://github.com/avin2/SensorKinect/blob/unstable/Bin/SensorKinect093-Bin-Win32-v5.1.2.1.msi?raw=true
https://github.com/avin2/SensorKinect/blob/unstable/Bin/SensorKinect093-Bin-Win64-v5.1.2.1.msi?raw=true
https://github.com/avin2/SensorKinect/blob/unstable/Bin/SensorKinect093-Bin-Win64-v5.1.2.1.msi?raw=true
http://opencv.org/downloads.html
http://opencv.org/downloads.html
https://www.threadingbuildingblocks.org/download
https://www.threadingbuildingblocks.org/download

Preparing for the Mission

[14]

To create a 32-bit project for Visual Studio 2010, run the following command
(but replace the angle brackets and their contents with the actual paths):

> cmake -D CMAKE_BUILD_TYPE=RELEASE -D WITH_OPENNI=ON -D OPENNI_LIB_
DIR="<openni_install_destination>\Lib" -D OPENNI_INCLUDE_DIR="<openni_
install_destination>\Include" -D OPENNI_PRIME_SENSOR_MODULE_BIN_
DIR="<sensorkinect_install_destination>\Bin" -D WITH_TBB=ON -D TBB_LIB_
DIR="<tbb_unzip_destination>\lib\ia32\vc10" -D TBB_INCLUDE_DIR="<tbb_
unzip_destination>\include" -G "Visual Studio 10" "<opencv_unzip_
destination>\opencv\sources"

Alternatively, to create a 64-bit project for Visual Studio 2010, run the following
command (but replace the angle brackets and their contents with the actual paths):

> cmake -D CMAKE_BUILD_TYPE=RELEASE -D WITH_OPENNI=ON -D OPENNI_LIB_
DIR="<openni_install_destination>\Lib" -D OPENNI_INCLUDE_DIR="<openni_
install_destination>\Include" -D OPENNI_PRIME_SENSOR_MODULE_BIN_
DIR="<sensorkinect_install_destination>\Bin" -D WITH_TBB=ON -D TBB_LIB_
DIR="<tbb_unzip_destination>\lib\intel64\vc10" -D TBB_INCLUDE_DIR="<tbb_
unzip_destination>\include" -G "Visual Studio 10 Win64" "<opencv_unzip_
destination>\opencv\sources"

If OpenNI is not installed, omit -D WITH_OPENNI=ON -D OPENNI_LIB_
DIR="<openni_install_destination>\Lib" -D OPENNI_INCLUDE_
DIR="<openni_install_destination>\Include" -D OPENNI_PRIME_SENSOR_
MODULE_BIN_DIR="<sensorkinect_install_destination>\Bin". (In this case,
depth cameras will not be supported.)

If OpenNI is installed but SensorKinect is not, omit -D OPENNI_PRIME_SENSOR_
MODULE_BIN_DIR="<sensorkinect_install_destination>\Bin". (In this case,
Kinect will not be supported.)

If TBB is not installed, omit -D WITH_TBB=ON -D TBB_LIB_DIR="<tbb_unzip_
destination>\lib\ia32\vc10" -D TBB_INCLUDE_DIR="<tbb_unzip_
destination>\include" (32-bit) or -D WITH_TBB=ON -D TBB_LIB_DIR="<tbb_
unzip_destination>\lib\intel64\vc10" -D TBB_INCLUDE_DIR="<tbb_unzip_
destination>\include" (64-bit). (In this case, Intel multiprocessing will not
be supported.)

CMake will produce a report on the dependencies that it did or did not find. OpenCV
has many optional dependencies, so do not panic (yet) about missing dependencies.
However, if the build does not finish successfully, try installing missing dependencies
(many are available as prebuilt binaries). Then, repeat this step.

1. Now that our build system is configured, we can compile OpenCV. Open
<build_folder>\OpenCV.sln in Visual Studio. Select Release configuration
and build the project (you might get errors if you select another build
configuration besides Release.)

