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Foreword

Concurrent and parallel programming have progressed from niche disciplines,  
of interest only to kernel programming and high-performance computing, 
to something that every competent programmer must know. As parallel and 
distributed computing systems are now the norm, most applications are concurrent, 
be it for increasing the performance or for handling asynchronous events.

So far, most developers are unprepared to deal with this revolution. Maybe they 
have learned the traditional concurrency model, which is based on threads and 
locks, in school, but this model has become inadequate for dealing with massive 
concurrency in a reliable manner and with acceptable productivity. Indeed, threads 
and locks are hard to use and harder to get right. To make progress, one needs  
to use concurrency abstractions that are at a higher level and composable.

15 years ago, I worked on a predecessor of Scala: "Funnel" was an experimental 
programming language that had a concurrent semantics at its core. All the 
programming concepts were explained in this language as syntactic sugar on top 
of "functional nets", an object-oriented variant of "join calculus". Even though join 
calculus is a beautiful theory, we realized after some experimentation that the 
concurrency problem is more multifaceted than what can be comfortably expressed 
in a single formalism. There is no silver bullet for all concurrency issues; the right 
solution depends on what one needs to achieve. Do you want to define asynchronous 
computations that react to events or streams of values? Or have autonomous, 
isolated entities communicating via messages? Or define transactions over a 
mutable store? Or, maybe the primary purpose of parallel execution is to increase 
the performance? For each of these tasks, there is an abstraction that does the job: 
futures, reactive streams, actors, transactional memory, or parallel collections.



This brings us to Scala and this book. As there are so many useful concurrency 
abstractions, it seems unattractive to hardcode them all in a programming language. 
The purpose behind the work on Scala was to make it easy to define high-level 
abstractions in user code and libraries. This way, one can define modules handling 
the different aspects of concurrent programming. All of these modules would be 
built on a low-level core that is provided by the host system. In retrospect, this 
approach has worked well. Scala has today some of the most powerful and elegant 
libraries for concurrent programming. This book will take you on a tour of the most 
important ones, explaining the use case for each, and the application patterns.

The book could not have a more expert author. Aleksandar Prokopec contributed to 
some of the most popular Scala libraries for concurrent and parallel programming. 
He also invented some of the most intricate data structures and algorithms. With this 
book, he created a readable tutorial at the same time and an authoritative reference 
for the area that he had worked in. I believe that Learning Concurrent Programming in 
Scala will be a mandatory reading for everyone who writes concurrent and parallel 
programs in Scala. I expect to also see it on the bookshelves of many people who just 
want to find out about this fascinating and fast moving area of computing.

Martin Odersky
Professor at EPFL, the creator of Scala
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Preface
Concurrency is everywhere. With the rise of multicore processors in the consumer 
market, the need for concurrent programming has overwhelmed the developer 
world. Where it once served to express asynchrony in programs and computer 
systems, and was largely an academic discipline, concurrent programming is now a 
pervasive methodology in software development. As a result, advanced concurrency 
frameworks and libraries are sprouting at an amazing rate. Recent years have 
witnessed a renaissance in the field of concurrent computing.

As the level of abstraction grows in modern languages and concurrency frameworks, 
it is becoming crucial to know how and when to use them. Having a good grasp of 
the classical concurrency and synchronization primitives, such as threads, locks, and 
monitors, is no longer sufficient. High-level concurrency frameworks, which solve 
many issues of traditional concurrency and are tailored towards specific tasks, are 
gradually overtaking the world of concurrent programming.

This book describes high-level concurrent programming in Scala. It presents detailed 
explanations of various concurrency topics and covers the basic theory of concurrent 
programming. Simultaneously, it describes modern concurrency frameworks, shows 
their detailed semantics, and teaches you how to use them. Its goal is to introduce 
important concurrency abstractions, and at the same time show how they work in 
real code.

We are convinced that, by reading this book, you will gain both a solid theoretical 
understanding of concurrent programming, and develop a set of useful practical 
skills that are required to write correct and efficient concurrent programs. These 
skills are the first steps toward becoming a modern concurrency expert.

