

AngularJS Web
Application
Development
Cookbook

Over 90 hands-on recipes to architect performant
applications and implement best practices in AngularJS

Matt Frisbie

BIRMINGHAM - MUMBAI

AngularJS Web Application Development
Cookbook

Copyright © 2014 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system,
or transmitted in any form or by any means, without the prior written permission of the
publisher, except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the
information presented. However, the information contained in this book is sold without
warranty, either express or implied. Neither the author, nor Packt Publishing, and its dealers
and distributors will be held liable for any damages caused or alleged to be caused directly
or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies
and products mentioned in this book by the appropriate use of capitals. However, Packt
Publishing cannot guarantee the accuracy of this information.

First published: December 2014

Production reference: 1191214

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78328-335-4

www.packtpub.com

Cover image by Suyog Gharat (yogiee@me.com)

www.packtpub.com

Credits

Author
Matt Frisbie

Reviewers
Pawel Czekaj

Patrick Gillespie

Aakash Patel

Adam Štipák

Commissioning Editor
Akram Hussain

Acquisition Editor
Sam Wood

Content Development Editor
Govindan K

Technical Editors
Taabish Khan

Parag Topre

Copy Editors
Deepa Nambiar

Neha Vyas

Project Coordinator
Shipra Chawhan

Proofreaders
Simran Bhogal

Maria Gould

Ameesha Green

Paul Hindle

Indexer
Mariammal Chettiyar

Graphics
Abhinash Sahu

Production Coordinator
Arvindkumar Gupta

Cover Work
Arvindkumar Gupta

About the Author

Matt Frisbie is currently a full stack developer at DoorDash (YC S13), where he joined
as the first engineer. He led their adoption of AngularJS, and he also focuses on the
infrastructural, predictive, and data projects within the company.

Matt has a degree in Computer Engineering from the University of Illinois at Urbana-Champaign.
He is the author of the video series Learning AngularJS, available through O'Reilly Media.
Previously, he worked as an engineer at several educational technology start-ups.

About the Reviewers

Pawel Czekaj has a Bachelor's degree in Computer Science. He is a web developer
with strong backend (PHP, MySQL, and Unix systems) and frontend (AngularJS, Backbone.
js, jQuery, and PhoneGap) experience. He loves JavaScript and AngularJS. Previously, he has
worked as a senior full stack web developer. Currently, he is working as a frontend developer
for Cognifide and as a web developer for SMS Air Inc. In his free time, he likes to develop
mobile games. You can contact him at http://yadue.eu.

Patrick Gillespie is a senior software engineer at PROTEUS Technologies. He has
been working in the field of web development for over 15 years and has both a Master's
and Bachelor's degree in Computer Science. In his spare time, he enjoys working on web
projects for his personal site (http://patorjk.com), spending time with his family,
and listening to music.

Aakash Patel is the cofounder and CTO of Flytenow, a ride sharing platform for small
planes. He has industry experience of client-side development using AngularJS, and he
is a student at Carnegie Mellon University (CMU).

Adam Štipák is currently a full stack developer. He has more than 8 years of professional
experience with web development. He specializes in AMP technologies (where A stands for
Apache, M for MySQL, and P for PHP). He also likes other technologies such as JavaScript,
AngularJS, and Grunt. He is also interested in functional programming in Scala. He likes
open source software in general.

http://yadue.eu
http://patorjk.com

www.PacktPub.com

Support files, eBooks, discount offers, and more
For support files and downloads related to your book, please visit www.PacktPub.com.

Did you know that Packt offers eBook versions of every book published, with PDF and ePub
files available? You can upgrade to the eBook version at www.PacktPub.com and as a print
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at
service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up
for a range of free newsletters and receive exclusive discounts and offers on Packt books
and eBooks.

TM

https://www2.packtpub.com/books/subscription/packtlib

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital book
library. Here, you can search, access, and read Packt's entire library of books.

Why subscribe?
 f Fully searchable across every book published by Packt

 f Copy and paste, print, and bookmark content

 f On demand and accessible via a web browser

Free access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access PacktLib
today and view 9 entirely free books. Simply use your login credentials for immediate access.

www.PacktPub.com
www.PacktPub.com
www.PacktPub.com
https://www2.packtpub.com/books/subscription/packtlib
www.PacktPub.com

Writing about a subject as tumultuous as JavaScript frameworks
is a bit like bull riding.