Chapter 1

[15]

2. Copy <build_folder>\lib\RELEASE\cv2.pyd to C:\Python2.7\Lib\
site-packages (assuming that Python 2.7 is installed in the default
location). Now, the Python installation can find part of OpenCV.

3. Finally, we need to make sure that Python and other processes can find the
rest of OpenCV and its dependencies. Edit the system's Path variable and
append ;<build_folder>\bin\RELEASE. If we are using TBB, also append
;<tbb_unzip_destination>\lib\ia32\vc10 (32-bit) or ;<tbb_unzip_
destination>\lib\intel64\vc10 (64-bit). Log out and log back in (or reboot).

You might want to look at the code samples in <unzip_destination>/opencv/
samples.

At this point, we have everything we need to develop OpenCV applications for
Windows. To also develop the same for Android, we need to set up TADP as
described in the section Tegra Android Development Pack, covered later in this chapter.

Mac
Let's begin by setting up Xcode and the Xcode Command Line Tools, which give us a
complete C++ development environment:

1. Download and install Xcode from the Mac App Store or http://connect.
apple.com/. If the installer provides an option to install Command Line
Tools, select it.

2. Open Xcode. If a license agreement is presented, accept it.
3. If the Xcode Command Line Tools were not already installed, we must

install them now. Go to Xcode | Preferences | Downloads and click on
the Install button next to Command Line Tools. Wait for the installation to
finish. Then, quit Xcode. Alternatively, if you do not find an option to install
the Command Line Tools from inside Xcode, open Terminal and run the
following command:
$ xcode-select install

Next, we need a Python 2.7 development environment. Recent versions of Mac come
with Python 2.7 preinstalled. However, the preinstalled Python is customized by
Apple for the system's internal needs. Normally, we should not install any libraries
atop Apple's Python. If we do, our libraries might break during system updates or
worse, might conflict with preinstalled libraries that the system requires. Instead, we
should install standard Python 2.7 and then install our libraries atop it.

http://connect.apple.com/
http://connect.apple.com/

Preparing for the Mission

[16]

For Mac, there are several possible approaches to obtain standard Python 2.7 and
Python-compatible libraries such as OpenCV. All approaches ultimately require
OpenCV to be compiled from source using Xcode Command Line Tools. However,
depending on the approach, this task is automated for us by third-party tools in
various ways. We will look at approaches using MacPorts or Homebrew. These two
tools are package managers, which help us resolve dependencies and separate our
development libraries from the system libraries.

I recommend MacPorts. Compared to Homebrew, MacPorts offers
more patches and configuration options for OpenCV. Also, I maintain
a MacPorts repository to ensure that you can get continue to get an
OpenCV build that is compatible with all of my books. Particularly,
my version includes support for depth cameras such as Kinect, which
were used in OpenCV Computer Vision with Python.
Normally, MacPorts and Homebrew should not be installed on the
same machine.

Regardless of the approach to set up our Python environment, we can put PyInstaller
in any convenient location, since it is treated as a set of tools rather than a library.
Let's download the latest release version from http://www.pyinstaller.org/
and unzip it to ~/PyInstaller or another location of your choice.

Our installation methods for Mac do not give us the OpenCV sample
projects. To get these, download the latest source code archive from
http://sourceforge.net/projects/opencvlibrary/
files/opencv-unix/ and unzip it to any location. Find the
samples in <opencv_unzip_destination>/samples.

Now, depending on your preference, let's proceed to either the Mac with MacPorts
section or the Mac with Homebrew section.

