


Natural Language 
Processing with 
Java and LingPipe 
Cookbook

Over 60 effective recipes to develop your Natural 
Language Processing (NLP) skills quickly and effectively

Breck Baldwin

Krishna Dayanidhi

BIRMINGHAM - MUMBAI



Natural Language Processing with Java  
and LingPipe Cookbook

Copyright © 2014 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system,  
or transmitted in any form or by any means, without the prior written permission of the 
publisher, except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the 
information presented. However, the information contained in this book is sold without 
warranty, either express or implied. Neither the authors, nor Packt Publishing, and its dealers 
and distributors will be held liable for any damages caused or alleged to be caused directly or 
indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies 
and products mentioned in this book by the appropriate use of capitals. However, Packt 
Publishing cannot guarantee the accuracy of this information.

First published: November 2014

Production reference: 1241114

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78328-467-2

www.packtpub.com

www.packtpub.com 


Credits

Authors
Breck Baldwin

Krishna Dayanidhi

Reviewers
Aria Haghighi

Kshitij Judah

Karthik Raghunathan

Altaf Rahman

Commissioning Editor
Kunal Parikh

Acquisition Editor
Sam Wood

Content Development Editor
Ruchita Bhansali

Technical Editors
Mrunal M. Chavan

Shiny Poojary

Sebastian Rodrigues

Copy Editors
Janbal Dharmaraj

Karuna Narayanan

Merilyn Pereira

Project Coordinator
Kranti Berde

Proofreaders
Bridget Braund

Maria Gould

Ameesha Green

Lucy Rowland

Indexers
Monica Ajmera Mehta

Tejal Soni

Production Coordinator
Melwyn D'sa

Cover Work
Melwyn D'sa



About the Authors

Breck Baldwin is the Founder and President of Alias-i/LingPipe. The company focuses 
on system building for customers, education for developers, and occasional forays into pure 
research. He has been building large-scale NLP systems since 1996. He enjoys telemark 
skiing and wrote DIY RC Airplanes from Scratch: The Brooklyn Aerodrome Bible for Hacking 
the Skies, McGraw-Hill/TAB Electronics.

This book is dedicated to Peter Jackson, who hired me as a consultant  
for Westlaw, before I founded the company, and gave me the confidence to 
start it. He served on my advisory board until his untimely death, and I miss 
him terribly.

Fellow Aristotelian, Bob Carpenter, is the architect and developer behind the 
LingPipe API. It was his idea to make LingPipe open source, which opened 
many doors and led to this book.

Mitzi Morris has worked with us over the years and has been instrumental in 
our challenging NIH work, the author of tutorials, packages, and pitching in 
where it was needed.

Jeff Reynar was my office mate in graduate school when we hatched the 
idea of entering the MUC-6 competition, which was the prime mover for 
creation of the company; he now serves our advisory board.

Our volunteer reviewers deserve much credit; Doug Donahue and Rob 
Stupay were a big help. Packt Publishing reviewers made the book so much 
better; I thank Karthik Raghunathan, Altaf Rahman, and Kshitij Judah for 
their attention to detail and excellent questions and suggestions.

Our editors were the ever patient; Ruchita Bhansali who kept the chapters 
moving and provided excellent commentary, and Shiny Poojary, our thorough 
technical editor, who suffered so that you don't have to. Much thanks to 
both of you.

I could not have done this without my co-author, Krishna, who worked  
full-time and held up his side of the writing.

Many thanks to my wife, Karen, for her support throughout the  
book-writing process.



Krishna Dayanidhi has spent most of his professional career focusing on Natural Language 
Processing technologies. He has built diverse systems, from a natural dialog interface for  
cars to Question Answering systems at (different) Fortune 500 companies. He also confesses  
to building those automated speech systems for very large telecommunication companies.  
He's an avid runner and a decent cook.

I'd like to thank Bob Carpenter for answering many questions and for all his 
previous writings, including the tutorials and Javadocs that have informed 
and shaped this book. Thank you, Bob! I'd also like to thank my co-author, 
Breck, for convincing me to co-author this book and for tolerating all my 
quirks throughout the writing process.

I'd like to thank the reviewers, Karthik Raghunathan, Altaf Rahman, 
and Kshitij Judah, for providing essential feedback, which in some 
cases changed the entire recipe. Many thanks to Ruchita, our editor at 
Packt Publishing, for guiding, cajoling, and essentially making sure that 
this book actually came to be. Finally, thanks to Latha for her support, 
encouragement, and tolerance.



About the Reviewers

Karthik Raghunathan is a scientist at Microsoft, Silicon Valley, working on Speech and 
Natural Language Processing. Since first being introduced to the field in 2006, he has worked 
on diverse problems such as spoken dialog systems, machine translation, text normalization, 
coreference resolution, and speech-based information retrieval, leading to publications in 
esteemed conferences such as SIGIR, EMNLP, and AAAI. He has also had the privilege to 
be mentored by and work with some of the best minds in Linguistics and Natural Language 
Processing, such as Prof. Christopher Manning, Prof. Daniel Jurafsky, and Dr. Ron Kaplan.