We hope that you will have as much fun reading this book as we did writing it.
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How this book is organized
The primary goal of this book is to help you develop skills that are necessary to 
write correct and efficient concurrent programs. The best way to obtain a skill is to 
apply it in practice. When it comes to programming, the best way to learn it is to 
write programs. This book aims to teach you about concurrency in Scala through a 
sequence of example programs, each designed to show you a particular aspect of 
concurrent programming. The examples range from the simplest counterparts  
of a "Hello World" program to programs demonstrating advanced intricacies  
of concurrency.

What is common to most of the programs in this book is that they are short and 
self-contained. This has two benefits. First, you can study most of the examples in 
isolation. Although we recommend that you read the entire book in the order of the 
chapters, you should have no problem studying specific topics. Second, conciseness 
ensures that each new concept is easy to grasp and understand. It is much easier to 
comprehend concepts like atomicity, memory contention, or busy-waiting on simple 
programs. This does not mean that these programs are contrived or artificial; each 
example illustrates an effect present in real-world programs, although stripped of 
irrelevant nonessentials.

When reading this book, we strongly encourage you to write down and run these 
examples yourself, rather than just passively study them. Each example will teach 
you about a new concept, but you can only fully understand each of these concepts 
if you try them in practice. Witnessing a particular effect in a running concurrent 
program is a far more valuable experience than just reading about it. So, make sure 
that you download SBT, and create an empty project before starting to read this 
book, as described later in a subsequent section. The examples are made short so  
that you, the reader, can try them out with almost no hassle.

At the end of each chapter, you will find a list of programming exercises. These 
exercises are designed to test your understanding of the various topics that have 
been introduced. We recommend that you try to solve at least a few after completing 
a chapter.

In most cases, we avoid listing the API methods, or their exact signatures. There are 
several reasons for this. First, you can always study the APIs in the online ScalaDoc 
documentation. This book would not be particularly useful if it simply repeated 
the content that's already there. Second, software is in a constant state of change. 
Although the Scala concurrency framework designers strive to keep the APIs stable, 
the method names and signatures are occasionally changed. This book describes the 
semantics of the most important concurrency facilities that are sufficient to write 
concurrent programs and unlikely to change.
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The goal of this book is not to give a comprehensive overview of every dark corner 
of the Scala concurrency APIs. Instead, this book will teach you the most important 
concepts of concurrent programming. By the time you are done reading this book, 
you will not just be able to find additional information in the online documentation; 
you will also know what to look for. Rather than serving as a complete API reference 
and feeding you the exact semantics of every method, the purpose of this book 
is to teach you how to fish. By the time you are done reading, you will not only 
understand how different concurrency libraries work, but you will also know  
how to think when building a concurrent program.

What this book covers
This book is organized into a sequence of chapters with various topics on concurrent 
programming. The book covers the fundamental concurrent APIs that are a part of 
the Scala runtime, introduces more complex concurrency primitives, and gives an 
extensive overview of high-level concurrency abstractions.

Chapter 1, Introduction, explains the need for concurrent programming, and gives 
some philosophical background. At the same time, it covers the basics of the Scala 
programming language that are required for understanding the rest of this book.

Chapter 2, Concurrency on the JVM and the Java Memory Model, teaches you the basics 
of concurrent programming. This chapter will teach you how to use threads, how  
to protect access to shared memory, and introduce the Java Memory Model.

Chapter 3, Traditional Building Blocks of Concurrency, presents classic concurrency 
utilities, such as thread pools, atomic variables, and concurrent collections with 
a particular focus on the interaction with the features of the Scala language. The 
emphasis in this book is on the modern, high-level concurrent programming 
frameworks. Consequently, this chapter presents an overview of traditional 
concurrent programming techniques, but it does not aim to be extensive.

Chapter 4, Asynchronous Programming with Futures and Promises, is the first chapter 
that deals with a Scala-specific concurrency framework. This chapter presents the 
futures and promises API, and shows how to correctly use them when implementing 
asynchronous programs.

