

Learning Concurrent
Programming in Scala

Learn the art of building intricate, modern, scalable
concurrent applications using Scala

Aleksandar Prokopec

BIRMINGHAM - MUMBAI

Learning Concurrent Programming in Scala

Copyright © 2014 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the author, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: November 2014

Production reference: 1211114

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78328-141-1

www.packtpub.com

www.packtpub.com

Credits

Author
Aleksandar Prokopec

Reviewers
Dominik Gruntz

Vladimir Kostyukov

Zhen Li

Lukas Rytz

Michel Schinz

Samira Tasharofi

Commissioning Editor
Kevin Colaco

Acquisition Editor
Kevin Colaco

Content Development Editor
Vaibhav Pawar

Technical Editor
Sebastian Rodrigues

Copy Editors
Rashmi Sawant

Stuti Srivastava

Project Coordinator
Kranti Berde

Proofreaders
Mario Cecere

Martin Diver

Ameesha Green

Indexer
Tejal Soni

Production Coordinator
Aparna Bhagat

Cover Work
Aparna Bhagat

Foreword

Concurrent and parallel programming have progressed from niche disciplines,
of interest only to kernel programming and high-performance computing,
to something that every competent programmer must know. As parallel and
distributed computing systems are now the norm, most applications are concurrent,
be it for increasing the performance or for handling asynchronous events.

So far, most developers are unprepared to deal with this revolution. Maybe they
have learned the traditional concurrency model, which is based on threads and
locks, in school, but this model has become inadequate for dealing with massive
concurrency in a reliable manner and with acceptable productivity. Indeed, threads
and locks are hard to use and harder to get right. To make progress, one needs
to use concurrency abstractions that are at a higher level and composable.

15 years ago, I worked on a predecessor of Scala: "Funnel" was an experimental
programming language that had a concurrent semantics at its core. All the
programming concepts were explained in this language as syntactic sugar on top
of "functional nets", an object-oriented variant of "join calculus". Even though join
calculus is a beautiful theory, we realized after some experimentation that the
concurrency problem is more multifaceted than what can be comfortably expressed
in a single formalism. There is no silver bullet for all concurrency issues; the right
solution depends on what one needs to achieve. Do you want to define asynchronous
computations that react to events or streams of values? Or have autonomous,
isolated entities communicating via messages? Or define transactions over a
mutable store? Or, maybe the primary purpose of parallel execution is to increase
the performance? For each of these tasks, there is an abstraction that does the job:
futures, reactive streams, actors, transactional memory, or parallel collections.

This brings us to Scala and this book. As there are so many useful concurrency
abstractions, it seems unattractive to hardcode them all in a programming language.
The purpose behind the work on Scala was to make it easy to define high-level
abstractions in user code and libraries. This way, one can define modules handling
the different aspects of concurrent programming. All of these modules would be
built on a low-level core that is provided by the host system. In retrospect, this
approach has worked well. Scala has today some of the most powerful and elegant
libraries for concurrent programming. This book will take you on a tour of the most
important ones, explaining the use case for each, and the application patterns.

The book could not have a more expert author. Aleksandar Prokopec contributed to
some of the most popular Scala libraries for concurrent and parallel programming.
He also invented some of the most intricate data structures and algorithms. With this
book, he created a readable tutorial at the same time and an authoritative reference
for the area that he had worked in. I believe that Learning Concurrent Programming in
Scala will be a mandatory reading for everyone who writes concurrent and parallel
programs in Scala. I expect to also see it on the bookshelves of many people who just
want to find out about this fascinating and fast moving area of computing.

Martin Odersky
Professor at EPFL, the creator of Scala

About the Author

Aleksandar Prokopec is a software developer and a concurrent and distributed
programming researcher. He holds an MSc in Computing from the Faculty of
Electrical Engineering and Computing, University of Zagreb, Croatia, and a PhD in
Computer Science from the École Polytechnique Fédérale de Lausanne, Switzerland.
As a doctoral assistant and member of the Scala team at EPFL, he actively contributed
to the Scala programming language, and has worked on programming abstractions
for concurrency, data-parallel programming support, and concurrent data structures
for Scala. He created the Scala Parallel Collections framework, which is a library for
high-level data-parallel programming in Scala, and participated in working groups
for Scala concurrency libraries, such as Futures and Promises and ScalaSTM.

Acknowledgments

First of all, I would like to thank my reviewers Samira Tasharofi, Lukas Rytz,
Dominik Gruntz, Michel Schinz, Zhen Li, and Vladimir Kostyukov for their excellent
feedback and valuable comments. They have shown exceptional dedication and
expertise in improving the quality of this book. I would also like to thank the editors
at Packt Publishing: Kevin Colaco, Sruthi Kutty, Kapil Hemnani, Vaibhav Pawar,
and Sebastian Rodrigues for their help in writing this book. It was really a pleasure
to work with these people.