To Jordan, my family, and my friends—you helped me hang on.

Table of Contents
Preface 1
Chapter 1: Maximizing AngularJS Directives 7

Introduction 7
Building a simple element directive 8
Working through the directive spectrum 9
Manipulating the DOM 15
Linking directives 17
Interfacing with a directive using isolate scope 20
Interaction between nested directives 24
Optional nested directive controllers 26
Directive scope inheritance 28
Directive templating 30
Isolate scope 33
Directive transclusion 35
Recursive directives 37

Chapter 2: Expanding Your Toolkit with Filters and Service Types 45
Introduction 46
Using the uppercase and lowercase filters 46
Using the number and currency filters 48
Using the date filter 51
Debugging using the json filter 53
Using data filters outside the template 55
Using built-in search filters 56
Chaining filters 59
Creating custom data filters 61
Creating custom search filters 64
Filtering with custom comparators 65
Building a search filter from scratch 68

ii

Table of Contents

Building a custom search filter expression from scratch 71
Using service values and constants 73
Using service factories 75
Using services 76
Using service providers 78
Using service decorators 80

Chapter 3: AngularJS Animations 83
Introduction 83
Creating a simple fade in/out animation 84
Replicating jQuery's slideUp() and slideDown() methods 89
Creating enter animations with ngIf 92
Creating leave and concurrent animations with ngView 98
Creating move animations with ngRepeat 105
Creating addClass animations with ngShow 115
Creating removeClass animations with ngClass 120
Staggering batched animations 125

Chapter 4: Sculpting and Organizing your Application 131
Introduction 131
Manually bootstrapping an application 132
Using safe $apply 135
Application file and module organization 140
Hiding AngularJS from the user 143
Managing application templates 145
The "Controller as" syntax 149

Chapter 5: Working with the Scope and Model 153
Introduction 153
Configuring and using AngularJS events 153
Managing $scope inheritance 157
Working with AngularJS forms 168
Working with <select> and ngOptions 175
Building an event bus 182

Chapter 6: Testing in AngularJS 189
Introduction 189
Configuring and running your test environment in Yeoman and Grunt 190
Understanding Protractor 193
Incorporating E2E tests and Protractor in Grunt 194
Writing basic unit tests 197
Writing basic E2E tests 204
Setting up a simple mock backend server 209

iii

Table of Contents

Writing DAMP tests 212
Using the Page Object test pattern 214

Chapter 7: Screaming Fast AngularJS 221
Introduction 222
Recognizing AngularJS landmines 222
Creating a universal watch callback 224
Inspecting your application's watchers 225
Deploying and managing $watch types efficiently 228
Optimizing the application using reference $watch 229
Optimizing the application using equality $watch 232
Optimizing the application using $watchCollection 234
Optimizing the application using $watch deregistration 236
Optimizing template-binding watch expressions 237
Optimizing the application with the compile phase in ng-repeat 239
Optimizing the application using track by in ng-repeat 241
Trimming down watched models 242

Chapter 8: Promises 245
Introduction 245
Understanding and implementing a basic promise 246
Chaining promises and promise handlers 253
Implementing promise notifications 258
Implementing promise barriers with $q.all() 260
Creating promise wrappers with $q.when() 263
Using promises with $http 264
Using promises with $resource 267
Using promises with Restangular 268
Incorporating promises into native route resolves 270
Implementing nested ui-router resolves 273

Chapter 9: What's New in AngularJS 1.3 277
Introduction 277
Using HTML5 datetime input types 278
Combining watchers with $watchGroup 279
Sanity checking with ng-strict-di 281
Controlling model input with ngModelOptions 282
Incorporating $touched and $submitted states 287
Cleaning up form errors with ngMessages 289
Trimming your watch list with lazy binding 292
Creating and integrating custom form validators 295

iv

Table of Contents

Chapter 10: AngularJS Hacks 301
Introduction 301
Manipulating your application from the console 302
DRYing up your controllers 304
Using ng-bind instead of ng-cloak 306
Commenting JSON files 308
Creating custom AngularJS comments 309
Referencing deep properties safely using $parse 312
Preventing redundant parsing 316

Index 321

Preface
"Make it work. Make it right. Make it fast."

