

Learning Robotics
Using Python

Design, simulate, program, and prototype an
interactive autonomous mobile robot from scratch
with the help of Python, ROS, and Open-CV!

Lentin Joseph

BIRMINGHAM - MUMBAI

Learning Robotics Using Python

Copyright © 2015 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book
is sold without warranty, either express or implied. Neither the author nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: May 2015

Production reference: 1250515

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78328-753-6

www.packtpub.com

Cover image by Jarek Blaminsky (milak6@wp.pl)

www.packtpub.com

Credits

Author
Lentin Joseph

Reviewers
Avkash Chauhan

Vladimir Iakovlev

Blagoj Petrushev

Marek Suppa

Commissioning Editor
Rebecca Youé

Acquisition Editor
Rebecca Youé

Content Development Editor
Athira Laji

Technical Editors
Ankur Ghiye

Manali Gonsalves

Copy Editors
Pranjali Chury

Relin Hedly

Merilyn Pereira

Adithi Shetty

Project Coordinator
Harshal Ved

Proofreaders
Stephen Copestake

Safis Editing

Indexer
Priya Sane

Graphics
Sheetal Aute

Production Coordinator
Nitesh Thakur

Cover Work
Nitesh Thakur

About the Author

Lentin Joseph is an electronics engineer, robotics enthusiast, machine vision
expert, embedded programmer, and the founder and CEO of Qbotics Labs
(http://www.qboticslabs.com) in India. He got his bachelor's degree in electronics
and communication engineering at the Federal Institute of Science and Technology
(FISAT), Kerala. In his final year engineering project, he created a social robot, which
can interact with people. The project was a huge success and got mentioned in visual
and print media. The main feature of this robot was that it could communicate with
people and reply intelligently. It also has some image-processing capabilities, such
as face, motion, and color detection. The entire project was implemented using the
Python programming language. His interest in robotics, image processing, and
Python began this project.

After graduation, he worked at a start-up company based on robotics and image
processing for 3 years. In the meantime, he learned famous robotic software
platforms—such as Robot Operating system (ROS), V-REP, and Actin (a robotic
simulation tool)—and image processing libraries, such as OpenCV, OpenNI,
and PCL. He also knows about robot 3D designing, embedded programming on
Arduino, and Stellaris Launchpad.

After 3 years of work experience, he started a new company called Qbotics Labs,
which is mainly focused on research to build great products in domains such
as wearable technology, robotics, machine vision, green technology, and online
education. He maintains a personal website (http://www.lentinjoseph.com) and
a technology blog called technolabsz (http://www.technolabsz.com). He publishes
his works on his tech blog. He was a speaker at PyCon2013 India, and he spoke on
the topic of learning robotics using Python.

I would like to dedicate this book to my parents because they gave
me the inspiration to write it. I would also like to convey my regards
to my friends who helped and inspired me to write this book.

I would like to thank Marek Suppa for his valuable contribution in
writing Chapter 1, Introduction to Robotics, in addition to reviewing
this book.

http://www.qboticslabs.com
http://www.lentinjoseph.com
http://www.technolabsz.com

About the Reviewers

Avkash Chauhan is currently leading a team of engineers at a start-up based in San
Francisco, where his team is building a big data monitoring platform using machine
learning and new age methods to improve business continuity and gain maximum
advantage from the platform itself. He is the founder and principal of Big Data
Perspective, with a vision to make the Hadoop platform accessible to mainstream
enterprises by simplifying its adoption, customization, management, and support.
Before Big Data Perspective, he worked at Platfora Inc., building big data analytics
software running natively on Hadoop. Previously, he worked for 8 years at Microsoft,
building cloud and big data products and providing assistance to enterprise partners
worldwide. Avkash has over 15 years of software development experience in cloud
and big data disciplines. He is a programmer at heart in full-stack discipline and has
the business acumen to work with enterprises, meeting their needs. He is passionate
about technology and enjoys sharing his knowledge with others through various social
media. He has also written a few books on big data discipline and is very active in the
tech social space. He is an accomplished author, blogger, technical speaker, and he
loves the outdoors.

Vladimir Iakovlev is a software developer. Most of the time, he develops
web applications using Python, Clojure, and JavaScript. He's the owner of a
few semi-popular open source projects. He was a speaker at a few Python-related
conferences.

In his free time, Vladimir likes to play with electronic devices, such as Arduino
and PyBoard, and image-processing devices, such as Leap Motion. He has tried
to build some robots. He has already built a robotic arm.

Currently, Vladimir works at Upwork, where he develops web applications, mostly
with Python.

Blagoj Petrushev is a software engineer and consultant based in Skopje,
Macedonia. His work revolves mainly around backends, datastores, and network
applications. Among his interests are machine learning, NLP, data analysis,
modeling and databases, and distributed programming.