The concurrency frameworks described in this book wouldn't have seen the light
of day without a collaborative effort of a large number of people. Many individuals
have, either directly or indirectly, contributed to the development of these utilities.
These people are the true heroes of Scala concurrency, and they deserve thanks for
Scala's excellent support for concurrent programming. It is difficult to enumerate all
of them here, but I have tried my best. If somebody feels left out, he should ping me,
and he'll probably appear in the next edition of this book.

It goes without saying that Martin Odersky is to be thanked for creating the
Scala programming language, which was used as a platform for the concurrency
frameworks described in this book. Special thanks go to him, to all the people
who were a part of the Scala team at the EPFL for the last 10 or more years, and
to the people at Typesafe, who are working hard to make Scala one of the best
general-purpose languages out there.

Most of the Scala concurrency frameworks rely on the works of Doug Lea in one
way or another. His Fork/Join framework underlies the implementation of the
Akka actors, Scala Parallel collections, and the Futures and Promises library; and
many of the JDK concurrent data structures described in this book are his own
implementations. Many of the Scala concurrency libraries were influenced by
his advice. Furthermore, I would like to thank the Java concurrency experts for the
years of work they invested into making JVM a solid concurrency platform, and
especially, Brian Goetz, whose book inspired our front cover.

The Scala Futures and Promises library was initially designed by Philipp Haller,
Heather Miller, Vojin Jovanović, and myself, from the EPFL; Viktor Klang and
Roland Kuhn from the Akka team; Marius Eriksen from Twitter; with contributions
from Havoc Pennington, Rich Dougherty, Jason Zaugg, Doug Lea, and many others.

Although I was the main author of the Scala Parallel Collections, this library
benefited from the input of many different people, including Phil Bagwell, Martin
Odersky, Tiark Rompf, Doug Lea, and Nathan Bronson. Later on, Dmitry Petrashko
and I started working on an improved version of parallel and standard collection
operations, which were optimized through the use of Scala Macros. Eugene Burmako
and Denys Shabalin are among the main contributors to the Scala Macros project.

The work on the Rx project was started by Erik Meijer, Wes Dyer, and the rest of the
Rx team. Since its original .NET implementation, the Rx framework has been ported
to many different languages, including Java, Scala, Groovy, JavaScript, and PHP, and
has gained widespread adoption, thanks to the contributions and the maintenance
work of Ben Christensen, Samuel Grütter, Shixiong Zhu, Donna Malayeri, and
many other people.

Nathan Bronson is one of the main contributors to the ScalaSTM project, whose
default implementation is based on Nathan's CCSTM project. The ScalaSTM API was
designed by the ScalaSTM expert group, which comprised of Nathan Bronson, Jonas
Bonér, Guy Korland, Krishna Sankar, Daniel Spiewak, and Peter Veentjer.

The initial Scala actor library was inspired by the Erlang actor model, and
developed by Philipp Haller. This library inspired Jonas Bonér to start the Akka actor
framework. The Akka project had many contributors, including Viktor Klang, Henrik
Engström, Peter Vlugter, Roland Kuhn, Patrik Nordwall, Björn Antonsson, Rich
Dougherty, Johannes Rudolph, Mathias Doenitz, Philipp Haller, and many others.

Finally, I would like to thank the entire Scala community for their contributions, and
for making Scala an awesome programming language.

About the Reviewers

Dominik Gruntz has a PhD from ETH Zürich and has been a Professor of
Computer Science at the University of Applied Sciences FHNW since 2000. Besides
his research projects, he teaches a course on concurrent programming. Some
years ago, the goal of this course was to convince the students that writing correct
concurrent programs is too complicated for mere mortals (an educational objective
that was regularly achieved).

With the availability of high-level concurrency frameworks in Java and Scala, this
has changed, and this book, Learning Concurrent Programming in Scala, is a great
resource for all programmers who want to learn how to write correct, readable,
and efficient concurrent programs. This book is the ideal textbook for a course on
concurrent programming.

Thanks to Packt Publishing for giving me the opportunity to support
this project as a reviewer.

Zhen Li acquired an enthusiasm of computing early in elementary school when she
first learned Logo. After earning a Software Engineering degree at Fudan University
in Shanghai, China and a Computer Science degree from University College Dublin,
Ireland, she moved to the University of Georgia in the United States for her doctoral
study and research. She focused on psychological aspects of programmers' learning
behaviors, especially the way programmers understand concurrent programs. Based
on the research, she aimed to develop effective software engineering methods and
teaching paradigms to help programmers embrace concurrent programs.