Chapter 5, Data-Parallel Collections, describes the Scala parallel collections framework. 
In this chapter, you will learn how to parallelize collection operations, when it is 
allowed to parallelize them, and how to assess the performance benefits of doing so.
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Chapter 6, Concurrent Programming with Reactive Extensions, teaches you how 
to use the Reactive Extensions framework for event-based and asynchronous 
programming. You will see how the operations on event streams correspond to 
collection operations, how to pass events from one thread to another, and how  
to design a reactive user interface using event streams.

Chapter 7, Software Transactional Memory, introduces the ScalaSTM library  
for transactional programming, which aims to provide a safer, more intuitive, 
shared-memory programming model. In this chapter, you will learn how to protect 
access to shared data using scalable memory transactions, and at the same time, 
reduce the risk of deadlocks and race conditions.

Chapter 8, Actors, presents the actor programming model and the Akka framework. 
In this chapter, you will learn how to transparently build message-passing 
distributed programs that run on multiple machines.

Chapter 9, Concurrency in Practice, summarizes the different concurrency libraries 
introduced in the earlier chapters. In this chapter, you will learn how to choose 
the correct concurrency abstraction to solve a given problem, and how to combine 
different concurrency abstractions together when designing larger concurrent 
applications.

While we recommend that you read the chapters in the order in which they appear, 
this is not strictly necessary. If you are well acquainted with the content in Chapter 2, 
Concurrency on the JVM and the Java Memory Model, you can study most of the other 
chapters directly. The only chapter that heavily relies on the content from all the 
preceding chapters is Chapter 9, Concurrency in Practice, where we present a practical 
overview of the topics in this book.

What you need for this book
In this section, we describe some of the requirements that are necessary to read and 
understand this book. We explain how to install the Java Development Kit that is 
required to run Scala programs, and show how to use Simple Build Tool to run 
various examples.

We will not require an IDE in this book. The program that you use to write code is 
entirely up to you, and you can choose anything, such as Vim, Emacs, Sublime Text, 
Eclipse, IntelliJ IDEA, Notepad++, or some other text editor.
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Installing the JDK
Scala programs are not compiled directly to the native machine code, so they 
cannot be run as executables on various hardware platforms. Instead, the Scala 
compiler produces an intermediate code format, called the Java bytecode. To 
run this intermediate code, your computer must have the Java Virtual Machine 
software installed. In this section, we explain how to download and install the Java 
Development Kit, which includes the Java Virtual Machine and other useful tools.

There are multiple implementations of the JDK that are available from different 
software vendors. We recommend that you use the Oracle JDK distribution. To 
download and install the Java Development Kit, follow these steps:

1.	 Open the following URL in your web browser: www.oracle.com/
technetwork/java/javase/downloads/index.html.

2.	 If you cannot open the specified URL, go to your search engine and enter the 
keywords JDK Download.

3.	 Once you find the link for the Java SE download on the Oracle website, 
download the appropriate version of JDK 7 for your operating system: 
Windows, Linux, or Mac OS X; 32-bit or 64-bit.

4.	 If you are using the Windows operating system, simply run the installer 
program. If you are using the Mac OS X, open the dmg archive to install JDK. 
Finally, if you are using Linux, decompress the archive to a XYZ directory, 
and add the bin subdirectory to the PATH variable:
export PATH=XYZ/bin:$PATH

5.	 You should now be able to run the java and javac commands in the 
terminal. Enter javac to see if it is available (you will never invoke this 
command directly in this book, but running it verifies that it is available):
javac

It is possible that your operating system already has JDK installed. To verify this, 
simply run the javac command, as in the last step in the preceding description.

Installing and using SBT
Simple Build Tool (SBT) is a command-line build tool used for Scala projects. Its 
purpose is to compile Scala code, manage dependencies, continuous compilation and 
testing, deployment, and many other uses. Throughout this book, we will use SBT to 
manage our project dependencies and run example code.

www.oracle.com/technetwork/java/javase/downloads/index.html
www.oracle.com/technetwork/java/javase/downloads/index.html
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To install SBT, please follow these instructions:

1.	 Go to the http://www.scala-sbt.org/ URL.
2.	 Download the installation file for your platform. If you are running on 

Windows, this is the msi installer file. If you are running on Linux or OS X, 
this is the zip or tgz archive file.