Marek Suppa has been playing with (kind of) smart machines for the past few
years, which are pretentiously called robots in some parts of the world. Right now,
he leads a robotic football team, building tools to help others start with robots and
setting off on a new venture to see how far the current technology will let us move
toward the goal of creating a robot as it was first defined.

I would like to thank everyone who supported the creation of this
book, whoever and wherever they might be.

www.PacktPub.com

Support files, eBooks, discount offers, and more
For support files and downloads related to your book, please visit
www.PacktPub.com.

Did you know that Packt offers eBook versions of every book published, with PDF
and ePub files available? You can upgrade to the eBook version at www.PacktPub.
com and as a print book customer, you are entitled to a discount on the eBook copy.
Get in touch with us at service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles,
sign up for a range of free newsletters and receive exclusive discounts and offers
on Packt books and eBooks.

TM

https://www2.packtpub.com/books/subscription/packtlib

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital
book library. Here, you can search, access, and read Packt's entire library of books.

Why subscribe?
• Fully searchable across every book published by Packt
• Copy and paste, print, and bookmark content
• On demand and accessible via a web browser

Free access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view 9 entirely free books. Simply use your login credentials for
immediate access.

www.PacktPub.com
www.PacktPub.com
www.PacktPub.com
www.PacktPub.com
https://www2.packtpub.com/books/subscription/packtlib
www.PacktPub.com

[i]

Table of Contents
Preface ix
Chapter 1: Introduction to Robotics 1

What is a robot? 2
History of the term robot 2
Modern definition of a robot 4

Where do robots come from? 7
What can we find in a robot? 11

The physical body 12
Sensors 12
Effectors 12
Controllers 13

How do we build a robot? 14
Reactive control 14
Hierarchical (deliberative) control 14
Hybrid control 15

Summary 16
Chapter 2: Mechanical Design of a Service Robot 17

Requirements of a service robot 18
The Robot drive mechanism 18

Selection of motors and wheels 19
Calculation of RPM of motors 19
Calculation of motor torque 20

The design summary 20
Robot chassis design 21

Table of Contents

[ii]

Installing LibreCAD, Blender, and MeshLab 22
Installing LibreCAD 23
Installing Blender 23
Installing MeshLab 23

Creating a 2D CAD drawing of the robot using LibreCAD 24
The base plate design 27
Base plate pole design 28
Wheel, motor, and motor clamp design 29
Caster wheel design 30
Middle plate design 31
Top plate design 32

Working with a 3D model of the robot using Blender 32
Python scripting in Blender 33
Introduction to Blender Python APIs 34
Python script of the robot model 36

Questions 41
Summary 42

Chapter 3: Working with Robot Simulation Using
ROS and Gazebo 43

Understanding robotic simulation 43
Mathematical modeling of the robot 46

Introduction to the differential steering system and robot kinematics 47
Explaining of the forward kinematics equation 48
Inverse kinematics 53

Introduction to ROS and Gazebo 54
ROS Concepts 55

Installing ROS Indigo on Ubuntu 14.04.2 58
Introducing catkin 61
Creating an ROS package 61
Hello_world_publisher.py 62
Hello_world_subscriber.py 64
Introducing Gazebo 66
Installing Gazebo 67
Testing Gazebo with the ROS interface 68
Installing TurtleBot Robot packages on ROS Indigo 69
Installing TurtleBot ROS packages using the apt package manager in Ubuntu 72
Simulating TurtleBot using Gazebo and ROS 72
Creating the Gazebo model from TurtleBot packages 74
What is a robot model, URDF, xacro, and robot state publisher? 76
Creating a ChefBot description ROS package 77

Simulating ChefBot and TurtleBot in a hotel environment 86
Questions 91
Summary 91

Table of Contents

[iii]

Chapter 4: Designing ChefBot Hardware 93
Specifications of the ChefBot hardware 94
Block diagram of the robot 94

Motor and encoder 95
Selecting motors, encoders, and wheels for the robot 96

Motor driver 97
Selecting a motor driver/controller 99

Embedded controller board 101
Ultrasonic sensors 102

Selecting the ultrasonic sensor 103
Inertial Measurement Unit 104
Kinect 105
Central Processing Unit 106
Speakers/ mic 108
Power supply/battery 108

Working of the ChefBot hardware 110
Questions 111
Summary 112

Chapter 5: Working with Robotic Actuators and Wheel Encoders 113
Interfacing DC geared motor with Tiva C LaunchPad 114

Differential wheeled robot 116
Installing the Energia IDE 118
Interfacing code 121

Interfacing quadrature encoder with Tiva C Launchpad 124
Processing encoder data 125
Quadrature encoder interfacing code 128

Working with Dynamixel actuators 132
Questions 136
Summary 136

Chapter 6: Working with Robotic Sensors 137
Working with ultrasonic distance sensors 137