Zhen Li had practical teaching experience with undergraduate students on a variety
of computer science topics, including system and network programming, modeling
and simulation, as well as human-computer interaction. Her major contributions
in teaching computer programming were to author syllabi and offer courses
with various programming languages and multiple modalities of concurrency
that encouraged students to actively acquire software design philosophy and
comprehensively learn programming concurrency.

Zhen Li also had a lot of working experience in industrial innovations. She worked
in various IT companies, including Oracle, Microsoft, and Google, over the past
10 years, where she participated in the development of cutting-edge products,
platforms and infrastructures for core enterprise, and Cloud business technologies.

Zhen Li is passionate about programming and teaching. You are welcome to contact
her at janeli@uga.edu.

Lukas Rytz is a compiler engineer working in the Scala team at Typesafe. He
received his PhD from EPFL in 2014, and has been advised by Martin Odersky,
the inventor of the Scala programming language.

Michel Schinz is a lecturer at EPFL.

Samira Tasharofi received her PhD in the field of Software Engineering from the
University of Illinois at Urbana-Champaign. She has conducted research on various
areas, such as testing concurrent programs and in particular actor programs, patterns
in parallel programming, and verification of component-based systems.

Samira has accompanied her research with valuable practical experiences by
working at several IT companies, such as Microsoft and LinkedIn during the past
few years. Samira has reviewed several books, such as Actors in Scala, Parallel
Programming with Microsoft® .NET: Design Patterns for Decomposition and Coordination
on Multicore Architectures (Patterns and Practices), and Parallel Programming with
Microsoft Visual C++: Design Patterns for Decomposition and Coordination on Multicore
Architectures (Patterns & Practices). She was also among the reviewers of the
technical research papers for software engineering conferences and workshops,
including ASE, AGERE, SPLASH, FSE, and FSEN. She has served as a PC member
of the 4th International Workshop on Programming based on Actors, Agents, and
Decentralized Control (AGERE 2014) and 6th IPM International Conference on
Fundamentals of Software Engineering (FSEN 2015).

Thanks for giving me the opportunity to review this book and
contribute to this project.

www.PacktPub.com

Support files, eBooks, discount offers, and more
For support files and downloads related to your book, please visit www.PacktPub.com.

Did you know that Packt offers eBook versions of every book published, with PDF
and ePub files available? You can upgrade to the eBook version at www.PacktPub.
com and as a print book customer, you are entitled to a discount on the eBook copy.
Get in touch with us at service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign
up for a range of free newsletters and receive exclusive discounts and offers on Packt
books and eBooks.

TM

https://www2.packtpub.com/books/subscription/packtlib

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital
book library. Here, you can search, access, and read Packt's entire library of books.

Why subscribe?
•	 Fully searchable across every book published by Packt
•	 Copy and paste, print, and bookmark content
•	 On demand and accessible via a web browser

Free access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view 9 entirely free books. Simply use your login credentials for
immediate access.

http://www.PacktPub.com
www.PacktPub.com
http://www.PacktPub.com
http://www.PacktPub.com
mailto:service@packtpub.com
http://www.PacktPub.com
https://www2.packtpub.com/books/subscription/packtlib
http://www.packtpub.com/

Dedicated to Sasha, she's probably the only PhD in
physical chemistry who has read this book.

Table of Contents
Preface	 1
Chapter 1: Introduction	 13

Concurrent programming	 13
A brief overview of traditional concurrency	 14
Modern concurrency paradigms	 15

The advantages of Scala	 16
Preliminaries	 17

Execution of a Scala program	 18
A Scala primer	 19

Summary	 24
Exercises	 24

Chapter 2: Concurrency on the JVM and the Java
Memory Model	 27

Processes and Threads	 28
Creating and starting threads	 31
Atomic execution	 36
Reordering	 40

Monitors and synchronization	 42
Deadlocks	 44
Guarded blocks	 47
Interrupting threads and the graceful shutdown	 51

Volatile variables	 53
The Java Memory Model	 54

Immutable objects and final fields	 56
Summary	 58
Exercises	 59

Table of Contents

[ii]

Chapter 3: Traditional Building Blocks of Concurrency	 63
The Executor and ExecutionContext objects	 64
Atomic primitives	 68

Atomic variables	 69
Lock-free programming	 72
Implementing locks explicitly	 74
The ABA problem	 76

Lazy values	 79
Concurrent collections	 83

Concurrent queues	 85
Concurrent sets and maps	 88
Concurrent traversals	 93

Creating and handling processes	 96
Summary	 98
Exercises	 99

Chapter 4: Asynchronous Programming with Futures
and Promises	 101

Futures	 102
Starting future computations	 104
Future callbacks	 105
Futures and exceptions	 108
Using the Try type	 109
Fatal exceptions	 111
Functional composition on futures	 111