Back when the world was young, Kent Beck forged this prophetic sentiment. Even today, in
the ultra-modern realm of performant single-page application JavaScript frameworks, his idea
still holds sway. This nine-word expression describes the general progression through which a
pragmatic developer creates high-quality software.

In the process of discovering how to optimally wield a technology, a developer will execute
this progression many times, and each time will be a learning experience regarding some
new understanding of the technology.

This cookbook is intended to act as a companion guide through this process. The recipes in this
book will intimately examine every major aspect of the framework in order to maximize your
comprehension. Every time you open this book, you should gain an expanded understanding of
the brilliance of the AngularJS framework.

What this book covers
Chapter 1, Maximizing AngularJS Directives, dissects the various components of directives and
demonstrates how to wield them in your applications. Directives are the bread and butter of
AngularJS, and the tools presented in this chapter will maximize your ability to take advantage
of their extensibility.

Chapter 2, Expanding Your Toolkit with Filters and Service Types, covers two major tools for
code abstraction in your application. Filters are an important pipeline between the model and
its appearance in the view, and are essential tools for managing data presentation. Services
act as broadly applicable houses for dependency-injectable modules and resource access.

Chapter 3, AngularJS Animations, offers a collection of recipes that demonstrate various ways
to effectively incorporate animations into your application. Additionally, it will dive deep down
into the internals of animations in order to give you a complete perspective on how everything
really works under the hood.

Preface

2

Chapter 4, Sculpting and Organizing Your Application, gives you strategies for controlling the
application initialization, organizing your files and modules, and managing your template delivery.

Chapter 5, Working with the Scope and Model, breaks open the various components
involving ngModel and provides details of the ways in which they can integrate into
your application flow.

Chapter 6, Testing in AngularJS, gives you all the pieces you need to jump into writing test-driven
applications. It demonstrates how to configure a fully operational testing environment, how
to organize your test files and modules, and everything involved in creating a suite of unit
and E2E tests.

Chapter 7, Screaming Fast AngularJS, is a response to anyone who has ever complained
about AngularJS being slow. The recipes in this chapter give you all the tools you need to tune
all aspects of your application's performance and take it from a steam engine to a bullet train.

Chapter 8, Promises, breaks apart the asynchronous program flow construct, exposes
its internals, then builds it all the way back up to discuss strategies for your application's
integration. This chapter also demonstrates how promises can and should integrate into
your application's routing and resource access utilities.

Chapter 9, What's New in AngularJS 1.3, goes through how your application can integrate
the slew of new features and changes that were introduced in the AngularJS 1.3 and the
later AngularJS 1.2.x releases.

Chapter 10, AngularJS Hacks, is a collection of clever and interesting strategies that you can
use to stretch the boundaries of AngularJS's organization and performance.

What you need for this book
Almost every example in this book has been added to JSFiddle, with the links provided in the
text. This allows you to merely visit a URL in order to test and modify the code with no setup of
any kind, on any major browser and on any major operating system. If you want to replicate an
example outside of JSFiddle, all the external content (AngularJS, AngularJS modules, third-party
libraries and modules) is served from https://code.angularjs.org/ and https://
cdnjs.com/.

Chapter 6, Testing in AngularJS, involves setting up a testing framework, which should be
able to be accomplished on any major Unix-based operating system (OS X and, Linux). The
test suite is built on top of Grunt, Karma, Selenium, and Protractor; all of these and their
dependencies can be installed through npm.

https://code.angularjs.org/
https://cdnjs.com/
https://cdnjs.com/

Preface

3

Who this book is for
There are already plenty of introductory resources to guide a green developer into the thick
of AngularJS. This cookbook is for developers with at least basic knowledge of JavaScript
and AngularJS, and who are looking to expand their perspective on the framework.

The goal of this text is to have you walk away from reading about an AngularJS concept armed
with a solid understanding of how it works, insight into the best ways to wield it in real-world
applications, and annotated code examples to get you started.

Sections
In this book, you will find several headings that appear frequently (Getting ready, How to do it,
How it works, There's more, and See also).