Interfacing HC-SR04 to Tiva C LaunchPad 138
Working of HC-SR04 139
Interfacing code of Tiva C LaunchPad 140
Interfacing Tiva C LaunchPad with Python 142

Working with the IR proximity sensor 144
Working with Inertial Measurement Unit 147

Inertial Navigation 147
Interfacing MPU 6050 with Tiva C LaunchPad 149

Setting up the MPU 6050 library in Energia 150
Interfacing code of Energia 152

Table of Contents

[iv]

Interfacing MPU 6050 to Launchpad with the DMP
support using Energia 155
Questions 160
Summary 161

Chapter 7: Programming Vision Sensors Using
Python and ROS 163

List of robotic vision sensors and image processing libraries 163
Introduction to OpenCV, OpenNI, and PCL 168

What is OpenCV? 168
Installation of OpenCV from source code in Ubuntu 14.04.2 169
Reading and displaying an image using the Python-OpenCV interface 170
Capturing from web camera 171

What is OpenNI 173
Installing OpenNI in Ubuntu 14.04.2 174

What is PCL? 174
Programming Kinect with Python using ROS, OpenCV, and OpenNI 175

How to launch OpenNI driver 175
The ROS interface of OpenCV 176

Creating ROS package with OpenCV support 176
Displaying Kinect images using Python, ROS, and cv_bridge 177

Working with Point Clouds using Kinect, ROS, OpenNI, and PCL 181
Opening device and Point Cloud generation 181

Conversion of Point Cloud to laser scan data 183
Working with SLAM using ROS and Kinect 184
Questions 185
Summary 185

Chapter 8: Working with Speech Recognition and
Synthesis Using Python and ROS 187

Understanding speech recognition 188
Block diagram of a speech recognition system 188
Speech recognition libraries 189

CMU Sphinx/Pocket Sphinx 189
Julius 190

Windows Speech SDK 190
Speech synthesis 190
Speech synthesis libraries 191

eSpeak 191
Festival 191

Table of Contents

[v]

Working with speech recognition and synthesis in
Ubuntu 14.04.2 using Python 192

Setting up Pocket Sphinx and its Python binding in Ubuntu 14.04.2 192
Working with Pocket Sphinx Python binding in Ubuntu 14.04.2 193
Output 194

Real-time speech recognition using Pocket Sphinx,
GStreamer, and Python in Ubuntu 14.04.2 195
Speech recognition using Julius and Python in Ubuntu 14.04.2 198

Installation of Julius speech recognizer and Python module 198
Python-Julius client code 199
Improving speech recognition accuracy in Pocket Sphinx and Julius 201
Setting up eSpeak and Festival in Ubuntu 14.04.2 201

Working with speech recognition and synthesis in
Windows using Python 202

Installation of the Speech SDK 203
Working with Speech recognition in ROS Indigo and Python 204

Installation of the pocketsphinx package in ROS Indigo 204
Working with speech synthesis in ROS Indigo and Python 205
Questions 207
Summary 207

Chapter 9: Applying Artificial Intelligence to
ChefBot Using Python 209

Block diagram of the communication system in ChefBot 210
Introduction to AIML 211

Introduction to AIML tags 211
Introduction to PyAIML 214

Installing PyAIML on Ubuntu 14.04.2 215
Installing PyAIML from source code 215

Working with AIML and Python 215
Loading a single AIML file from the command-line argument 216

Working with A.L.I.C.E. AIML files 218
Loading AIML files into memory 218
Loading AIML files and saving them in brain files 219
Loading AIML and brain files using the Bootstrap method 220

Integrating PyAIML into ROS 221
aiml_server.py 221
aiml_client.py 223
aiml_tts_client.py 223

Table of Contents

[vi]

aiml_speech_recog_client.py 224
start_chat.launch 225
start_tts_chat.launch 226
start_speech_chat.launch 226

Questions 228
Summary 228

Chapter 10: Integration of ChefBot Hardware and
Interfacing it into ROS, Using Python 229

Building ChefBot hardware 230
Configuring ChefBot PC and setting ChefBot ROS packages 235
Interfacing ChefBot sensors with Tiva C LaunchPad 236

Embedded code for ChefBot 237
Writing a ROS Python driver for ChefBot 239
Understanding ChefBot ROS launch files 245
Working with ChefBot Python nodes and launch files 246

Working with SLAM on ROS to build the map of the room 252
Working with ROS localization and navigation 254

Questions 255
Summary 256

Chapter 11: Designing a GUI for a Robot Using Qt and Python 257
Installing Qt on Ubuntu 14.04.2 LTS 258
Working with Python bindings of Qt 258

PyQt 258
Installing PyQt on Ubuntu 14.04.2 LTS 259

PySide 259
Installing PySide on Ubuntu 14.04.2 LTS 259

Working with PyQt and PySide 259
Introducing Qt Designer 260
Qt signals and slots 261
Converting a UI file into Python code 263
Adding a slot definition to PyQt code 264
Up and running of Hello World GUI application 266