Promises	 119
Converting callback-based APIs	 121
Extending the future API	 124
Cancellation of asynchronous computations	 125

Futures and blocking	 128
Awaiting futures	 128
Blocking in asynchronous computations	 129

The Scala Async library	 130
Alternative Future frameworks	 133
Summary	 134
Exercises	 135

Chapter 5: Data-Parallel Collections	 137
Scala collections in a nutshell	 138
Using parallel collections	 139

Parallel collection class hierarchy	 143

Table of Contents

[iii]

Configuring the parallelism level	 145
Measuring the performance on the JVM	 145

Caveats of parallel collections	 148
Non-parallelizable collections	 148
Non-parallelizable operations	 149
Side effects in parallel operations	 151
Nondeterministic parallel operations	 153
Commutative and associative operators	 154

Using parallel and concurrent collections together	 156
Weakly consistent iterators	 157

Implementing custom parallel collections	 158
Splitters	 159
Combiners	 162

Alternative data-parallel frameworks	 165
Collections hierarchy in ScalaBlitz	 166

Summary	 168
Exercises	 169

Chapter 6: Concurrent Programming with Reactive Extensions	 171
Creating Observable objects	 173

Observables and exceptions	 175
The Observable contract	 176
Implementing custom Observable objects	 178
Creating Observables from futures	 179
Subscriptions	 180

Composing Observable objects	 183
Nested observables	 185
Failure handling in observables	 190

Rx schedulers	 193
Using custom schedulers for UI applications	 194

Subjects and top-down reactive programming	 199
Summary	 204
Exercises	 204

Chapter 7: Software Transactional Memory	 207
The trouble with atomic variables	 209
Using Software Transactional Memory	 212

Transactional references	 215
Using the atomic statement	 216

Composing transactions	 218
The interaction between transactions and side effects	 218

Table of Contents

[iv]

Single-operation transactions	 222
Nesting transactions	 224
Transactions and exceptions	 227

Retrying transactions	 232
Retrying with timeouts	 235

Transactional collections	 237
Transaction-local variables	 237
Transactional arrays	 239
Transactional maps	 241

Summary	 242
Exercises	 243

Chapter 8: Actors	 247
Working with actors	 248

Creating actor systems and actors	 250
Managing unhandled messages	 254
Actor behavior and state	 255
Akka actor hierarchy	 260
Identifying actors	 263
The actor life cycle	 265

Communication between actors	 269
The ask pattern	 271
The forward pattern	 274
Stopping actors	 275

Actor supervision	 277
Remote actors	 282
Summary	 286
Exercises	 287

Chapter 9: Concurrency in Practice	 289
Choosing the right tools for the job	 290
Putting it all together – a remote file browser	 294

Modeling the filesystem	 296
The server interface	 300
Client navigation API	 301
The client user interface	 305
Implementing the client logic	 309
Improving the remote file browser	 314

Table of Contents

[v]

Debugging concurrent programs	 315
Deadlocks and lack of progress	 316
Debugging incorrect program outputs	 320
Performance debugging	 326

Summary	 332
Exercises	 333

Index	 335

Preface
Concurrency is everywhere. With the rise of multicore processors in the consumer
market, the need for concurrent programming has overwhelmed the developer
world. Where it once served to express asynchrony in programs and computer
systems, and was largely an academic discipline, concurrent programming is now a
pervasive methodology in software development. As a result, advanced concurrency
frameworks and libraries are sprouting at an amazing rate. Recent years have
witnessed a renaissance in the field of concurrent computing.

As the level of abstraction grows in modern languages and concurrency frameworks,
it is becoming crucial to know how and when to use them. Having a good grasp of
the classical concurrency and synchronization primitives, such as threads, locks, and
monitors, is no longer sufficient. High-level concurrency frameworks, which solve
many issues of traditional concurrency and are tailored towards specific tasks, are
gradually overtaking the world of concurrent programming.

This book describes high-level concurrent programming in Scala. It presents detailed
explanations of various concurrency topics and covers the basic theory of concurrent
programming. Simultaneously, it describes modern concurrency frameworks, shows
their detailed semantics, and teaches you how to use them. Its goal is to introduce
important concurrency abstractions, and at the same time show how they work in
real code.

We are convinced that, by reading this book, you will gain both a solid theoretical
understanding of concurrent programming, and develop a set of useful practical
skills that are required to write correct and efficient concurrent programs. These
skills are the first steps toward becoming a modern concurrency expert.

We hope that you will have as much fun reading this book as we did writing it.

Preface

[2]

How this book is organized
The primary goal of this book is to help you develop skills that are necessary to
write correct and efficient concurrent programs. The best way to obtain a skill is to
apply it in practice. When it comes to programming, the best way to learn it is to
write programs. This book aims to teach you about concurrency in Scala through a
sequence of example programs, each designed to show you a particular aspect of
concurrent programming. The examples range from the simplest counterparts
of a "Hello World" program to programs demonstrating advanced intricacies
of concurrency.