Karthik currently works at the Bing Speech and Language Sciences group at Microsoft, 
where he builds speech-enabled conversational understanding systems for various Microsoft 
products such as the Xbox gaming console and the Windows Phone mobile operating system. 
He employs various techniques from speech processing, Natural Language Processing, 
machine learning, and data mining to improve systems that perform automatic speech 
recognition and natural language understanding. The products he has recently worked on 
at Microsoft include the new improved Kinect sensor for Xbox One and the Cortana digital 
assistant in Windows Phone 8.1. In his previous roles at Microsoft, Karthik worked on shallow 
dependency parsing and semantic understanding of web queries in the Bing Search team and 
on statistical spellchecking and grammar checking in the Microsoft Office team.

Prior to joining Microsoft, Karthik graduated with an MS degree in Computer Science 
(specializing in Artificial Intelligence), with a distinction in Research in Natural Language 
Processing from Stanford University. While the focus of his graduate research thesis was 
coreference resolution (the coreference tool from his thesis is available as part of the Stanford 
CoreNLP Java package), he also worked on the problems of statistical machine translation 
(leading Stanford's efforts for the GALE 3 Chinese-English MT bakeoff), slang normalization 
in text messages (codeveloping the Stanford SMS Translator), and situated spoken dialog 
systems in robots (helped in developing speech packages, now available as part of the open 
source Robot Operating System (ROS)).

Karthik's undergraduate work at the National Institute of Technology, Calicut, focused on 
building NLP systems for Indian languages. He worked on restricted domain-spoken dialog 
systems for Tamil, Telugu, and Hindi in collaboration with IIIT, Hyderabad. He also interned 
with Microsoft Research India on a project that dealt with scaling statistical machine 
translation for resource-scarce languages.



Karthik Raghunathan maintains a homepage at nlp.stanford.edu/~rkarthik/ and can 
be reached at kr@cs.stanford.edu.

Altaf Rahman is currently a research scientist at Yahoo Labs in California, USA. He works 
on search queries, understanding problems such as query tagging, query interpretation 
ranking, vertical search triggering, module ranking, and others. He earned his PhD degree 
from The University of Texas at Dallas on Natural Language Processing. His dissertation 
was on the conference resolution problem. Dr. Rahman has publications in major NLP 
conferences with over 200 citations. He has also worked on other NLP problems: Named 
Entity Recognition, Part of Speech Tagging, Statistical Parsers, Semantic Classifier, and so on. 
Earlier, he worked as a research intern in IBM Thomas J. Watson Research Center, Université 
Paris Diderot, and Google.

nlp.stanford.edu/~rkarthik/


www.PacktPub.com

Support files, eBooks, discount offers, and more
For support files and downloads related to your book, please visit www.PacktPub.com.

Did you know that Packt offers eBook versions of every book published, with PDF and ePub 
files available? You can upgrade to the eBook version at www.PacktPub.com and as a print 
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at 
service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up  
for a range of free newsletters and receive exclusive discounts and offers on Packt books  
and eBooks.

TM

https://www2.packtpub.com/books/subscription/packtlib

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital book 
library. Here, you can search, access, and read Packt's entire library of books.

Why subscribe?
ff Fully searchable across every book published by Packt

ff Copy and paste, print, and bookmark content

ff On demand and accessible via a web browser

Free access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access 
PacktLib today and view 9 entirely free books. Simply use your login credentials for  
immediate access.

http://www.PacktPub.com
www.PacktPub.com
http://www.PacktPub.com
mailto:service@packtpub.com
http://www.PacktPub.com
https://www2.packtpub.com/books/subscription/packtlib 
http://www.packtpub.com/


Table of Contents
Preface	 1
Chapter 1: Simple Classifiers	 7

Introduction	 8
Deserializing and running a classifier	 11
Getting confidence estimates from a classifier	 14
Getting data from the Twitter API	 19
Applying a classifier to a .csv file	 22
Evaluation of classifiers – the confusion matrix	 24
Training your own language model classifier	 29
How to train and evaluate with cross validation	 32
Viewing error categories – false positives	 37
Understanding precision and recall	 39
How to serialize a LingPipe object – classifier example	 40
Eliminate near duplicates with the Jaccard distance	 42
How to classify sentiment – simple version	 45

Chapter 2: Finding and Working with Words	 51
Introduction	 51
Introduction to tokenizer factories – finding words in a character stream	 52
Combining tokenizers – lowercase tokenizer	 56
Combining tokenizers – stop word tokenizers	 58
Using Lucene/Solr tokenizers	 60
Using Lucene/Solr tokenizers with LingPipe	 62
Evaluating tokenizers with unit tests	 66
Modifying tokenizer factories	 68
Finding words for languages without white spaces	 70



ii

Table of Contents

Chapter 3: Advanced Classifiers	 75
Introduction	 75
A simple classifier	 76
Language model classifier with tokens	 78
Naïve Bayes	 79
Feature extractors	 85
Logistic regression	 87
Multithreaded cross validation	 93
Tuning parameters in logistic regression	 97
Customizing feature extraction	 103
Combining feature extractors	 105
Classifier-building life cycle	 106
Linguistic tuning	 114
Thresholding classifiers	 119
Train a little, learn a little – active learning	 126
Annotation	 136

Chapter 4: Tagging Words and Tokens	 141
Introduction	 141
Interesting phrase detection	 142
Foreground- or background-driven interesting phrase detection	 145
Hidden Markov Models (HMM) – part-of-speech	 149
N-best word tagging	 151
Confidence-based tagging	 153
Training word tagging	 154
Word-tagging evaluation	 160
Conditional random fields (CRF) for word/token tagging	 163
Modifying CRFs	 167