To give clear instructions on how to complete a recipe, we use these sections as follows:

Getting ready
This section tells you what to expect in the recipe, and describes how to set up any software or
any preliminary settings required for the recipe.

How to do it…
This section contains the steps required to follow the recipe.

How it works…
This section usually consists of a detailed explanation of what happened in the previous section.

There's more…
This section consists of additional information about the recipe in order to make the reader
more knowledgeable about the recipe.

See also
This section provides helpful links to other useful information for the recipe.

Preface

4

Conventions
In this book, you will find a number of styles of text that distinguish between different kinds of
information. Here are some examples of these styles, and an explanation of their meaning.

Code words in text, database table names, folder names, filenames, file extensions, pathnames,
dummy URLs, user input, and Twitter handles are shown as follows: "By cleverly using directives
and the $compile service, this exact directive functionality is possible."

A block of code is set as follows:

(index.html)

<!-- specify root element of application -->
<div ng-app="myApp">
 <!-- register 'my-template.html' with $templateCache -->
 <script type="text/ng-template" id="my-template.html">
 <div ng-repeat="num in [1,2,3,4,5]">{{ num }}</div>
 </script>

 <!-- your custom element -->
 <my-directive></my-directive>
</div>

When we wish to draw your attention to a particular part of a code block, the relevant lines or
items are set in bold:

(app.js)

.directive('iso', function () {
 return {
 scope: {}
 };
});

Any command-line input or output is written as follows:

npm install protractor grunt-protractor-runner --save-dev

Preface

5

New terms and important words are shown in bold. Words that you see on the screen,
in menus or dialog boxes for example, appear in the text like this: "The following directive
will display NW, NE, SW, or SE depending on where the cursor is relative to it."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about this book—
what you liked or may have disliked. Reader feedback is important for us to develop titles that
you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com, and
mention the book title via the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing or
contributing to a book, see our author guide on www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to help you to
get the most from your purchase.

Downloading the example code
You can download the example code files for all Packt books you have purchased from
your account at http://www.packtpub.com. If you purchased this book elsewhere,
you can visit http://www.packtpub.com/support and register to have the files
e-mailed directly to you.

www.packtpub.com/authors
http://www.packtpub.com
http://www.packtpub.com/support

Preface

6

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes do
happen. If you find a mistake in one of our books—maybe a mistake in the text or the code—
we would be grateful if you would report this to us. By doing so, you can save other readers
from frustration and help us improve subsequent versions of this book. If you find any errata,
please report them by visiting http://www.packtpub.com/submit-errata, selecting
your book, clicking on the errata submission form link, and entering the details of your
errata. Once your errata are verified, your submission will be accepted and the errata will
be uploaded on our website, or added to any list of existing errata, under the Errata section
of that title. Any existing errata can be viewed by selecting your title from http://www.
packtpub.com/support.

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media. At Packt,
we take the protection of our copyright and licenses very seriously. If you come across any
illegal copies of our works, in any form, on the Internet, please provide us with the location
address or website name immediately so that we can pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected pirated material.

We appreciate your help in protecting our authors, and our ability to bring you valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with any
aspect of the book, and we will do our best to address it.

http://www.packtpub.com/submit-errata
http://www.packtpub.com/support
http://www.packtpub.com/support

1
Maximizing AngularJS

Directives

In this chapter, we will cover the following recipes:

 f Building a simple element directive

 f Working through the directive spectrum

 f Manipulating the DOM

 f Linking directives

 f Interfacing with a directive using isolate scope

 f Interaction between nested directives

 f Optional nested directive controllers

 f Directive scope inheritance

 f Directive templating

 f Isolate scope

 f Directive transclusion

 f Recursive directives

Introduction
In this chapter, you will learn how to shape AngularJS directives in order to perform meaningful
work in your applications. Directives are perhaps the most flexible and powerful tool available
to you in this framework and utilizing them effectively is integral to architecting clean and
scalable applications. By the same token, it is very easy to fall prey to directive antipatterns,
and in this chapter, you will learn how to use the features of directives appropriately.

Maximizing AngularJS Directives

8

Building a simple element directive
One of the most common use cases of directives is to create custom HTML elements that
are able to encapsulate their own template and behavior. Directive complexity increases
very quickly, so ensuring your understanding of its foundation is essential. This recipe will
demonstrate some of the most basic features of directives.