Working with ChefBot's control GUI 267
Installing and working with rqt in Ubuntu 14.04.2 LTS 273

Questions 275
Summary 276

Table of Contents

[vii]

Chapter 12: The Calibration and Testing of ChefBot 277
The Calibration of Xbox Kinect using ROS 277

Calibrating the Kinect RGB camera 278
Calibrating the Kinect IR camera 282

Wheel odometry calibration 284
Error analysis of wheel odometry 285
Error correction 286

Calibrating the MPU 6050 287
Testing of the robot using GUI 287

Pros and cons of the ROS navigation 291
Questions 291
Summary 291

Index 293

[ix]

Preface
Learning Robotics with Python contains twelve chapters that mainly aims at how
to build an autonomous mobile robot from scratch and how to program it using
Python. The robot mentioned in this book is a service robot, which can be used to
serve food at home, hotels, and restaurants. From the beginning to end, this book
discusses the step-by-step procedure on how to build this robot. The book starts with
the basic concepts of robotics and then moves on to the 3D modeling and simulation
of the robot. After the successful simulation of the robot, it discusses the hardware
components required to build the robot prototype in order to complete the robot
navigation.

The software part of this robot is mainly implemented using the Python
programming language and software frameworks, such as Robot Operating System
(ROS), Open-CV, and so on. You will understand the application of Python from the
aspects of designing the robot to the robot’s user interface. The Gazebo simulator
is used to simulate the robot and machine vision libraries, such as Open-CV and
OpenNI. PCL is used to process the 2D and 3D image data of the robot. Each chapter
is presented with an adequate theory to understand the application aspect. The book
is reviewed by experts in this field who are passionate about robotics.

What this book covers
Chapter 1, Introduction to Robotics, contains basic concepts and terminologies of
robotics. This chapter is a must for beginners who are just starting with robotics.

Chapter 2, Mechanical Design of a Service Robot, discusses the 2D and 3D CAD
designing aspect of the robot using LibreCAD and Blender (free software).
This chapter also demonstrates how to use Blender Python APIs in order to
build the 3D model.

Chapter 3, Working with Robot Simulation Using ROS and Gazebo, takes you through the
simulation of the service robot using Gazebo and ROS.

Preface

[x]

Chapter 4, Designing ChefBot Hardware, explains the hardware designing of the robot,
including block diagram and hardware components required to build ChefBot.

Chapter 5, Working with Robotic Actuators and Wheel Encoders, covers interfacing of
robotic actuators and wheel encoders using Tiva C LaunchPad. It also mentions
high-end smart actuators like dynamixel.

Chapter 6, Working with Robotic Sensors, discusses interfacing of ultrasonic distance
sensors, IR proximity sensors, and IMU using Tiva C LaunchPad.

Chapter 7, Programming Vision Sensors Using Python and ROS, talks about the
introduction to Open-CV, OpenNI, and PCL libraries and interfacing these to ROS
and programming using Python.

Chapter 8, Working with Speech Recognition and Synthesis Using Python and ROS,
discusses speech recognition and synthesis using various libraries and interfacing it
to ROS programming using Python.

Chapter 9, Applying Artificial Intelligence to ChefBot Using Python, covers tutorials to
build a ChatterBot. This can be used to make the robot interactive.

Chapter 10, Integration of ChefBot Hardware and Interfacing it into ROS, Using Python,
explores tutorials to integrate the complete hardware and essential software section.
It mainly discusses autonomous navigation of the service robot and how to program
it using ROS and Python.

Chapter 11, Designing a GUI for a Robot Using Qt and Python, covers tutorials on how
to build a GUI for the user who operates the robot in a typical restaurant. The GUI is
built using Qt and the PyQt Python wrapper.

Chapter 12, The Calibration and Testing of ChefBot, explores tutorials on how to calibrate
and test the robot for the final run.

What you need for this book
The book is all about how to build a robot. To start with this book, you should have
some hardware. The robot can be built from scratch, or you can buy a differential-
drive configuration robot with an encoder feedback. You should buy a controller
board, such as Texas Instruments Launchpad, for embedded processing. You should
have at least a laptop/net book for the entire robot process. In this book, we will
use Intel NUC for robot processing. It’s very compact in size and delivers high
performance. For the 3D vision, you should have 3D sensors, such as laser scanner,
Kinect, and Asus Xtion Pro.

Preface

[xi]

In the software section, you should have a good understanding on how to work with
GNU/Linux commands. You should also have a good knowledge of Python. You
should install Ubuntu 14.04.2 LTS to work with the examples. If you have knowledge
about ROS, OpenCV, OpenNI, and PCL, it will be a great add-on. You have to install
ROS Indigo to test these examples.