Chapter 5: Finding Spans in Text – Chunking	 173
Introduction	 174
Sentence detection	 174
Evaluation of sentence detection	 178
Tuning sentence detection	 182
Marking embedded chunks in a string – sentence chunk example	 184
Paragraph detection	 186
Simple noun phrases and verb phrases	 189
Regular expression-based chunking for NER	 191
Dictionary-based chunking for NER	 193
Translating between word tagging and chunks – BIO codec	 195



iii

Table of Contents

HMM-based NER	 198
Mixing the NER sources	 205
CRFs for chunking	 208
NER using CRFs with better features	 214

Chapter 6: String Comparison and Clustering	 221
Introduction	 221
Distance and proximity – simple edit distance	 222
Weighted edit distance	 224
The Jaccard distance	 227
The Tf-Idf distance	 230
Using edit distance and language models for spelling correction	 234
The case restoring corrector	 239
Automatic phrase completion	 240
Single-link and complete-link clustering using edit distance	 243
Latent Dirichlet allocation (LDA) for multitopic clustering	 248

Chapter 7: Finding Coreference Between Concepts/People	 257
Introduction	 257
Named entity coreference with a document	 258
Adding pronouns to coreference	 261
Cross-document coreference	 266
The John Smith problem	 281

Index	 291





Preface
Welcome to the book you will want to have by your side when you cross the door of a new 
consulting gig or take on a new Natural Language Processing (NLP) problem. This book starts 
as a private repository of LingPipe recipes that Baldwin continually referred to when facing 
repeated but twitchy NLP problems with system building. We are an open source company  
but the code never merited sharing. Now they are shared.

Honestly, the LingPipe API is an intimidating and opaque edifice to code against like any rich 
and complex Java API. Add in the "black arts" quality needed to get NLP systems working and 
we have the perfect conditions to satisfy the need for a recipe book that minimizes theory  
and maximizes the practicality of getting the job done with best practices sprinkled in from  
20 years in the business.

This book is about getting the job done; damn the theory! Take this book and build the next 
generation of NLP systems and send us a note about what you did.

LingPipe is the best tool on the planet to build NLP systems with; this book is the way to use it.

What this book covers
Chapter 1, Simple Classifiers, explains that a huge percentage of NLP problems are actually 
classification problems. This chapter covers very simple but powerful classifiers based on 
character sequences and then brings in evaluation techniques such as cross-validation and 
metrics such as precision, recall, and the always-BS-resisting confusion matrix. You get to 
train yourself on your own and download data from Twitter. The chapter ends with a simple 
sentiment example.

Chapter 2, Finding and Working with Words, is exactly as boring as it sounds but there 
are some high points. The last recipe will show you how to tokenize Chinese/Japanese/
Vietnamese languages, which doesn't have whitespaces, to help define words. We will show 
you how to wrap Lucene tokenizers, which cover all kinds of fun languages such as Arabic. 
Almost everything later in the book relies on tokenization.



Preface

2

Chapter 3, Advanced Classifiers, introduces the star of modern NLP systems—logistic 
regression classifiers. 20 years of hard-won experience lurks in this chapter. We will address 
the life cycle around building classifiers and how to create training data, cheat when creating 
training data with active learning, and how to tune and make the classifiers work faster.

Chapter 4, Tagging Words and Tokens, explains that language is about words. This chapter 
focuses on ways of applying categories to tokens, which in turn drives many of the high-end 
uses of LingPipe such as entity detection (people/places/orgs in text), part-of-speech tagging, 
and more. It starts with tag clouds, which have been described as "mullet of the Internet"  
and ends with a foundational recipe for conditional random fields (CRF), which can  
provide state-of-the-art performance for entity-detection tasks. In between, we will  
address confidence-tagged words, which is likely to be a very important dimension  
of more sophisticated systems.

Chapter 5, Finding Spans in Text – Chunking, shows that text is not words alone. It is 
collections of words, usually in spans. This chapter will advance from word tagging to span 
tagging, which brings in capabilities such as finding sentences, named entities, and basal  
NPs and VPs. The full power of CRFs are addressed with discussions on feature extraction  
and tuning. Dictionary approaches are discussed as they are ways of combining chunkings.

Chapter 6, String Comparison and Clustering, focuses on comparing text with each other, 
independent of a trained classifier. The technologies range from the hugely practical 
spellchecking to the hopeful but often frustrating Latent Dirichelet Allocation (LDA) clustering 
approach. Less presumptive technologies such as single-link and complete-link clustering 
have driven major commercial successes for us. Don't ignore this chapter.

Chapter 7, Finding Coreference Between Concepts/People, lays the future but unfortunately, 
you won't get the ultimate recipe, just our best efforts so far. This is one of the bleeding edges 
of industrial and academic NLP efforts that has tremendous potential. Potential is why we 
include our efforts to help grease the way to see this technology in use.

What you need for this book
You need some NLP problems and a solid foundation in Java, a computer, and a  
developer-savvy approach.

Who this book is for
If you have NLP problems or you want to educate yourself in comment NLP issues, this book  
is for you. With some creativity, you can train yourself into being a solid NLP developer, a beast 
so rare that they are seen about as often as unicorns, with the result of more interesting job 
prospects in hot technology areas such as Silicon Valley or New York City.



Preface

3

Conventions
In this book, you will find a number of styles of text that distinguish between different kinds  
of information. Here are some examples of these styles and an explanation of their meaning.