How to do it…
Creating directives in AngularJS is accomplished with a directive definition object. This object,
which is returned from the definition function, contains various properties that serve to shape
how a directive will act in your application.

You can build a simple custom element directive easily with the following code:

(app.js)

// application module definition
angular.module('myApp', [])
.directive('myDirective', function() {
 // return the directive definition object
 return {
 // only match this directive to element tags
 restrict: 'E',
 // insert the template matching 'my-template.html'
 templateUrl: 'my-template.html'
 };
});

As you might have guessed, it's bad practice to define your directive template with the
template property unless it is very small, so this example will skip right to what you will
be using in production: templateUrl and $templateCache. For this recipe, you'll use a
relatively simple template, which can be added to $templateCache using ng-template.
An example application will appear as follows:

(index.html)

<!-- specify root element of application -->
<div ng-app="myApp">
 <!-- register 'my-template.html' with $templateCache -->
 <script type="text/ng-template" id="my-template.html">
 <div ng-repeat="num in [1,2,3,4,5]">{{ num }}</div>
 </script>

 <!-- your custom element -->
 <my-directive></my-directive>
</div>

Chapter 1

9

When AngularJS encounters an instance of a custom directive in the index.html template, it
will compile the directive into HTML that makes sense to the browser, which will look as follows:

<div>1</div>
<div>2</div>
<div>3</div>
<div>4</div>
<div>5</div>

JSFiddle: http://jsfiddle.net/msfrisbie/uwpdptLn/

How it works…
The restrict: 'E' statement indicates that your directive will appear as an element. It simply
instructs AngularJS to search for an element in the DOM that has the my-directive tag.

Especially in the context of directives, you should always think of AngularJS as an HTML compiler.
AngularJS traverses the DOM tree of the page to look for directives (among many other things)
that it needs to perform an action for. Here, AngularJS looks at the <my-directive> element,
locates the relevant template in $templateCache, and inserts it into the page for the browser
to handle. The provided template will be compiled in the same way, so the use of ng-repeat
and other AngularJS directives is fair game, as demonstrated here.

There's more…
A directive in this fashion, though useful, isn't really what directives are for. It provides a nice
jumping-off point and gives you a feel of how it can be used. However, the purpose that your
custom directive is serving can be better implemented with the built-in ng-include directive,
which inserts a template into the designated part of HTML. This is not to say that directives
shouldn't ever be used this way, but it's always good practice to not reinvent the wheel.
Directives can do much more than template insertion (which you will soon see), and it's
best to leave the simple tasks to the tools that AngularJS already provides to you.

Working through the directive spectrum
Directives can be incorporated into HTML in several different ways. Depending on how this
incorporation is done, the way the directive will interact with the DOM will change.

http://jsfiddle.net/msfrisbie/uwpdptLn/

Maximizing AngularJS Directives

10

How to do it…
All directives are able to define a link function, which defines how that particular directive
instance will interact with the part of the DOM it is attached to. The link functions have three
parameters by default: the directive scope (which you will learn more about later), the relevant
DOM element, and the element's attributes as key-value pairs.

A directive can exist in a template in four different ways: as an HTML pseudo-element, as an
HTML element attribute, as a class, and as a comment.

The element directive
The element directive takes the form of an HTML tag. As with any HTML tag, it can wrap
content, have attributes, and live inside other HTML elements.

The directive can be used in a template in the following fashion:

(index.html)

<div ng-app="myApp">
 <element-directive some-attr="myvalue">
 <!-- directive's HTML contents -->
 </element-directive>
</div>

This will result in the directive template replacing the wrapped contents of the <element-
directive> tag with the template. This element directive can be defined as follows:

(app.js)

angular.module('myApp', [])
.directive('elementDirective', function ($log) {
 return {
 restrict: 'E',
 template: '<p>Ze template!</p>',
 link: function(scope, el, attrs) {
 $log.log(el.html());
 // <p>Ze template!</p>
 $log.log(attrs.someAttr);
 // myvalue
 }
 };
});

Chapter 1

11

JSFiddle: http://jsfiddle.net/msfrisbie/sajhgjat/

Note that for both the tag string and the attribute string, AngularJS will match the CamelCase
for elementDirective and someAttr to their hyphenated element-directive and
some-attr counterparts in the markup.