Who this book is for
Learning Robotics with Python is a good companion for entrepreneurs who want
to explore the service robotics domain, professionals who want to implement more
features to their robots, researchers who want to explore more about robotics, and
hobbyist or students who want to learn robotics. The book follows a step-by-step
guide that can be easily understood by anyone.

Conventions
In this book, you will find a number of styles of text that distinguish between
different kinds of information. Here are some examples of these styles, and an
explanation of their meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows:
“ The first procedure is to create a world file and save it with the .world file
extension.”

A block of code is set as follows:

<xacro:include filename=”$(find
 chefbot_description)/urdf/chefbot_gazebo.urdf.xacro”/>
<xacro:include filename=”$(find
 chefbot_description)/urdf/chefbot_properties.urdf.xacro”/>

Any command-line input or output is written as follows:

$ roslaunch chefbot_gazebo chefbot_empty_world.launch

Preface

[xii]

New terms and important words are shown in bold. Words that you see on the
screen, in menus or dialog boxes for example, appear in the text like this: “ we can
command the robot to navigate to some position on the map using the 2D Nav
Goal button”.

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or may have disliked. Reader feedback is important for us
to develop titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com,
and mention the book title via the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide on www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Downloading the example code
You can download the example code files for all Packt books you have purchased
from your account at http://www.packtpub.com. If you purchased this book
elsewhere, you can visit http://www.packtpub.com/support and register to have
the files e-mailed directly to you.

www.packtpub.com/authors
http://www.packtpub.com
http://www.packtpub.com/support

Preface

[xiii]

Downloading the color images of this book
We also provide you a PDF file that has color images of the screenshots/diagrams
used in this book. The color images will help you better understand the changes in
the output. You can download this file from: https://www.packtpub.com/sites/
default/files/downloads/7536OS_ImageBundle.pdf.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in the text or
the code—we would be grateful if you would report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
book. If you find any errata, please report them by visiting http://www.packtpub.
com/submit-errata, selecting your book, clicking on the errata submission form link,
and entering the details of your errata. Once your errata are verified, your submission
will be accepted and the errata will be uploaded on our website, or added to any list of
existing errata, under the Errata section of that title. Any existing errata can be viewed
by selecting your title from http://www.packtpub.com/support.

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media.
At Packt, we take the protection of our copyright and licenses very seriously. If you
come across any illegal copies of our works, in any form, on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors, and our ability to bring you
valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with
any aspect of the book, and we will do our best to address it.

https://www.packtpub.com/sites/default/files/downloads/7536OS_ImageBundle.pdf
https://www.packtpub.com/sites/default/files/downloads/7536OS_ImageBundle.pdf
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/support

[1]

Introduction to Robotics
If you read an introductory chapter in any technical book, you may have noticed
that it pretty much always follows the same structure. It begins by describing how
awesome the topic is, what a good decision it is to start reading the book, and how
you should keep on reading because there are many exciting things awaiting you in
its further chapters.

This chapter is no such chapter. It starts with the following quote:

Robotics is an art.

Although, such a strong statement does probably deserve some explanation, we
believe that after you finish reading this book (and building your own robots!), no
further explanation will be needed.

So if robotics is an art, how does one learn it? To put it differently, what are the
differences between learning to play a musical instrument, learning to paint, learning
to write, and learning robotics? We believe that there are not too many of them. Just
as musicians need to play on their instruments, painters need to produce paintings,
and writers need to write their texts, roboticists (the term we use to describe people
who build robotics) need to build their robots. Just as musicians, painters, and
writers need to learn the jargon used in their trades, roboticists need to familiarize
themselves with a few basic terms that they might run into while reading tutorials,
researching scientific literature, and talking to other robotics enthusiasts. Also, just as
any artist needs to know at least a little bit about the history of their respective art, so
does any good roboticist need to know a thing or two about the history of robotics.
That's why in this chapter, we will cover:

• What is a robot?
• Where do robots come from?
• What can we find in a robot?
• How do we build robots?

Introduction to Robotics

[2]

What is a robot?
Rather than defining what a robot is right away, let's pause for a moment and discuss
whether we need to answer a question like this after all. Everybody knows that a
robot is some sort of a machine that can move around and depending on what movie
you saw or which book you read, it can either help humans in their day-to-day life or
mean the end of humanity.

It's clear that there is some controversy and lots of misunderstandings about robots
and their role in the past, present, and the future. In order to better understand the
situation, let's first examine closely the term "robot" itself. Then, we will try to define
it a bit more formally to prevent any misunderstanding or controversy.

History of the term robot
The term "robot" was used for the first time by Karel Čapek, a Czech writer in
his play Rossum's Universal Robots (R.U.R) that he wrote in 1920, to denote an
artificial human made out of synthetic organic matter. These robots (roboti in Czech)
were made in factories and their purpose was to replace human workers. While
they were very efficient and executed orders they were given perfectly, they lacked
any emotion. It seemed that humans would not need to work at all because robots
seemed to be happy to work for them. This changed after a while and a robot revolt
resulted in extinction of the human race.