What is common to most of the programs in this book is that they are short and
self-contained. This has two benefits. First, you can study most of the examples in
isolation. Although we recommend that you read the entire book in the order of the
chapters, you should have no problem studying specific topics. Second, conciseness
ensures that each new concept is easy to grasp and understand. It is much easier to
comprehend concepts like atomicity, memory contention, or busy-waiting on simple
programs. This does not mean that these programs are contrived or artificial; each
example illustrates an effect present in real-world programs, although stripped of
irrelevant nonessentials.

When reading this book, we strongly encourage you to write down and run these
examples yourself, rather than just passively study them. Each example will teach
you about a new concept, but you can only fully understand each of these concepts
if you try them in practice. Witnessing a particular effect in a running concurrent
program is a far more valuable experience than just reading about it. So, make sure
that you download SBT, and create an empty project before starting to read this
book, as described later in a subsequent section. The examples are made short so
that you, the reader, can try them out with almost no hassle.

At the end of each chapter, you will find a list of programming exercises. These
exercises are designed to test your understanding of the various topics that have
been introduced. We recommend that you try to solve at least a few after completing
a chapter.

In most cases, we avoid listing the API methods, or their exact signatures. There are
several reasons for this. First, you can always study the APIs in the online ScalaDoc
documentation. This book would not be particularly useful if it simply repeated
the content that's already there. Second, software is in a constant state of change.
Although the Scala concurrency framework designers strive to keep the APIs stable,
the method names and signatures are occasionally changed. This book describes the
semantics of the most important concurrency facilities that are sufficient to write
concurrent programs and unlikely to change.

Preface

[3]

The goal of this book is not to give a comprehensive overview of every dark corner
of the Scala concurrency APIs. Instead, this book will teach you the most important
concepts of concurrent programming. By the time you are done reading this book,
you will not just be able to find additional information in the online documentation;
you will also know what to look for. Rather than serving as a complete API reference
and feeding you the exact semantics of every method, the purpose of this book
is to teach you how to fish. By the time you are done reading, you will not only
understand how different concurrency libraries work, but you will also know
how to think when building a concurrent program.

What this book covers
This book is organized into a sequence of chapters with various topics on concurrent
programming. The book covers the fundamental concurrent APIs that are a part of
the Scala runtime, introduces more complex concurrency primitives, and gives an
extensive overview of high-level concurrency abstractions.

Chapter 1, Introduction, explains the need for concurrent programming, and gives
some philosophical background. At the same time, it covers the basics of the Scala
programming language that are required for understanding the rest of this book.

Chapter 2, Concurrency on the JVM and the Java Memory Model, teaches you the basics
of concurrent programming. This chapter will teach you how to use threads, how
to protect access to shared memory, and introduce the Java Memory Model.

Chapter 3, Traditional Building Blocks of Concurrency, presents classic concurrency
utilities, such as thread pools, atomic variables, and concurrent collections with
a particular focus on the interaction with the features of the Scala language. The
emphasis in this book is on the modern, high-level concurrent programming
frameworks. Consequently, this chapter presents an overview of traditional
concurrent programming techniques, but it does not aim to be extensive.

Chapter 4, Asynchronous Programming with Futures and Promises, is the first chapter
that deals with a Scala-specific concurrency framework. This chapter presents the
futures and promises API, and shows how to correctly use them when implementing
asynchronous programs.

Chapter 5, Data-Parallel Collections, describes the Scala parallel collections framework.
In this chapter, you will learn how to parallelize collection operations, when it is
allowed to parallelize them, and how to assess the performance benefits of doing so.

Preface

[4]

Chapter 6, Concurrent Programming with Reactive Extensions, teaches you how
to use the Reactive Extensions framework for event-based and asynchronous
programming. You will see how the operations on event streams correspond to
collection operations, how to pass events from one thread to another, and how
to design a reactive user interface using event streams.

Chapter 7, Software Transactional Memory, introduces the ScalaSTM library
for transactional programming, which aims to provide a safer, more intuitive,
shared-memory programming model. In this chapter, you will learn how to protect
access to shared data using scalable memory transactions, and at the same time,
reduce the risk of deadlocks and race conditions.

Chapter 8, Actors, presents the actor programming model and the Akka framework.
In this chapter, you will learn how to transparently build message-passing
distributed programs that run on multiple machines.

Chapter 9, Concurrency in Practice, summarizes the different concurrency libraries
introduced in the earlier chapters. In this chapter, you will learn how to choose
the correct concurrency abstraction to solve a given problem, and how to combine
different concurrency abstractions together when designing larger concurrent
applications.