If you want to replace the directive tag entirely with the content instead, the directive will
be defined as follows:

(index.html)

angular.module('myApp', [])
.directive('elementDirective', function ($log) {
 return {
 restrict: 'E',
 replace: true,
 template: '<p>Ze template!</p>',
 link: function(scope, el, attrs) {
 $log.log(el.html());
 // Ze template!
 $log.log(attrs.someAttr);
 // myvalue
 }
 };
});

JSFiddle: http://jsfiddle.net/msfrisbie/oLhrm194/

This approach will operate in an identical fashion, but the directive's inner HTML will not be
wrapped with <element-directive> tags in the compiled HTML. Also, note that the logged
template is missing its <p></p> tags that have become the root directive element as they are
the top-level tags inside the template.

The attribute directive
Attribute directives are the most commonly used form of directives, and for good reason.
They have the following advantages:

 f They can be added to existing HTML as standalone attributes, which is especially
convenient if the directive's purpose doesn't require you to break up an existing
template into fragments

http://jsfiddle.net/msfrisbie/sajhgjat/
http://jsfiddle.net/msfrisbie/oLhrm194/

Maximizing AngularJS Directives

12

 f It is possible to add an unlimited amount of attribute directives to an HTML element,
which is obviously not possible with an element directive

 f Attribute directives attached to the same HTML element are able to communicate
with each other (refer to the Interaction between nested directives recipe)

This directive can be used in a template in the following fashion:

(index.html)

<div ng-app="myApp">
 <div attribute-directive="aval"
 some-attr="myvalue">
 </div>
</div>

A nonstandard element's attributes need the data- prefix to be
compliant with the HTML5 specification. That being said, pretty
much every modern browser will have no problem if you leave it out.

The attribute directive can be defined as follows:

(app.js)

angular.module('myApp', [])
.directive('attributeDirective', function ($log) {
 return {
 // restrict defaults to A
 restrict: 'A',
 template: '<p>An attribute directive</p>',
 link: function(scope, el, attrs) {
 $log.log(el.html());
 // <p>An attribute directive</p>
 $log.log(attrs.attributeDirective);
 // aval
 $log.log(attrs.someAttr);
 // myvalue
 }
 };
});

JSFiddle: http://jsfiddle.net/msfrisbie/y2tsgxjt/

http://jsfiddle.net/msfrisbie/y2tsgxjt/

Chapter 1

13

Other than its form in the HTML template, the attribute directive functions in pretty much
the same way as an element directive. It assumes its attribute values from the container
element's attributes, including the attribute directive and other directives (whether or not
they are assigned a value).

The class directive
Class directives are not altogether that different from attribute directives. They provide the
ability to have multiple directive assignments, unrestricted local attribute value access, and
local directive communication.

This directive can be used in a template in the following fashion:

(index.html)

<div ng-app="myApp">
 <div class="class-directive: cval; normal-class"
 some-attr="myvalue">
 </div>
</div>

This attribute directive can be defined as follows:

(app.js)

angular.module('myApp', [])
.directive('classDirective', function ($log) {
 return {
 restrict: 'C',
 template: '<p>A class directive</p>',
 link: function(scope, el, attrs) {
 $log.log(el.html());
 // <p>A class directive</p>
 $log.log(el.hasClass('normal-class'));
 // true
 $log.log(attrs.classDirective);
 // cval
 $log.log(attrs.someAttr);
 // myvalue
 }
 };
});

JSFiddle: http://jsfiddle.net/msfrisbie/rt1f4qxx/

http://jsfiddle.net/msfrisbie/rt1f4qxx/

Maximizing AngularJS Directives

14

It's possible to reuse class directives and assign CSS styling to them, as AngularJS leaves
them alone when compiling the directive. Additionally, a value can be directly applied to
the directive class name attribute by passing it in the CSS string.

The comment directive
Comment directives are the runt of the group. You will very infrequently find their use
necessary, but it's useful to know that they are available in your application.