3.	 Install SBT. If you are running on Windows, simply run the installer file. If 
you are running on Linux or OS X, unzip the contents of the archive in your 
home directory.

You are now ready to use SBT. In the following steps, we will create a new  
SBT project:

1.	 Open a command prompt if you are running on Windows, or a terminal 
window if you are running on Linux or OS X.

2.	 Create an empty directory called scala-concurrency-examples:
$ mkdir scala-concurrency-examples

3.	 Change your path to the scala-concurrency-examples directory:
$ cd scala-concurrency-examples

4.	 Create a single source code directory for our examples:
$ mkdir src/main/scala/org/learningconcurrency/

5.	 Now, use your editor to create a build definition file, named build.sbt. This 
file defines various project properties. Create it in the root directory of the 
project (scala-concurrency-examples). Add the following contents to the 
build definition file (note that the empty lines are mandatory):
name := "concurrency-examples"

version := "1.0"

scalaVersion := "2.11.1"

6.	 Finally, go back to the terminal, and run SBT from the root directory of  
the project:
$ sbt

7.	 SBT will start an interactive shell, which we will use to give SBT various 
build commands.

http://www.scala-sbt.org/
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Now, you can start writing Scala programs. Open your editor, and create a 
source code file named HelloWorld.scala in the src/main/scala/org/
learningconcurrency directory. Add the following contents to the  
HelloWorld.scala file:

package org.learningconcurrency

object HelloWorld extends App {
  println("Hello, world!")
}

Now, go back to the terminal window with the SBT interactive shell, and run the 
program with the following command:

> run

Running this program should give the following output:

Hello, world!

These steps are sufficient to run most of the examples in this book. Occasionally, 
we will rely on external libraries when running the examples. These libraries are 
resolved automatically by SBT from standard software repositories. For some 
libraries, we will need to specify additional software repositories, so we add the 
following lines to our build.sbt file:

resolvers ++= Seq(
  "Sonatype OSS Snapshots" at
    "https://oss.sonatype.org/content/repositories/snapshots",
  "Sonatype OSS Releases" at
    "https://oss.sonatype.org/content/repositories/releases",
  "Typesafe Repository" at
    "http://repo.typesafe.com/typesafe/releases/"
)

Now that we have added all the necessary software repositories, we can add some 
concrete libraries. By adding the following line to the build.sbt file, we obtain 
access to the Apache Commons IO library:

libraryDependencies += "commons-io" % "commons-io" % "2.4"

After changing the build.sbt file, it is necessary to reload any running SBT 
instances. In the SBT interactive shell, we need to enter the following command:

> reload

This enables SBT to detect any changes in the build definition file, and download 
additional software packages when necessary.
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Different Scala libraries live in different namespaces, called packages. To obtain 
access to the contents of a specific package, we use the import statement. When we 
use a specific concurrency library in an example for the first time, we will always 
show the necessary set of import statements. On subsequent uses of the same 
library, we will not repeat the same import statements.

Similarly, we avoid adding package declarations in the code examples to keep  
them short. Instead, we assume that the code in a specific chapter is in the similarly 
named package. For example, all the code belonging to Chapter 2, Concurrency on 
the JVM and the Java Memory Model, resides in the org.learningconcurrency.ch2 
package. Source code files for the examples presented in that chapter begin with  
the following code:

package org.learningconcurrency
package ch2

Finally, this book deals with concurrency and asynchronous execution. Many of the 
examples start a concurrent computation that continues executing after the main 
execution stops. To make sure that these concurrent computations always complete, 
we will run most of the examples in the same JVM instance as SBT itself. We add the 
following line to our build.sbt file:

fork := false

In the examples, where running in a separate JVM process is required, we will point 
this out and give clear instructions.