While we recommend that you read the chapters in the order in which they appear,
this is not strictly necessary. If you are well acquainted with the content in Chapter 2,
Concurrency on the JVM and the Java Memory Model, you can study most of the other
chapters directly. The only chapter that heavily relies on the content from all the
preceding chapters is Chapter 9, Concurrency in Practice, where we present a practical
overview of the topics in this book.

What you need for this book
In this section, we describe some of the requirements that are necessary to read and
understand this book. We explain how to install the Java Development Kit that is
required to run Scala programs, and show how to use Simple Build Tool to run
various examples.

We will not require an IDE in this book. The program that you use to write code is
entirely up to you, and you can choose anything, such as Vim, Emacs, Sublime Text,
Eclipse, IntelliJ IDEA, Notepad++, or some other text editor.

Preface

[5]

Installing the JDK
Scala programs are not compiled directly to the native machine code, so they
cannot be run as executables on various hardware platforms. Instead, the Scala
compiler produces an intermediate code format, called the Java bytecode. To
run this intermediate code, your computer must have the Java Virtual Machine
software installed. In this section, we explain how to download and install the Java
Development Kit, which includes the Java Virtual Machine and other useful tools.

There are multiple implementations of the JDK that are available from different
software vendors. We recommend that you use the Oracle JDK distribution. To
download and install the Java Development Kit, follow these steps:

1.	 Open the following URL in your web browser: www.oracle.com/
technetwork/java/javase/downloads/index.html.

2.	 If you cannot open the specified URL, go to your search engine and enter the
keywords JDK Download.

3.	 Once you find the link for the Java SE download on the Oracle website,
download the appropriate version of JDK 7 for your operating system:
Windows, Linux, or Mac OS X; 32-bit or 64-bit.

4.	 If you are using the Windows operating system, simply run the installer
program. If you are using the Mac OS X, open the dmg archive to install JDK.
Finally, if you are using Linux, decompress the archive to a XYZ directory,
and add the bin subdirectory to the PATH variable:
export PATH=XYZ/bin:$PATH

5.	 You should now be able to run the java and javac commands in the
terminal. Enter javac to see if it is available (you will never invoke this
command directly in this book, but running it verifies that it is available):
javac

It is possible that your operating system already has JDK installed. To verify this,
simply run the javac command, as in the last step in the preceding description.

Installing and using SBT
Simple Build Tool (SBT) is a command-line build tool used for Scala projects. Its
purpose is to compile Scala code, manage dependencies, continuous compilation and
testing, deployment, and many other uses. Throughout this book, we will use SBT to
manage our project dependencies and run example code.

www.oracle.com/technetwork/java/javase/downloads/index.html
www.oracle.com/technetwork/java/javase/downloads/index.html

Preface

[6]

To install SBT, please follow these instructions:

1.	 Go to the http://www.scala-sbt.org/ URL.
2.	 Download the installation file for your platform. If you are running on

Windows, this is the msi installer file. If you are running on Linux or OS X,
this is the zip or tgz archive file.

3.	 Install SBT. If you are running on Windows, simply run the installer file. If
you are running on Linux or OS X, unzip the contents of the archive in your
home directory.

You are now ready to use SBT. In the following steps, we will create a new
SBT project:

1.	 Open a command prompt if you are running on Windows, or a terminal
window if you are running on Linux or OS X.

2.	 Create an empty directory called scala-concurrency-examples:
$ mkdir scala-concurrency-examples

3.	 Change your path to the scala-concurrency-examples directory:
$ cd scala-concurrency-examples

4.	 Create a single source code directory for our examples:
$ mkdir src/main/scala/org/learningconcurrency/

5.	 Now, use your editor to create a build definition file, named build.sbt. This
file defines various project properties. Create it in the root directory of the
project (scala-concurrency-examples). Add the following contents to the
build definition file (note that the empty lines are mandatory):
name := "concurrency-examples"

version := "1.0"

scalaVersion := "2.11.1"

6.	 Finally, go back to the terminal, and run SBT from the root directory of
the project:
$ sbt

7.	 SBT will start an interactive shell, which we will use to give SBT various
build commands.

http://www.scala-sbt.org/

Preface

[7]

Now, you can start writing Scala programs. Open your editor, and create a
source code file named HelloWorld.scala in the src/main/scala/org/
learningconcurrency directory. Add the following contents to the
HelloWorld.scala file:

package org.learningconcurrency

object HelloWorld extends App {
 println("Hello, world!")
}

Now, go back to the terminal window with the SBT interactive shell, and run the
program with the following command:

> run

Running this program should give the following output:

Hello, world!