Mac with MacPorts
MacPorts provides Terminal commands that automate the process of downloading,
compiling, and installing various pieces of open source software (OSS). MacPorts
also installs dependencies as needed. For each piece of software, the dependencies
and build recipe are defined in a configuration file called a Portfile. A MacPorts
repository is a collection of Portfiles.

http://www.pyinstaller.org/
http://sourceforge.net/projects/opencvlibrary/files/opencv-unix/
http://sourceforge.net/projects/opencvlibrary/files/opencv-unix/

Chapter 1

[17]

Starting from a system where Xcode and its Command Line Tools are already set up,
the following steps will give us an OpenCV installation via MacPorts:

1. Download and install MacPorts from http://www.macports.org/install.
php.

2. If we want an OpenCV build that is fully compatible with all of my books,
we need to inform MacPorts where to download some custom Portfiles that
I have written. To do so, edit /opt/local/etc/macports/sources.conf
(assuming MacPorts is installed in the default location). Just above the line
rsync://rsync.macports.org/ release/ports/ [default], add the
following line:
http://nummist.com/opencv/ports.tar.gz

Downloading the example code
You can download the example code fies from your account at
http://www.packtpub.com for all the Packt Publishing books
you have purchased. If you purchased this book elsewhere, you
can visit http://www.packtpub.com/support and register
to have the fies e-mailed directly to you. The latest and updated
example code for this book is also available from the author's
website at http://nummist.com/opencv/.

Save the file. Now, MacPorts knows to search for Portfiles in my online
repository first and then the default online repository.

3. Open Terminal and run the following command to update MacPorts:
$ sudo port selfupdate

When prompted, enter your password.

4. Now (if you are using my repository), run the following command to install
OpenCV with Python 2.7 bindings, plus extras such as support for Intel TBB
multiprocessing and support for depth cameras including Kinect:
$ sudo port install opencv +python27 +tbb +openni_sensorkinect

Alternatively (with or without my repository), run the following command
to install OpenCV with Python 2.7 bindings, plus extras such as support for
Intel TBB multiprocessing and support for depth cameras excluding Kinect:
$ sudo port install opencv +python27 +tbb +openni

Dependencies, including Python 2.7, NumPy, OpenNI, and (in the first
example) SensorKinect, are automatically installed as well.

http://www.macports.org/install.php
http://www.macports.org/install.php
http://www.packtpub.com
http://www.packtpub.com/support
http://nummist.com/opencv/

Preparing for the Mission

[18]

By adding +python27 to the command, we are specifying that we want the
OpenCV variant (build configuration) with Python 2.7 bindings. Similarly,
+tbb specifies the variant with support for Intel TBB multiprocessing, which
can greatly improve the performance on compatible hardware. The +openni_
sensorkinect tag specifies the variant with the broadest possible support
for depth cameras via OpenNI and SensorKinect. You can omit +openni_
sensorkinect if you do not intend to use depth cameras or you can replace it
with +openni if you do intend to use OpenNI-compatible depth cameras but just
not Kinect. To see the full list of available variants before installing, we can enter:
$ port variants opencv

Depending on our customization needs, we can add other variants to the
install command.

5. Run the following commands to install SciPy, Requests, and wxPython:
$ sudo port install py27-scipy

$ sudo port install py27-requests

$ sudo port install py27-wxpython-3.0

6. The Python installation's executable is named python2.7. If we want to link
the default python executable to python2.7, let's also run:
$ sudo port install python_select

$ sudo port select python python27

Now we have everything we need to develop OpenCV applications for Mac. To also
develop the same for Android, we need to set up TADP as described in the section
Tegra Android Development Pack, covered later in this chapter.

Mac with Homebrew
Like MacPorts, Homebrew is a package manager that provides Terminal commands
to automate the process of downloading, compiling, and installing various pieces of
open source software.

Starting from a system where Xcode and its Command Line Tools are already set up,
the following steps will give us an OpenCV installation via Homebrew:

1. Open Terminal and run the following command to install Homebrew:
$ ruby -e "$(curl -fsSkLraw.github.com/mxcl/homebrew/go)"

2. Unlike MacPorts, Homebrew does not automatically put its executables in
PATH. To do so, create or edit the file ~/.profile and add this line at the top:
export PATH=/usr/local/bin:/usr/local/sbin:$PATH