Using Eclipse, IntelliJ IDEA, or another IDE
An advantage of using an Integrated Development Environment (IDE) such as 
Eclipse or IntelliJ IDEA is that you can write, compile, and run your Scala programs 
automatically. In this case, there is no need to install SBT, as described in the 
previous section. While we advise that you run the examples using SBT, you  
can alternatively use an IDE.

There is an important caveat when running the examples in this book using an IDE: 
editors such as Eclipse and IntelliJ IDEA run the program inside a separate JVM 
process. As mentioned in the previous section, certain concurrent computations 
continue executing after the main execution stops. To make sure that they always 
complete, you will sometimes need to add the sleep statements at the end of the 
main execution, which slow down the main execution. In most of the examples in 
this book, the sleep statements are already added for you, but in some programs 
you might have to add them yourself.
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Who this book is for
This book is primarily intended for developers who have learned how to write 
sequential Scala programs, and wish to learn how to write correct concurrent 
programs. The book assumes that you have a basic knowledge of the Scala 
programming language. Throughout this book, we strive to use the simple features 
of Scala in order to demonstrate how to write concurrent programs. Even with  
an elementary knowledge of Scala, you should have no problem understanding 
various concurrency topics.

This is not to say that the book is limited to Scala developers. Whether you 
have experience with Java, come from a .NET background, or are generally a 
programming language aficionado, chances are that you will find the content  
in this book insightful. A basic understanding of object-oriented or functional 
programming should be a sufficient prerequisite.

Finally, this book is a good introduction to modern concurrent programming in 
the broader sense. Even if you have the basic knowledge about multithreaded 
computing, or the JVM concurrency model, you will learn a lot about modern,  
high-level concurrency utilities. Many of the concurrency libraries in this book  
are only starting to find their way into mainstream programming languages,  
and some of them are truly cutting-edge technologies.

Conventions
In this book, you will find a number of styles of text that distinguish between 
different kinds of information. Here are some examples of these styles, and an 
explanation of their meaning.

Code words in text, database table names, folder names, filenames, file extensions, 
pathnames, dummy URLs, user input, and Twitter handles are shown as follows: 
"Then, it calls the square method to compute the value for the local variable s."

A block of code is shown as follows:

object SquareOf5 extends App {
  def square(x: Int): Int = x * x
  val s = square(5)
  println(s"Result: $s")
}
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Any command-line input or output is written as follows:

run-main-46: ...

Thread-80: New thread running.

run-main-46: ...

run-main-46: New thread joined.

New terms and important words are shown in bold. Words that you see on the 
screen, in menus or dialog boxes for example, appear in the text like this: "After 
clicking on the Thread Dump button, Java VisualVM displays the stack traces  
of all the threads, as shown in the following screenshot:".

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about 
this book—what you liked or may have disliked. Reader feedback is important  
for us to develop titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com, 
and mention the book title via the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing 
or contributing to a book, see our author guide on www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things  
to help you to get the most from your purchase.

www.packtpub.com/authors
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Downloading the example code
You can download the example code files for all Packt books you have purchased 
from your account at http://www.packtpub.com. If you purchased this book 
elsewhere, you can visit http://www.packtpub.com/support and register to have 
the files e-mailed directly to you. Alternatively, you can download the source code 
for this book at https://github.com/concurrent-programming-in-scala/
learning-examples/.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes do 
happen. If you find a mistake in one of our books—maybe a mistake in the text or the 
code—we would be grateful if you would report this to us. By doing so, you can save 
other readers from frustration and help us improve subsequent versions of this book. 
If you find any errata, please report them by visiting http://www.packtpub.com/
submit-errata, selecting your book, clicking on the errata submission form link, 
and entering the details of your errata. Once your errata are verified, your submission 
will be accepted and the errata will be uploaded on our website, or added to any list 
of existing errata, under the Errata section of that title. Any existing errata can be 
viewed by selecting your title from http://www.packtpub.com/support.