This directive can be used in a template in the following fashion:

(index.html)

<div ng-app="myApp">
 <!-- directive: comment-directive val1 val2 val3 -->
</div>

The comment directive can be defined as follows:

(app.js)

angular.module('myApp', [])
.directive('commentDirective', function ($log) {
 return {
 restrict: 'M',
 // without replace: true, the template cannot
 // be inserted into the DOM
 replace: true,
 template: '<p>A comment directive</p>',
 link: function(scope, el, attrs) {
 $log.log(el.html())
 // <p>A comment directive</p>
 $log.log(attrs.commentDirective)
 // 'val1 val2 val3'
 }
 };
});

JSFiddle: http://jsfiddle.net/msfrisbie/thfvx275/

http://jsfiddle.net/msfrisbie/thfvx275/

Chapter 1

15

Formerly, the primary use of comment directives was to handle scenarios where the DOM
API made it difficult to create directives with multiple siblings. Since the release of AngularJS
1.2 and the inclusion of ng-repeat-start and ng-repeat-end, comment directives
are considered an inferior solution to this problem, and therefore, they have largely been
relegated to obscurity. Nevertheless, they can still be employed effectively.

How it works…
AngularJS actively compiles the template, searching for matches to defined directives.
It's possible to chain directive forms together within the same definition. The mydir
directive with restrict: 'EACM' can appear as follows:

<mydir></mydir>

<div mydir></div>

<div class="mydir"></dir>

<!-- directive: mydir -->

There's more…
The $log.log() statements in this recipe should have given you some insight into the
extraordinary use that directives can have in your application.

See also
 f The Interaction between nested directives recipe demonstrates how to allow

directives attached to the same element to communicate with each other

Manipulating the DOM
In the previous recipe, you built a directive that didn't care what it was attached to, what it was
in, or what was around it. Directives exist for you to program the DOM, and the equivalent of the
last recipe is to instantiate a variable. In this recipe, you will actually implement some logic.

Maximizing AngularJS Directives

16

How to do it…
The far more common use case of directives is to create them as an HTML element attribute
(this is the default behavior for restrict). As you can imagine, this allows us to decorate
existing material in the DOM, as follows:

(app.js)

angular.module('myApp', [])
.directive('counter', function () {
 return {
 restrict: 'A',
 link: function (scope, el, attrs) {
 // read element attribute if it exists
 var incr = parseInt(attrs.incr || 1)
 , val = 0;
 // define callback for vanilla DOM click event
 el.bind('click', function () {
 el.html(val += incr);
 });
 }
 };
});

This directive can then be used on a <button> element as follows:

(index.html)

<div ng-app="myApp">
 <button counter></button>
 <button counter incr="5"></button>
</div>

JSFiddle: http://jsfiddle.net/msfrisbie/knk5znke/

How it works…
AngularJS includes a subset of jQuery (dubbed jqLite) that lets you use a core toolset to
modify the DOM. Here, your directive is attached to a singular element that the directive
sees in its linking function as the element parameter. You are able to define your DOM
modification logic here, which includes initial element modification and the setup of events.

http://jsfiddle.net/msfrisbie/knk5znke/

Chapter 1

17

In this recipe, you are consuming a static attribute value incr inside the link function as
well as invoking several jqLite methods on the element. The element parameter provided to
you is already packaged as a jqLite object, so you are free to inspect and modify it at your will.
In this example, you are manually increasing the integer value of a counter, the result of which
is inserted as text inside the button.

There's more…
Here, it's important to note that you will never need to modify the DOM in your controller,
whether it is a directive controller or a general application controller. Because AngularJS
and JavaScript are very flexible languages, it's possible to contort them to perform DOM
manipulation. However, managing the DOM transformation out of place causes an undesirable
dependency between the controller and the DOM (they should be totally decoupled) as well as
makes testing more difficult. Thus, a well-formed AngularJS application will never modify the
DOM in controllers. Directives are tailor-made to layer and group DOM modification tasks, and
you should have no trouble using them as such.

Additionally, it's worth mentioning that the attrs object is read-only, and you cannot set
attributes through this channel. It's still possible to modify attributes using the element
attribute, but state variables for elements can be much more elegantly implemented, which
will be discussed in a later recipe.

See also
 f In this recipe, you saw the link function used for the first time in a fairly rudimentary

fashion. The next recipe, Linking directives, goes into further detail.

 f The Isolate scope recipe goes over the writable DOM element attributes that can be
used as state variables.