Java is a pretty awful language to put into a recipe book with a 66-character limit on lines  
for code. The overriding convention is that the code is ugly and we apologize.

Code words in text, database table names, folder names, filenames, file extensions, 
pathnames, dummy URLs, user input, and Twitter handles are shown as follows: "Once the 
string is read in from the console, then classifier.classify(input) is called, which 
returns Classification."

A block of code is set as follows:

public static List<String[]> filterJaccard(List<String[]> texts, 
TokenizerFactory tokFactory, double cutoff) {
  JaccardDistance jaccardD = new JaccardDistance(tokFactory);

When we wish to draw your attention to a particular part of a code block, the relevant lines  
or items are set in bold:

public static void consoleInputBestCategory(
BaseClassifier<CharSequence> classifier) throws IOException {
  BufferedReader reader = new BufferedReader( 
    new InputStreamReader(System.in));
  while (true) {
    System.out.println("\nType a string to be classified. " + "  
      Empty string to quit.");
    String data = reader.readLine();
    if (data.equals("")) {
      return;
    }
    Classification classification = classifier.classify(data);
    System.out.println("Best Category: " +  
      classification.bestCategory());
  }
}

Any command-line input or output is written as follows:

tar –xvzf lingpipeCookbook.tgz



Preface

4

New terms and important words are shown in bold. Words that you see on the screen,  
in menus or dialog boxes for example, appear in the text like this: "Click on Create a  
new application."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about this  
book—what you liked or may have disliked. Reader feedback is important for us to develop 
titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com,  
and mention the book title via the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing  
or contributing to a book, see our author guide on www.packtpub.com/authors.

Send hate/love/neutral e-mails to cookbook@lingpipe.com. We do care, we won't  
do your homework for you or prototype your startup for free, but do talk to us.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to help you  
to get the most from your purchase.

We do offer consulting services and even have a pro-bono (free) program as well as a start  
up support program. NLP is hard, this book is most of what we know but perhaps we can  
help more.

Downloading the example code
You can download the example code files for all Packt books you have purchased from your 
account at http://www.packtpub.com. If you purchased this book elsewhere, you can 
visit http://www.packtpub.com/support and register to have the files e-mailed directly 
to you.

All the source for the book is available at http://alias-i.com/book.html.

www.packtpub.com/authors
http://www.packtpub.com
http://www.packtpub.com/support
http://alias-i.com/book.html


Preface

5

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes do 
happen. If you find a mistake in one of our books—maybe a mistake in the text or the  
code—we would be grateful if you would report this to us. By doing so, you can save other 
readers from frustration and help us improve subsequent versions of this book. If you find 
any errata, please report them by visiting http://www.packtpub.com/submit-errata, 
selecting your book, clicking on the errata submission form link, and entering the details of 
your errata. Once your errata are verified, your submission will be accepted and the errata will 
be uploaded on our website, or added to any list of existing errata, under the Errata section 
of that title. Any existing errata can be viewed by selecting your title from http://www.
packtpub.com/support.

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media. At Packt, 
we take the protection of our copyright and licenses very seriously. If you come across any 
illegal copies of our works, in any form, on the Internet, please provide us with the location 
address or website name immediately so that we can pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected  
pirated material.

We appreciate your help in protecting our authors, and our ability to bring you  
valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with  
any aspect of the book, and we will do our best to address it.

Hit http://lingpipe.com and go to our forum for the best place to get questions 
answered and see if you have a solution already.

http://www.packtpub.com/submit-errata
http://www.packtpub.com/support
http://www.packtpub.com/support
http://lingpipe.com




1
Simple Classifiers

In this chapter, we will cover the following recipes:

ff Deserializing and running a classifier

ff Getting confidence estimates from a classifier

ff Getting data from the Twitter API

ff Applying a classifier to a .csv file

ff Evaluation of classifiers – the confusion matrix

ff Training your own language model classifier

ff How to train and evaluate with cross validation

ff Viewing error categories – false positives

ff Understanding precision and recall

ff How to serialize a LingPipe object – classifier example

ff Eliminate near duplicates with the Jaccard distance

ff How to classify sentiment – simple version



Simple Classifiers

8

Introduction
This chapter introduces the LingPipe toolkit in the context of its competition and then dives 
straight into text classifiers. Text classifiers assign a category to text, for example, they assign 
the language to a sentence or tell us if a tweet is positive, negative, or neutral in sentiment. 
This chapter covers how to use, evaluate, and create text classifiers based on language models. 
These are the simplest machine learning-based classifiers in the LingPipe API. What makes 
them simple is that they operate over characters only—later, classifiers will have notions of 
words/tokens and even more. However, don't be fooled, character-language models are ideal 
for language identification, and they were the basis of some of the world's earliest commercial 
sentiment systems.

This chapter also covers crucial evaluation infrastructure—it turns out that almost everything 
we do turns out to be a classifier at some level of interpretation. So, do not skimp on the 
power of cross validation, definitions of precision/recall, and F-measure.

The best part is that you will learn how to programmatically access Twitter data to train up  
and evaluate your own classifiers. There is a boring bit concerning the mechanics of reading 
and writing LingPipe objects from/to disk, but other than that, this is a fun chapter. The goal  
of this chapter is to get you up and running quickly with the basic care and feeding of 
machine-learning techniques in the domain of natural language processing (NLP).