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media. 
At Packt, we take the protection of our copyright and licenses very seriously. If you 
come across any illegal copies of our works, in any form, on the Internet, please 
provide us with the location address or website name immediately so that we can 
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected  
pirated material.

We appreciate your help in protecting our authors, and our ability to bring you 
valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with 
any aspect of the book, and we will do our best to address it.

http://www.packtpub.com
http://www.packtpub.com/support
https://github.com/concurrent-programming-in-scala/learning-examples/
https://github.com/concurrent-programming-in-scala/learning-examples/
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/support
mailto:copyright@packtpub.com




Introduction
"For over a decade prophets have voiced the contention that the organization of a 
single computer has reached its limits and that truly significant advances can be 
made only by interconnection of a multiplicity of computers."

Gene Amdahl, 1967

Although the discipline of concurrent programming has a long history, it gained 
a lot of traction in recent years with the arrival of multicore processors. The recent 
development in computer hardware not only revived some classical concurrency 
techniques, but also started a major paradigm shift in concurrent programming. At  
a time, when concurrency is becoming so important, an understanding of concurrent 
programming is an essential skill for every software developer.

This chapter explains the basics of concurrent computing and presents some Scala 
preliminaries required for this book. Specifically, it does the following:

•	 Shows a brief overview of concurrent programming
•	 Studies the advantages of using Scala when it comes to concurrency
•	 Covers the Scala preliminaries required for reading this book

We will start by examining what concurrent programming is and why it is important.

Concurrent programming
In concurrent programming, we express a program as a set of concurrent 
computations that execute during overlapping time intervals and coordinate in some 
way. Implementing a concurrent program that functions correctly is usually much 
harder than implementing a sequential one. All the pitfalls present in sequential 
programming lurk in every concurrent program, but there are many other things 
that can go wrong, as we will learn in this book. A natural question arises: why 
bother? Can't we just keep writing sequential programs?
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Concurrent programming has multiple advantages. First, increased concurrency 
can improve program performance. Instead of executing the entire program on a 
single processor, different subcomputations can be performed on separate processors 
making the program run faster. With the spread of multicore processors, this is the 
primary reason why concurrent programming is nowadays getting so much attention.

Then, a concurrent programming model can result in faster I/O operations. A 
purely sequential program must periodically poll I/O to check if there is any data 
input available from the keyboard, the network interface, or some other device. A 
concurrent program, on the other hand, can react to I/O requests immediately. For 
I/O-intensive operations, this results in improved throughput, and is one of the 
reasons why concurrent programming support existed in programming languages 
even before the appearance of multiprocessors. Thus, concurrency can ensure the 
improved responsiveness of a program that interacts with the environment.

Finally, concurrency can simplify the implementation and maintainability of 
computer programs. Some programs can be represented more concisely using 
concurrency. It can be more convenient to divide the program into smaller, 
independent computations than to incorporate everything into one large program. 
User interfaces, web servers, and game engines are typical examples of such systems.

In this book, we adopt the convention that concurrent programs communicate 
through the use of shared memory, and execute on a single computer. By contrast, a 
computer program that executes on multiple computers, each with its own memory, 
is called a distributed program, and the discipline of writing such programs is called 
distributed programming. Typically, a distributed program must assume that each 
of the computers can fail at any point, and provide some safety guarantees if this 
happens. We will mostly focus on concurrent programs, but we will also look at 
examples of distributed programs.

A brief overview of traditional concurrency
In a computer system, concurrency can manifest itself in the computer hardware, 
at the operating system level, or at the programming language level. We will focus 
mainly on programming language-level concurrency.

Coordination of multiple executions in a concurrent system is called synchronization, 
and it is a key part in successfully implementing concurrency. Synchronization 
includes mechanisms used to order concurrent executions in time. Furthermore, 
synchronization specifies how concurrent executions communicate, that is, how 
they exchange information. In concurrent programs, different executions interact 
by modifying the shared memory subsystem of the computer. This type of 
synchronization is called shared memory communication. In distributed programs, 
executions interact by exchanging messages, so this type of synchronization is called 
message-passing communication.