These steps are sufficient to run most of the examples in this book. Occasionally,
we will rely on external libraries when running the examples. These libraries are
resolved automatically by SBT from standard software repositories. For some
libraries, we will need to specify additional software repositories, so we add the
following lines to our build.sbt file:

resolvers ++= Seq(
 "Sonatype OSS Snapshots" at
 "https://oss.sonatype.org/content/repositories/snapshots",
 "Sonatype OSS Releases" at
 "https://oss.sonatype.org/content/repositories/releases",
 "Typesafe Repository" at
 "http://repo.typesafe.com/typesafe/releases/"
)

Now that we have added all the necessary software repositories, we can add some
concrete libraries. By adding the following line to the build.sbt file, we obtain
access to the Apache Commons IO library:

libraryDependencies += "commons-io" % "commons-io" % "2.4"

After changing the build.sbt file, it is necessary to reload any running SBT
instances. In the SBT interactive shell, we need to enter the following command:

> reload

This enables SBT to detect any changes in the build definition file, and download
additional software packages when necessary.

Preface

[8]

Different Scala libraries live in different namespaces, called packages. To obtain
access to the contents of a specific package, we use the import statement. When we
use a specific concurrency library in an example for the first time, we will always
show the necessary set of import statements. On subsequent uses of the same
library, we will not repeat the same import statements.

Similarly, we avoid adding package declarations in the code examples to keep
them short. Instead, we assume that the code in a specific chapter is in the similarly
named package. For example, all the code belonging to Chapter 2, Concurrency on
the JVM and the Java Memory Model, resides in the org.learningconcurrency.ch2
package. Source code files for the examples presented in that chapter begin with
the following code:

package org.learningconcurrency
package ch2

Finally, this book deals with concurrency and asynchronous execution. Many of the
examples start a concurrent computation that continues executing after the main
execution stops. To make sure that these concurrent computations always complete,
we will run most of the examples in the same JVM instance as SBT itself. We add the
following line to our build.sbt file:

fork := false

In the examples, where running in a separate JVM process is required, we will point
this out and give clear instructions.

Using Eclipse, IntelliJ IDEA, or another IDE
An advantage of using an Integrated Development Environment (IDE) such as
Eclipse or IntelliJ IDEA is that you can write, compile, and run your Scala programs
automatically. In this case, there is no need to install SBT, as described in the
previous section. While we advise that you run the examples using SBT, you
can alternatively use an IDE.

There is an important caveat when running the examples in this book using an IDE:
editors such as Eclipse and IntelliJ IDEA run the program inside a separate JVM
process. As mentioned in the previous section, certain concurrent computations
continue executing after the main execution stops. To make sure that they always
complete, you will sometimes need to add the sleep statements at the end of the
main execution, which slow down the main execution. In most of the examples in
this book, the sleep statements are already added for you, but in some programs
you might have to add them yourself.

Preface

[9]

Who this book is for
This book is primarily intended for developers who have learned how to write
sequential Scala programs, and wish to learn how to write correct concurrent
programs. The book assumes that you have a basic knowledge of the Scala
programming language. Throughout this book, we strive to use the simple features
of Scala in order to demonstrate how to write concurrent programs. Even with
an elementary knowledge of Scala, you should have no problem understanding
various concurrency topics.

This is not to say that the book is limited to Scala developers. Whether you
have experience with Java, come from a .NET background, or are generally a
programming language aficionado, chances are that you will find the content
in this book insightful. A basic understanding of object-oriented or functional
programming should be a sufficient prerequisite.

Finally, this book is a good introduction to modern concurrent programming in
the broader sense. Even if you have the basic knowledge about multithreaded
computing, or the JVM concurrency model, you will learn a lot about modern,
high-level concurrency utilities. Many of the concurrency libraries in this book
are only starting to find their way into mainstream programming languages,
and some of them are truly cutting-edge technologies.

Conventions
In this book, you will find a number of styles of text that distinguish between
different kinds of information. Here are some examples of these styles, and an
explanation of their meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows:
"Then, it calls the square method to compute the value for the local variable s."

A block of code is shown as follows:

object SquareOf5 extends App {
 def square(x: Int): Int = x * x
 val s = square(5)
 println(s"Result: $s")
}

Preface

[10]

Any command-line input or output is written as follows:

run-main-46: ...

Thread-80: New thread running.

run-main-46: ...

run-main-46: New thread joined.

New terms and important words are shown in bold. Words that you see on the
screen, in menus or dialog boxes for example, appear in the text like this: "After
clicking on the Thread Dump button, Java VisualVM displays the stack traces
of all the threads, as shown in the following screenshot:".