LingPipe is a Java toolkit for NLP-oriented applications. This book will show you how to solve 
common NLP problems with LingPipe in a problem/solution format that allows developers to 
quickly deploy solutions to common tasks.

LingPipe and its installation
LingPipe 1.0 was released in 2003 as a dual-licensed open source NLP Java library.  
At the time of writing this book, we are coming up on 2000 hits on Google Scholar and  
have thousands of commercial installs, ranging from universities to government agencies  
to Fortune 500 companies.

Current licensing is either AGPL (http://www.gnu.org/licenses/agpl-3.0.html)  
or our commercial license that offers more traditional features such as indemnification and 
non-sharing of code as well as support.

Projects similar to LingPipe
Nearly all NLP projects have awful acronyms so we will lay bare our own. LingPipe is the short 
form for linguistic pipeline, which was the name of the cvs directory in which Bob Carpenter 
put the initial code.

http://www.gnu.org/licenses/agpl-3.0.html


Chapter 1

9

LingPipe has lots of competition in the NLP space. The following are some of the more popular 
ones with a focus on Java:

ff NLTK: This is the dominant Python library for NLP processing.

ff OpenNLP: This is an Apache project built by a bunch of smart folks.

ff JavaNLP: This is a rebranding of Stanford NLP tools, again built by a bunch  
of smart folks.

ff ClearTK: This is a University of Boulder toolkit that wraps lots of popular machine 
learning frameworks.

ff DkPro: Technische Universität Darmstadt from Germany produced this UIMA-based 
project that wraps many common components in a useful manner. UIMA is a common 
framework for NLP.

ff GATE: GATE is really more of a framework than competition. In fact, LingPipe 
components are part of their standard distribution. It has a nice graphical "hook the 
components up" capability.

ff Learning Based Java (LBJ): LBJ is a special-purpose programming language based 
on Java, and it is geared toward machine learning and NLP. It was developed at the 
Cognitive Computation Group of the University of Illinois at Urbana Champaign.

ff Mallet: This name is the short form of MAchine Learning for LanguagE Toolkit. 
Apparently, reasonable acronym generation is short in supply these days. Smart  
folks built this too.

Here are some pure machine learning frameworks that have broader appeal but are not 
necessarily tailored for NLP tasks:

ff Vowpal Wabbit: This is very focused on scalability around Logistic Regression,  
Latent Dirichelet Allocation, and so on. Smart folks drive this.

ff Factorie: It is from UMass, Amherst and an alternative offering to Mallet. Initially it 
focused primarily on graphic models, but now it also supports NLP tasks.

ff Support Vector Machine (SVM): SVM light and libsvm are very popular SVM 
implementations. There is no SVM implementation in LingPipe, because logistic 
regression does this as well.

So, why use LingPipe?
It is very reasonable to ask why choose LingPipe with such outstanding free competition 
mentioned earlier. There are a few reasons:

ff Documentation: The class-level documentation in LingPipe is very thorough. If the 
work is based on academic work, that work is cited. Algorithms are laid out, the 
underlying math is explained, and explanations are precise. What the documentation 
lacks is a "how to get things done" perspective; however, this is covered in this book.



Simple Classifiers

10

ff Enterprise/server optimized: LingPipe is designed from the ground up for server 
applications, not for command-line usage (though we will be using the command line 
extensively throughout the book).

ff Coded in the Java dialect: LingPipe is a native Java API that is designed  
according to standard Java class design principles (Joshua Bloch's Effective Java, 
by Addison-Wesley), such as consistency checks on construction, immutability, type 
safety, backward-compatible serializability, and thread safety.

ff Error handling: Considerable attention is paid to error handling through exceptions 
and configurable message streams for long-running processes.

ff Support: LingPipe has paid employees whose job is to answer your questions and 
make sure that LingPipe is doing its job. The rare bug gets fixed in under 24 hours 
typically. They respond to questions very quickly and are very willing to help people.

ff Consulting: You can hire experts in LingPipe to build systems for you. Generally, they 
teach developers how to build NLP systems as a byproduct.

ff Consistency: The LingPipe API was designed by one person, Bob Carpenter, with an 
obsession of consistency. While it is not perfect, you will find a regularity and eye to 
design that can be missing in academic efforts. Graduate students come and go, and 
the resulting contributions to university toolkits can be quite varied.

ff Open source: There are many commercial providers, but their software is a black box. 
The open source nature of LingPipe provides transparency and confidence that the 
code is doing what we ask it to do. When the documentation fails, it is a huge relief  
to have access to code to understand it better.

Downloading the book code and data
You will need to download the source code for this cookbook, with supporting models  
and data from http://alias-i.com/book.html. Untar and uncompress it using the 
following command:

tar –xvzf lingpipeCookbook.tgz

Downloading the example code
You can download the example code files for all Packt books you have 
purchased from your account at http://www.packtpub.com. If you 
purchased this book elsewhere, you can visit http://www.packtpub.
com/support and register to have the files e-mailed directly to you.

Alternatively, your operating system might provide other ways of extracting the archive.  
All recipes assume that you are running the commands in the resulting cookbook directory.

http://alias-i.com/book.html
http://www.packtpub.com
http://www.packtpub.com/support
http://www.packtpub.com/support


Chapter 1

11

Downloading LingPipe
Downloading LingPipe is not strictly necessary, but you will likely want to be able to look at the 
source and have a local copy of the Javadoc.

The download and installation instructions for LingPipe can be found at http://alias-i.
com/lingpipe/web/install.html.