R.U.R is quite dark and disturbing, but it does not leave the future hopeless.
It was considered quite a success back in the day and we certainly do recommend
you to read it. As its copyright had already expired in many countries at the time of
writing this book, it should not be a problem to find a version online, which is in the
public domain.

"When he (Young Rossum) took a look at human anatomy he saw immediately
that it was too complex and that a good engineer could simplify it. So he undertook
to redesign anatomy, experimenting with what would lend itself to omission or
simplification. Robots have a phenomenal memory. If you were to read them a
twenty-volume encyclopedia they could repeat the contents in order, but they never
think up anything original. They'd make fine university professors."

– Karel Capek, R.U.R. (Rossum's Universal Robots), 1920

Chapter 1

[3]

While many attribute the term robot to Karel Čapek as he wrote the play in which it
appeared for the first time, there are sources suggesting that it was actually Čapek's
brother Josef who came up with the term (it seems that there was an article in Czech
daily print written by Karel Čapek himself, in which he wants to set the record
straight by telling this story). Karel wanted to use the term laboři (from Latin labor,
work), but he did not like it. It seemed too artificial to him, so he asked his brother
for advice. Josef suggested roboti and that was what Karel used in the end.

Now that we know when the term robot was used for the first time and who actually
created it, let's find out where does it come from. The explanation that many use is that
it comes from the Czech words robota and robotník, which literally means "work" and
"worker" respectively. However, the word robota also means "work" or "serf labor" in
Slovak. Also, we should take into account that some sources suggest that by the time
Karel was writing R.U.R, he and his brother often visited his father in a small Slovak
spa town called Trenčianske Teplice. Therefore, it might very well be that the term
robot was inspired by the usage of the word "robota" in Slovak language, which is
coincidentally, the native language of one of the authors of this book.

Introduction to Robotics

[4]

Whether the term robot comes from Czech or Slovak, the word robota might be a
matter of national pride, but it does not concern us too much. In both cases, the literal
meaning is "work", "labor", or "hard work" and it was the purpose of the Čapek's
robots. However, robots have evolved dramatically over the past hundred years. To
say that they are all about doing hard work would probably be an understatement.

So, let's try to define the notion of a robot as we perceive it today.

Modern definition of a robot
When we try to find a precise definition of some term, our first stop is usually some
sort of encyclopedia or a dictionary. Let's try to do this for the term robot.

Our first stop will be Encyclopedia Britannica. Its definition of a robot is as follows:

"Any automatically operated machine that replaces human effort, though it
might not resemble human beings in appearance or preform functions in a
humanlike manner."

This is quite a nice definition, but there are quite a few problems with it.

First of all, it's a bit too broad. By this definition, a washing machine should also be
considered a robot. It does operate automatically (well, most of them do), it does
replace human effort (although not by changing the same tasks a human would do),
and it certainly does not resemble a human.

Secondly, it's quite difficult to imagine what a robot actually is after reading this
definition. With such a broad definition, there are way too many things that can be
considered a robot and this definition does not provide us with any specific features.

It turns out that while Encyclopedia Britannica's definition of a robot does not fit our
needs well enough, it's actually one of the best ones that one can find. For example,
The Free Dictionary defines a robot as "A mechanical device that sometimes resembles a
human and is capable of performing a variety of often complex human tasks on command or
by being programmed in advance." This is even worse than what we had and it seems
that a washing machine should still be considered a robot.

The inherent problem with these definitions is that they try to capture vast amount
of machines that we call robots these days. The result is that it's very difficult, if not
impossible, to come up with a definition that will be comprehensive enough and
not include a washing machine at the same time. John Engelberger, founder of the
world's first robotics company and industrial robotics (as we know it today) once
famously said, "I can't define a robot, but I know one when I see one."

Chapter 1

[5]

So, is it even possible to define a robot? Maybe not in general. However, if we limit
ourselves just to the scope of this book, there may be a definition that will suit our
needs well enough. In her very nice introductory book on the subject of robotics
called The Robotics Primer (which we also highly recommend), Maja J. Mataric uses
the following definition:

"A robot is an autonomous system which exists in the physical world, can sense its
environment, and can act on it to achieve some goals."

At first sight, it might not seem like a vast improvement over what we have so far,
but let's dissect it part by part to see whether it meets our needs.

The first part says, "A robot is an autonomous system". By autonomous, we mean
that a robot makes decisions on its own—it's not controlled by a human. This
already seems to be an improvement as it weeds out any machine that's controlled
by someone (such as our famous washing machine). Robots that we will talk about
throughout this book may sometimes have some sort of a remote function, which
allows a human to control it remotely, but this functionality is usually built-in as
sort of a safety measure so that if something goes wrong and the robot's autonomous
systems fails to behave as we would expect them to, it's still possible to get the robot
to safety and diagnose its problems afterwards. However, the main goal still stays
the same, that is, to build robots that can take some direction from humans and are
able to act and function on their own.