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or may have disliked. Reader feedback is important
for us to develop titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com,
and mention the book title via the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide on www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things
to help you to get the most from your purchase.

www.packtpub.com/authors

Preface

[11]

Downloading the example code
You can download the example code files for all Packt books you have purchased
from your account at http://www.packtpub.com. If you purchased this book
elsewhere, you can visit http://www.packtpub.com/support and register to have
the files e-mailed directly to you. Alternatively, you can download the source code
for this book at https://github.com/concurrent-programming-in-scala/
learning-examples/.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes do
happen. If you find a mistake in one of our books—maybe a mistake in the text or the
code—we would be grateful if you would report this to us. By doing so, you can save
other readers from frustration and help us improve subsequent versions of this book.
If you find any errata, please report them by visiting http://www.packtpub.com/
submit-errata, selecting your book, clicking on the errata submission form link,
and entering the details of your errata. Once your errata are verified, your submission
will be accepted and the errata will be uploaded on our website, or added to any list
of existing errata, under the Errata section of that title. Any existing errata can be
viewed by selecting your title from http://www.packtpub.com/support.

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media.
At Packt, we take the protection of our copyright and licenses very seriously. If you
come across any illegal copies of our works, in any form, on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors, and our ability to bring you
valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with
any aspect of the book, and we will do our best to address it.

http://www.packtpub.com
http://www.packtpub.com/support
https://github.com/concurrent-programming-in-scala/learning-examples/
https://github.com/concurrent-programming-in-scala/learning-examples/
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/support
mailto:copyright@packtpub.com

Introduction
"For over a decade prophets have voiced the contention that the organization of a
single computer has reached its limits and that truly significant advances can be
made only by interconnection of a multiplicity of computers."

Gene Amdahl, 1967

Although the discipline of concurrent programming has a long history, it gained
a lot of traction in recent years with the arrival of multicore processors. The recent
development in computer hardware not only revived some classical concurrency
techniques, but also started a major paradigm shift in concurrent programming. At
a time, when concurrency is becoming so important, an understanding of concurrent
programming is an essential skill for every software developer.

This chapter explains the basics of concurrent computing and presents some Scala
preliminaries required for this book. Specifically, it does the following:

•	 Shows a brief overview of concurrent programming
•	 Studies the advantages of using Scala when it comes to concurrency
•	 Covers the Scala preliminaries required for reading this book

We will start by examining what concurrent programming is and why it is important.

Concurrent programming
In concurrent programming, we express a program as a set of concurrent
computations that execute during overlapping time intervals and coordinate in some
way. Implementing a concurrent program that functions correctly is usually much
harder than implementing a sequential one. All the pitfalls present in sequential
programming lurk in every concurrent program, but there are many other things
that can go wrong, as we will learn in this book. A natural question arises: why
bother? Can't we just keep writing sequential programs?

Introduction

[14]

Concurrent programming has multiple advantages. First, increased concurrency
can improve program performance. Instead of executing the entire program on a
single processor, different subcomputations can be performed on separate processors
making the program run faster. With the spread of multicore processors, this is the
primary reason why concurrent programming is nowadays getting so much attention.

Then, a concurrent programming model can result in faster I/O operations. A
purely sequential program must periodically poll I/O to check if there is any data
input available from the keyboard, the network interface, or some other device. A
concurrent program, on the other hand, can react to I/O requests immediately. For
I/O-intensive operations, this results in improved throughput, and is one of the
reasons why concurrent programming support existed in programming languages
even before the appearance of multiprocessors. Thus, concurrency can ensure the
improved responsiveness of a program that interacts with the environment.

Finally, concurrency can simplify the implementation and maintainability of
computer programs. Some programs can be represented more concisely using
concurrency. It can be more convenient to divide the program into smaller,
independent computations than to incorporate everything into one large program.
User interfaces, web servers, and game engines are typical examples of such systems.

In this book, we adopt the convention that concurrent programs communicate
through the use of shared memory, and execute on a single computer. By contrast, a
computer program that executes on multiple computers, each with its own memory,
is called a distributed program, and the discipline of writing such programs is called
distributed programming. Typically, a distributed program must assume that each
of the computers can fail at any point, and provide some safety guarantees if this
happens. We will mostly focus on concurrent programs, but we will also look at
examples of distributed programs.

A brief overview of traditional concurrency
In a computer system, concurrency can manifest itself in the computer hardware,
at the operating system level, or at the programming language level. We will focus
mainly on programming language-level concurrency.

Coordination of multiple executions in a concurrent system is called synchronization,
and it is a key part in successfully implementing concurrency. Synchronization
includes mechanisms used to order concurrent executions in time. Furthermore,
synchronization specifies how concurrent executions communicate, that is, how
they exchange information. In concurrent programs, different executions interact
by modifying the shared memory subsystem of the computer. This type of
synchronization is called shared memory communication. In distributed programs,
executions interact by exchanging messages, so this type of synchronization is called
message-passing communication.