The examples from this chapter use command-line invocation, but it is assumed that the 
reader has sufficient development skills to map the examples to their preferred IDE/ant  
or other environment.

Deserializing and running a classifier
This recipe does two things: introduces a very simple and effective language ID classifier 
and demonstrates how to deserialize a LingPipe class. If you find yourself here from a later 
chapter, trying to understand deserialization, I encourage you to run the example program 
anyway. It will take 5 minutes, and you might learn something useful.

Our language ID classifier is based on character language models. Each language model gives 
you the probability of the text, given that it is generated in that language. The model that is 
most familiar with the text is the first best fit. This one has already been built, but later in the 
chapter, you will learn to make your own.

How to do it...
Perform the following steps to deserialize and run a classifier:

1.	 Go to the cookbook directory for the book and run the command for OSX, Unix,  
and Linux:
java -cp lingpipe-cookbook.1.0.jar:lib/lingpipe-4.1.0.jar com.
lingpipe.cookbook.chapter1.RunClassifierFromDisk

For Windows invocation (quote the classpath and use ; instead of :):
java -cp "lingpipe-cookbook.1.0.jar;lib\lingpipe-4.1.0.jar" com.
lingpipe.cookbook.chapter1.RunClassifierFromDisk

We will use the Unix style command line in this book.

http://alias-i.com/lingpipe/web/install.html
http://alias-i.com/lingpipe/web/install.html


Simple Classifiers

12

2.	 The program reports the model being loaded and a default, and prompts for a 
sentence to classify:
Loading: models/3LangId.LMClassifier

Type a string to be classified. Empty string to quit.

The rain in Spain falls mainly on the plain.

english

Type a string to be classified. Empty string to quit.

la lluvia en España cae principalmente en el llano.

spanish

Type a string to be classified. Empty string to quit.

スペインの雨は主に平野に落ちる。

japanese

3.	 The classifier is trained on English, Spanish, and Japanese. We have entered an 
example of each—to get some Japanese, go to http://ja.wikipedia.org/
wiki/. These are the only languages it knows about, but it will guess on any text.  
So, let's try some Arabic:
Type a string to be classified. Empty string to quit.

.لهس ىلع اساسأ عقي اينابسا يف رطملا

japanese

4.	 It thinks it is Japanese because this language has more characters than English or 
Spanish. This in turn leads that model to expect more unknown characters. All the 
Arabic characters are unknown.

5.	 If you are working with a Windows terminal, you might encounter difficulty entering 
UTF-8 characters.

How it works...
The code in the jar is cookbook/src/com/lingpipe/cookbook/chapter1/ 
RunClassifierFromDisk.java. What is happening is that a pre-built model for language 
identification is deserialized and made available. It has been trained on English, Japanese, 
and Spanish. The training data came from Wikipedia pages for each language. You can see 
the data in data/3LangId.csv. The focus of this recipe is to show you how to deserialize 
the classifier and run it—training is handled in the Training your own language model classifier 
recipe in this chapter. The entire code for the RunClassifier FromDisk.java class starts 
with the package; then it imports the start of the RunClassifierFromDisk class and the 
start of main():

package com.lingpipe.cookbook.chapter1;
import java.io.File;

http://ja.wikipedia.org/wiki/
http://ja.wikipedia.org/wiki/


Chapter 1

13

import java.io.IOException;

import com.aliasi.classify.BaseClassifier;
import com.aliasi.util.AbstractExternalizable;
import com.lingpipe.cookbook.Util;
public class RunClassifierFromDisk {
  public static void main(String[] args) throws
  IOException, ClassNotFoundException {

The preceding code is a very standard Java code, and we present it without explanation.  
Next is a feature in most recipes that supplies a default value for a file if the command line 
does not contain one. This allows you to use your own data if you have it, otherwise it will 
run from files in the distribution. In this case, a default classifier is supplied if there is no 
argument on the command line:

String classifierPath = args.length > 0 ? args[0]  
:  "models/3LangId.LMClassifier";
System.out.println("Loading: " + classifierPath);

Next, we will see how to deserialize a classifier or another LingPipe object from disk:

File serializedClassifier = new File(classifierPath);
@SuppressWarnings("unchecked")
BaseClassifier<String> classifier
  = (BaseClassifier<String>)
  AbstractExternalizable.readObject(serializedClassifier);

The preceding code snippet is the first LingPipe-specific code, where the classifier is built 
using the static AbstractExternalizable.readObject method. 

This class is employed throughout LingPipe to carry out a compilation of classes for two 
reasons. First, it allows the compiled objects to have final variables set, which supports 
LingPipe's extensive use of immutables. Second, it avoids the messiness of exposing the 
I/O methods required for externalization and deserialization, most notably, the no-argument 
constructor. This class is used as the superclass of a private internal class that does the 
actual compilation. This private internal class implements the required no-arg constructor 
and stores the object required for rea�dResolve().

The reason we use Externalizable instead of Serializable 
is to avoid breaking backward compatibility when changing any 
method signatures or member variables. Externalizable extends 
Serializable and allows control of how the object is read or written. For 
more information on this, refer to the excellent chapter on serialization in 
Josh Bloch's book, Effective Java, 2nd Edition.



Simple Classifiers

14

BaseClassifier<E> is the foundational classifier interface, with E being the type of 
object being classified in LingPipe. Look at the Javadoc to see the range of classifiers that 
implements the interface—there are 10 of them. Deserializing to BaseClassifier<E>  
hides a good bit of complexity, which we will explore later in the How to serialize a LingPipe 
object – classifier example recipe in this chapter.