However, just being an autonomous system will certainly not be enough for a robot
in this book. For instance, we can find many computer programs that we can call
autonomous systems (they are not controlled by an individual and make decisions
on their own) and yet we do not consider them to be robots.

To get around this obstacle, we need the other part of the sentence that says, "which
exists in the physical world".

Given the recent advances in the fields of artificial intelligence and machine
learning, there is no shortage of computer systems that act on their own and
perform some work for us, which is what robots should be for. As a quite notorious
example, let's consider spam filters. These are computer programs that read every
e-mail that reaches your e-mail address and decides whether you may want to read
it (and that the e-mail is indeed legitimate) or whether it's yet another example of an
unwanted e-mail.

Introduction to Robotics

[6]

There is no doubt that such a system is helpful (if you disagree, try to read some
of the e-mails in your Spam folder—I am pretty sure it will be a boring read). It's
estimated that over 60 percent of all e-mail traffic in 2014 can be attributed to spam
e-mails. Being able to automatically filter them can save us a lot of reading time.
Also, as there is a no human involved in the decision process (although, we can help
it by marking an e-mail as spam), we can call such a system as autonomous. Still,
we will not call it a true robot. Rather, we call them "software robots" or just "bots"
(the fact that their name is shorter may come from the fact that they are short of the
physical parts of true robots).

While software robots are definitely an interesting group on its own, it's the physical
world in which robots operate that makes the process of creating them so exciting
and difficult at the same time. When creating a software robot, you can count on the
fact that the environment it will run in (usually the operating system) will be quite
stable (as in, not too many things may change unexpectedly). However, when you
are creating a real robot, you can never be sure.

This is why a real robot needs to know what is happening in the environment in
which it operates. Also, this is why the next part of the definition says, "can sense
its environment".

Sensing what is happening around a real robot is arguably its most important
feature. To sense their surrounding environments, robots usually have sensors.
These are devices that measure physical characteristics of the environment and
provide this information back to the robot so that it can, for instance, react to sudden
changes of temperature, humidity, or pressure. This is quite a big difference from
software robots. While they just get the information they need in order to operate
somewhat magically, real robots need to have a subsystem or subsystems that take
care of obtaining this information. If we look at the differences between robots and
humans, we will not find many (in our very high-level view, of course). We can think
of sensoring subsystems as artificial replacements for human organs that provide this
sort of information to the brain.

One important consequence of this definition is that anything that does not sense
its environment cannot be called a robot. This includes any devices that just "drive
blind" or move in a random fashion because they do not have any information from
the environment to base their behavior on.

Any roboticist will tell you that robots are very exciting machines. Many will
also argue that what makes them so exciting is actually their ability to interact
with the outside world (which is to move or otherwise change the environment
they are in). Without this, they are just another static machine that might be useful,
but rather unexciting.

Chapter 1

[7]

Our definition of a robot reflects this in its last part when it says, "can act on it to
achieve some goals".

Acting on the environment might sound like a very complex task for a robot, but in
this case, it just means changing the world in some (even very slight) way. We call
these parts of robots that perform this as effectors. If we look at our robot vs human
comparison, effectors are the artificial equivalents of hands, legs, and other body
parts that allow it to move. Effectors make use of some lower-level systems such
as motors or muscles that actually carry out the movement. We call them actuators.
Although, the artificial ones may seem to function similar to the biological ones, a
closer look will reveal that they are actually quite different.

You may have noticed that this part is not only about acting on the robot's
environment, but also about achieving some goals. While many hobby roboticists
build robots just for the fun of it, most robots are built in order to carry out (or, should
we rather say, to help with) some tasks, such as moving heavy parts in a factory or
locating victims in areas affected by natural disasters.

As we said before, a system or a machine that behaves randomly and does not use
information from its environment cannot really be considered a robot. However,
how can it use these information somehow? The easiest thing to do is to do
something useful, which we can rephrase as trying to reach some goal that we
consider useful, which in turn brings us back to our definition. A goal of a robot does
not necessarily need to be something as complex and ambitious as "hard labor for
human". It can easily be something simple, such as "do not bump into obstacles" or
"turn the light switch on".

Now, as we have at least a slight idea of what a robot is, we can move on to briefly
discuss where robots come from, in other words, the history of robotics.

Where do robots come from?
As the title suggests, this part of the chapter should be about the history of robots.
We already know a few quite important facts, such as the term robot was coined by
a Czech author Karel Čapek in 1920. As it turns out, there are many more interesting
events that happened over the years, other than this one. In order to keep things
organized, let's start from the beginning.