Linking directives
For a large subset of the directives you will eventually build, the bulk of the heavy lifting will
be done inside the directive's link function. This function is returned from the preceding
compile function, and as seen in the previous recipe, it has the ability to manipulate the
DOM in and around it.

How to do it…
The following directive will display NW, NE, SW, or SE depending on where the cursor is
relative to it:

angular.module('myApp', [])
.directive('vectorText', function ($document) {

Maximizing AngularJS Directives

18

 return {
 template: '{{ heading }}',
 link: function (scope, el, attrs) {

 // initialize the css
 el.css({
 'float': 'left',
 'padding': attrs.buffer+"px"
 });

 // initialize the scope variable
 scope.heading = '';

 // set event listener and handler
 $document.on('mousemove', function (event) {
 // mousemove event does not start $digest,
 // scope.$apply does this manually
 scope.$apply(function () {
 if (event.pageY < 300) {
 scope.heading = 'N';
 } else {
 scope.heading = 'S';
 }
 if (event.pageX < 300) {
 scope.heading += 'W';
 } else {
 scope.heading += 'E';
 }
 });
 });
 }
 };
});

This directive will appear in the template as follows:

(index.html)

<div ng-app="myApp">
 <div buffer="300"
 vector-text>
 </div>
</div>

Chapter 1

19

JSFiddle: http://jsfiddle.net/msfrisbie/a0ywomq1/

How it works…
This directive has a lot more to wrap your head around. You can see that it has $document
injected into it, as you need to define event listeners relevant to this directive all across
$document. Here, a very simple template is defined, which would preferably be in its
own file, but for the sake of simplicity, it is merely incorporated as a string.

This directive first initializes the element with some basic CSS in order to have the relevant
anchor point somewhere you can move the cursor around fully. This value is taken from an
element attribute in the same fashion it was used in the previous recipe.

Here, our directive is listening to a $document mousemove event, with a handler inside
wrapped in the scope.$apply() wrapper. If you remove this scope.$apply() wrapper
and test the directive, you will notice that while the handler code does execute, the DOM does
not get updated. This is because the event that the application is listening for does not occur
in the AngularJS context—it is merely a browser DOM event, which AngularJS does not listen
for. In order to inform AngularJS that models might have been altered, you must utilize the
scope.$apply() wrapper to trigger the update of the DOM.

With all of this, your cursor movement should constantly be invoking the event handler,
and you should see a real-time description of your cursor's relative cardinal locality.

There's more…
In this directive, we have used the scope parameter for the first time. You might be
wondering, "Which scope am I using? I haven't declared any specific scope anywhere else
in the application." Recall that a directive will inherit a scope unless otherwise specified,
and this recipe is no different. If you were to inject $rootScope to the directive and log
to the $rootScope.heading console inside the event handler, you would see that this
directive is writing to the heading attribute of the $rootScope of the entire application!

See also
 f The Isolate scope recipe goes into further details on directive scope management

http://jsfiddle.net/msfrisbie/a0ywomq1/

Maximizing AngularJS Directives

20

Interfacing with a directive using isolate
scope

Scopes and their inheritance is something you will frequently be dealing with in AngularJS
applications. This is especially true in the context of directives, as they are subject to the
scopes they are inserted into and, therefore, require careful management in order to prevent
unexpected functionalities. Fortunately, AngularJS directives afford several robust tools that
help manage visibility of and interaction with the surrounding scopes.

If a directive is not instructed to provide a new scope for itself, it will inherit the parent scope.
In the case that this is not desirable behavior, you will need to create an isolate scope for that
directive, and inside that isolate scope, you can define a whitelist of parent scope elements
that the directive will need.

Getting ready
For this recipe, assume your directive exists inside the following setup:

(index.html)

<div ng-app="myApp">
 <div ng-controller="MainCtrl">
 <div iso></div>
 </div>
</div>

(app.js)

angular.module('myApp', [])
.controller('MainCtrl', function ($log, $scope) {
 $scope.outerval = 'mydata';
 $scope.func = function () {
 $log.log('invoked!');
 };
})
.directive('iso', function () {
 return {};
});