The last line calls a utility method, which we will use frequently in this book:

Util.consoleInputBestCategory(classifier);

This method handles interactions with the command line. The code is in src/com/
lingpipe/cookbook/Util.java:

public static void consoleInputBestCategory(
BaseClassifier<CharSequence> classifier) throws IOException {
  BufferedReader reader = new BufferedReader( 
    new InputStreamReader(System.in));
  while (true) {
    System.out.println("\nType a string to be classified. "  
      + " Empty string to quit.");
    String data = reader.readLine();
    if (data.equals("")) {
      return;
    }
    Classification classification = classifier.classify(data);
    System.out.println("Best Category: " +  
      classification.bestCategory());
  }
}

Once the string is read in from the console, then classifier.classify(input) is called, 
which returns Classification. This, in turn, provides a String label that is printed out. 
That's it! You have run a classifier.

Getting confidence estimates from a 
classifier

Classifiers tend to be a lot more useful if they give more information about how confident they 
are of the classification—this is usually a score or a probability. We often threshold classifiers 
to help fit the performance requirements of an installation. For example, if it was vital that 
the classifier never makes a mistake, then we could require that the classification be very 
confident before committing to a decision.



Chapter 1

15

LingPipe classifiers exist on a hierarchy based on the kinds of estimates they provide.  
The backbone is a series of interfaces—don't freak out; it is actually pretty simple. You don't 
need to understand it now, but we do need to write it down somewhere for future reference:

ff BaseClassifier<E>: This is just your basic classifier of objects of type E.  
It has a classify() method that returns a classification, which in turn has  
a bestCategory() method and a toString() method that is of some  
informative use.

ff RankedClassifier<E> extends BaseClassifier<E>: The classify() 
method returns RankedClassification, which extends Classification 
and adds methods for category(int rank) that says what the 1st to nth 
classifications are. There is also a size() method that indicates how many 
classifications there are.

ff ScoredClassifier<E> extends RankedClassifier<E>: The returned 
ScoredClassification adds a score(int rank) method.

ff ConditionalClassifier<E> extends RankedClassifier<E>: 
ConditionalClassification produced by this has the property 
that the sum of scores for all categories must sum to 1 as accessed 
via the conditionalProbability(int rank) method and 
conditionalProbability(String category). There's more; you can read the 
Javadoc for this. This classification will be the work horse of the book when things get 
fancy, and we want to know the confidence that the tweet is English versus the tweet 
is Japanese versus the tweet is Spanish. These estimates will have to sum to 1.

ff JointClassifier<E> extends ConditionalClassifier<E>: This provides 
JointClassification of the input and category in the space of all the possible 
inputs, and all such estimates sum to 1. This is a sparse space, so values are log 
based to avoid underflow errors. We don't see a lot of use of this estimate directly  
in production.

It is obvious that there has been a great deal of thought put into the classification stack 
presented. This is because huge numbers of industrial NLP problems are handled by a 
classification system in the end.

It turns out that our simplest classifier—in some arbitrary sense of simple—produces the 
richest estimates, which are joint classifications. Let's dive in.



Simple Classifiers

16

Getting ready
In the previous recipe, we blithely deserialized to BaseClassifier<String> that hid 
all the details of what was going on. The reality is a bit more complex than suggested by 
the hazy abstract class. Note that the file on disk that was loaded is named 3LangId.
LMClassifier. By convention, we name serialized models with the type of object it will 
deserialize to, which, in this case, is LMClassifier, and it extends BaseClassifier.  
The most specific typing for the classifier is:

LMClassifier<CompiledNGramBoundaryLM, 
      MultivariateDistribution> classifier  
   = (LMClassifier <CompiledNGramBoundaryLM, 
  MultivariateDistribution>) AbstractExternalizable.readObject(new 
File(args[0]));

The cast to LMClassifier<CompiledNGramBoundaryLM, 
MultivariateDistribution> specifies the type of distribution to be 
MultivariateDistribution. The Javadoc for com.aliasi.stats.
MultivariateDistribution is quite explicit and helpful in describing what this is.

MultivariateDistribution implements a discrete 
distribution over a finite set of outcomes, numbered 
consecutively from zero.

The Javadoc goes into a lot of detail about MultivariateDistribution, but it basically 
means that we can have an n-way assignment of probabilities that sum to 1. 

The next class in the cast is for CompiledNGramBoundaryLM, which is the "memory" of 
the LMClassifier. In fact, each language gets its own. This means that English will have a 
separate language model from Spanish and so on. There are eight different kinds of language 
models that could have been used as this part of the classifier—consult the Javadoc for the 
LanguageModel interface. Each language model (LM) has the following properties:

ff The LM will provide a probability that it generated the text provided. It is robust 
against data that it has not seen before, in the sense that it won't crash or give  
a zero probability. Arabic just comes across as a sequence of unknown characters  
for our example.

ff The sum of all the possible character sequence probabilities of any length is 1  
for boundary LMs. Process LMs sum the probability to 1 over all sequences of the 
same length. Look at the Javadoc for how this bit of math is done.

ff Each language model has no knowledge of data outside of its category.