It's quite difficult to pinpoint a precise date in history, which we can mark as the
date of birth of the first robot. For one, we have established quite a restrictive
definition of a robot previously; thus, we will have to wait until the 20th century to
actually see a robot in the proper sense of the word. Until then, let's at least discuss
the honorable mentions.

Introduction to Robotics

[8]

The first one that comes close to a robot is a mechanical bird called "The Pigeon".
This was postulated by a Greek mathematician Archytas of Tarentum in the 4th
century BC and was supposed to be propelled by steam. It cannot not be considered
a robot by our definition (not being able to sense its environment already disqualifies
it), but it comes pretty close for its age. Over the following centuries, there were
many attempts to create automatic machines, such as clocks measuring time
using the flow of water, life-sized mechanical figures, or even first programmable
humanoid robots (it was actually a boat with four automatic musicians on it). The
problem with all these is that they are very disputable as there is very little (or none)
historically trustworthy information available about these machines.

It would have stayed like this for quite some time if it was not for Leonardo
Da Vinci's notebooks that were rediscovered in 1950s. They contain a complete
drawing of a 1945 humanoid (a fancy word for a mechanical device that resemble
humans), which looks like an armored knight. It seems that it was designed so that
it could sit up, wave its arms, move its head, and most importantly, amuse royalty.
In the 18th century, following the amusement line, Jacques de Vaucanson created
three automata: a flute player that could play twelve songs, a tambourine player,
and the most famous one, "The Digesting Duck". This duck was capable of moving,
quacking, flapping wings, or even eating and digesting food (not in a way you
will probably think—it just released matter stored in a hidden compartment).
It was an example of "moving anatomy"—modeling human or animal anatomy using
mechanics.

Our list will not be complete if we omitted these robot-like devices that came
about in the following century. Many of them were radio-controlled, such as Nikola
Tesla's boat, which he showcased at Madison Square Garden in New York. You
could command it to go forward, stop, turn left or right, turn its lights on or off, and
even submerge. All of this did not seem too impressive at that time because the press
reports attributed it to "mind control".

At this point, we have once again reached the time when the term robot was used for
the first time. As we said many times before, it was in 1920 when Karel Čapek used it
in his play, R.U.R. Two decades later, another very important term was coined. Issac
Asimov used the term robotics for the first time in his story "Runaround" in 1942.
Asimov wrote many other stories about robots and is considered to be a prominent
sci-fi author of his time.

Chapter 1

[9]

However, in the world of robotics, he is known for his three laws of robotics:

• First law: A robot may not injure a human being or through inaction allow a
human being to come to harm.

• Second Law: A robot must obey the orders given to it by human beings,
except where such orders would conflict with the first law.

• Third law: A robot must protect its own existence, as long as such protection
does not conflict with the first or second law.

After a while, he added a zeroth law:

• Zeroth law: A robot may not harm humanity or by inaction allow humanity
to come to harm.

These laws somehow reflect the feelings people had about machines they called
robots at that time. Seeing enslavement by some sort of intelligent machine as a
real possibility, these laws were supposed to be some sort of guiding principles one
should at least keep in mind, if not directly follow, when designing a new intelligent
machine. Also, while many were afraid of the robot apocalypse, time has shown that
it's still yet to come. In order for it to take place, machines will need to get some sort
of intelligence, some ability to think, and act based on their thoughts. Also, while we
can see that over the course of history, the mechanical side of robots went through
some development, the intelligence simply was not there yet.

This was part of the reason why in the summer of 1956, a group of very wise
gentlemen (which included Marvin Minsky, John McCarthy, Herbert Simon, and
Allan Newell) were later called to be the founding fathers of the newly founded field
of Artificial Intelligence. It was at this very event where they got together to discuss
creating intelligence in machines (thus, the term artificial intelligence).

Introduction to Robotics

[10]

Although, their goals were very ambitious (some sources even mention that their
idea was to build this whole machine intelligence during that summer), it took quite
a while until some interesting results could be presented.

One such example is Shakey, a robot built by the Stanford Research Institute
(SRI) in 1966. It was the first robot (in our modern sense of the word) capable to
reason its own actions. The robots built before this usually had all the actions they
could execute preprogrammed. On the other hand, Shakey was able to analyze
a more complex command and split it into smaller problems on his own. The
following image of Shakey is taken from https://en.wikipedia.org/wiki/
File:ShakeyLivesHere.jpg:

Shakey, resting in the Computer History Museum in Mountain View, California

His hardware was quite advanced too. He had collision detectors, sonar range
finders, and a television camera. He operated in a small closed environment of
rooms, which were usually filled with obstacles of many kinds. In order to navigate
around these obstacles, it was necessary to find a way around these obstacles while
not bumping into something. Shakey did it in a very straightforward way.

https://en.wikipedia.org/wiki/File:ShakeyLivesHere.jpg
https://en.wikipedia.org/wiki/File:ShakeyLivesHere.jpg