Chapter 1

17

ff The classifier keeps track of the marginal probability of the category and factors this 
into the results for the category. Marginal probability is saying that we tend to see 
two-thirds English, one-sixth Spanish, and one-sixth Japanese in Disney tweets.  
This information is combined with the LM estimates.

ff The LM is a compiled version of LanguageModel.Dynamic that we will cover  
in the later recipes that discuss training.

LMClassifier that is constructed wraps these components into a classifier.

Luckily, the interface saves the day with a more aesthetic deserialization:

JointClassifier<String> classifier = (JointClassifier<String>) 
AbstractExternalizable.readObject(new File(classifierPath));

The interface hides the guts of the implementation nicely and this is what we are going with in 
the example program.

How to do it…
This recipe is the first time we start peeling away from what classifiers can do, but first,  
let's play with it a bit:

1.	 Get your magic shell genie to conjure a command prompt with a Java interpreter  
and type:
java -cp lingpipe-cookbook.1.0.jar:lib/lingpipe-4.1.0.jar: com.
lingpipe.cookbook.chapter1.RunClassifierJoint 

2.	 We will enter the same data as we did earlier:
Type a string to be classified. Empty string to quit.

The rain in Spain falls mainly on the plain.

Rank Categ Score   P(Category|Input) log2 P(Category,Input)

0=english -3.60092 0.9999999999         -165.64233893156052

1=spanish -4.50479 3.04549412621E-13    -207.2207276413206

2=japanese -14.369 7.6855682344E-150    -660.989401136873

As described, JointClassification carries through all the classification metrics in the 
hierarchy rooted at Classification. Each level of classification shown as follows adds to 
the classifiers preceding it:

ff Classification provides the first best category as the rank 0 category.

ff RankedClassification adds an ordering of all the possible categories with a 
lower rank corresponding to greater likelihood of the category. The rank column 
reflects this ordering.



Simple Classifiers

18

ff ScoredClassification adds a numeric score to the ranked output. Note that 
scores might or might not compare well against other strings being classified 
depending on the type of classifier. This is the column labeled Score. To understand 
the basis of this score, consult the relevant Javadoc.

ff ConditionalClassification further refines the score by making it a category 
probability conditioned on the input. The probabilities of all categories will sum up to 
1. This is the column labeled P(Category|Input), which is the traditional way to 
write probability of the category given the input.

ff JointClassification adds the log2 (log base 2) probability of the input and the 
category—this is the joint probability. The probabilities of all categories and inputs will 
sum up to 1, which is a very large space indeed with very low probabilities assigned 
to any pair of category and string. This is why log2 values are used to prevent 
numerical underflow. This is the column labeled log 2 P(Category, Input), 
which is translated as the log2 probability of the category and input.

Look at the Javadoc for the com.aliasi.classify package for more information on the 
metrics and classifiers that implement them.

How it works…
The code is in src/com/lingpipe/cookbook/chapter1/RunClassifierJoint.java, 
and it deserializes to a JointClassifier<CharSequence>:

public static void main(String[] args) throws IOException, 
  ClassNotFoundException {
  String classifierPath  = args.length > 0 ? args[0] : 
    "models/3LangId.LMClassifier";
  @SuppressWarnings("unchecked") 
    JointClassifier<CharSequence> classifier 
    = (JointClassifier<CharSequence>) 
    AbstractExternalizable.readObject(new File(classifierPath));
  Util.consoleInputPrintClassification(classifier);
}

It makes a call to Util.consoleInputPrintClassification(classifier), which 
minimally differs from Util.consoleInputBestCategory(classifier), in that it uses 
the toString() method of classification to print. The code is as follows:

public static void consoleInputPrintClassification(BaseClassifier<Cha
rSequence> 
classifier) throws IOException {
  BufferedReader reader = new BufferedReader(new 
    InputStreamReader(System.in));
  while (true) {



Chapter 1

19

    System.out.println("\nType a string to be classified." + Empty 
string to quit.");
    String data = reader.readLine();
    if (data.equals("")) {
      return;
    }
    Classification classification = classifier.classify(data);
    System.out.println(classification);
  }
}

We got a richer output than we expected, because the type is Classification, but the 
toString() method will be applied to the runtime type JointClassification.

See also
ff There is detailed information in Chapter 6, Character Language Models of Text  

Analysis with LingPipe 4, by Bob Carpenter and Breck Baldwin, LingPipe Publishing 
(http://alias-i.com/lingpipe-book/lingpipe-book-0.5.pdf) on 
language models.

Getting data from the Twitter API
We use the popular twitter4j package to invoke the Twitter Search API, and search for 
tweets and save them to disk. The Twitter API requires authentication as of Version 1.1, and 
we will need to get authentication tokens and save them in the twitter4j.properties file 
before we get started.

Getting ready
If you don't have a Twitter account, go to twitter.com/signup and create an account.  
You will also need to go to dev.twitter.com and sign in to enable yourself for the 
developer account. Once you have a Twitter login, we'll be on our way to creating the Twitter 
OAuth credentials. Be prepared for this process to be different from what we are presenting. 
In any case, we will supply example results in the data directory. Let's now create the Twitter 
OAuth credentials:

1.	 Log in to dev.twitter.com.

2.	 Find the little pull-down menu next to your icon on the top bar.

3.	 Choose My Applications.

4.	 Click on Create a new application.

5.	 Fill in the form and click on Create a Twitter application.

http://alias-i.com/lingpipe-book/lingpipe-book-0.5.pdf
twitter.com/signup
dev.twitter.com
dev.twitter.com

