
[1]

Learning PostgreSQL

Create, develop, and manage relational databases
in real-world applications using PostgreSQL

Salahaldin Juba

Achim Vannahme

Andrey Volkov

BIRMINGHAM - MUMBAI

Learning PostgreSQL

Copyright © 2015 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the authors, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: November 2015

Production reference: 1241115

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78398-918-8

www.packtpub.com

www.packtpub.com

Credits

Authors
Salahaldin Juba

Achim Vannahme

Andrey Volkov

Reviewers
Ângelo Marcos Rigo

Dr. Isabel Rosa

Commissioning Editor
Julian Ursell

Acquisition Editors
Tushar Gupta

Greg Wild

Content Development Editor
Parita Khedekar

Technical Editor
Vijin Boricha

Copy Editors
Shruti Iyer

Sonia Mathur

Project Coordinator
Judie Jose

Proofreader
Safis Editing

Indexer
Monica Ajmera Mehta

Graphics
Disha Haria

Production Coordinator
Conidon Miranda

Cover Work
Conidon Miranda

About the Authors

Salahaldin Juba has over 10 years of experience in industry and academia, with a
focus on database development for large-scale and enterprise applications. He holds
a master's degree of science in environmental management and a bachelor's degree
of engineering in computer systems.

I would like to express my deepest gratitude to my colleagues Achim
Vannahme and Andrey Volkov for making this work possible. Also,
I would like to thank all those who provided support, especially the
Packt publishing team, especially the persons whom I interacted
with—Vijin Boricha, Greg Wild, and Parita Khedekar—for their
great help with proofreading, design, comments, and remarks.

I would also like to thank my mother, Wedad; my wife, Rana; and
the rest of my family, who supported me despite all of the time that I
had to devote to this book over them.

Achim Vannahme works as a senior software developer at a mobile messaging
operator, where he focuses on software quality and test automation. He holds a
degree in computer science and has over 10 years of experience in using Java and
PostgreSQL in distributed and high-performance applications.

Andrey Volkov pursued his education in information systems in the banking
sector. He started his career as a financial analyst in a commercial bank. Here,
Andrey worked with a database as a data source for his analysis and soon realized
that querying the database directly is much more efficient for ad hoc analyses than
using any visual report-generating software. He joined the data warehouse team,
and after a while, he led the team by taking up the position of a data warehouse
architect. Andrey worked mainly with Oracle databases to develop logical and
physical models of finance and accounting data, created them in a database,
implemented procedures to load and process data, and performed analytical tasks.
He was also responsible for teaching users how to use data warehouse and BI tools,
and SQL training was a part of his job as well.

After many years of being greatly interested in the aspects of his job that were
related to IT rather than accounting or banking, Andrey changed fields. Currently,
he works as a database developer in a telecommunication company. Here, Andrey
works mainly with PostgreSQL databases and is responsible for data modeling,
implementing data structures in databases, developing stored procedures,
integrating databases with other software components, and developing a data
warehouse.

Having worked with both Oracle and PostgreSQL—the former is a leading
commercial and the latter is one of the most advanced open source RDBMSes—he
is able to compare them and recognize and evaluate the key advantages of both.
Andrey's extensive experience, therefore, made him able and willing to work on
this book.

About the Reviewers

Ângelo Marcos Rigo has a strong background in web development, which
he has worked with since 1998, with a focus on content management systems,
hibryd mobile apps and custom web based systems. He holds a degree in systems
information and also has extensive experience in managing, customizing, and
developing extensions for the moodle LMS. Ângelo can be reached on his website,
http://www.u4w.com.br, for consultation. He has also reviewed, Moodle Security,
Packt Publishing.

I would like to thank my wife, Janaina de Souza, and my daughter,
Lorena Rigo, for their support while I was away to review this book.

Dr. Isabel Rosa is a research associate at Imperial College London and one of
the cofounders of Earthindicators. She has a PhD in computational ecology from
Imperial College London and extensive experience in data mining and predictive
modeling. For the last five years, Dr. Rosa worked as a researcher with Imperial
College London. During her academic career, she acquired several skills such
as statistical analysis, programming (R, C++, Python), working with geographic
information systems (ArcGIS and QGIS), and creating databases (PostgreSQL/
PostGIS, SQLServer). Dr. Rosa is also the lead author and coauthor of several
scientific papers published in top-quality scientific journals, such as Global Change
Biology. She has presented her work at several national and international scientific
conferences and is the lead coordinator of Land Use Forum (London).

http://www.u4w.com.br

www.PacktPub.com

Support files, eBooks, discount offers,
and more
For support files and downloads related to your book, please visit www.PacktPub.com.

Did you know that Packt offers eBook versions of every book published, with PDF
and ePub files available? You can upgrade to the eBook version at www.PacktPub.
com and as a print book customer, you are entitled to a discount on the eBook copy.
Get in touch with us at service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign
up for a range of free newsletters and receive exclusive discounts and offers on Packt
books and eBooks.

TM

https://www2.packtpub.com/books/subscription/packtlib

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital
book library. Here, you can search, access, and read Packt's entire library of books.

Why subscribe?
• Fully searchable across every book published by Packt
• Copy and paste, print, and bookmark content
• On demand and accessible via a web browser

Free access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view 9 entirely free books. Simply use your login credentials for
immediate access.

www.PacktPub.com
www.PacktPub.com
www.PacktPub.com
www.PacktPub.com
https://www2.packtpub.com/books/subscription/packtlib
www.PacktPub.com

[i]

Table of Contents
Preface xi
Chapter 1: Relational Databases 1

Database management systems 1
A brief history 2
Database categories 3
The NoSQL databases 3

The CAP theorem 3
NoSQL motivation 4
Key value databases 4
Columnar databases 4
Document databases 5
Graph databases 5

Relational and object relational databases 5
ACID properties 6
The SQL Language 6
Basic concepts 7
Relation 7
Tuple 8
Attribute 9
Constraint 10

Relational algebra 14
The SELECT and PROJECT operations 16
The RENAME operation 18
The Set theory operations 18
The CROSS JOIN (Cartesian product) operation 19

Data modeling 21
Data model perspectives 22

Table of Contents

[ii]

The entity-relation model 22
Sample application 23
Entities, attributes, and keys 24
Mapping ER to Relations 28

UML class diagrams 29
Summary 29

Chapter 2: PostgreSQL in Action 31
An overview of PostgreSQL 31

PostgreSQL history 31
The advantages of PostgreSQL 32

Business advantages of PostgreSQL 32
PostgreSQL user advantages 33

PostgreSQL applications 33
Success stories 34
Forks 35
PostgreSQL architecture 36

PostgreSQL abstract architecture 36
The PostgreSQL community 38

PostgreSQL capabilities 38
Replication 38
Security 39
Extension 39
NoSQL capabilities 41
Foreign data wrapper 42
Performance 42
Very rich SQL constructs 43

Installing PostgreSQL 43
Installing PostgreSQL on Ubuntu 44

Client installation 44
Server installation 45
Basic server configuration 47

Installing PostgreSQL on Windows 48
The PostgreSQL clients 50

The psql client 51
PostgreSQL utility tools 58
Backup and replication 58
Utilities 59
PgAdmin III 59

Summary 60

Table of Contents

[iii]

Chapter 3: PostgreSQL Basic Building Blocks 61
Database coding 61

Database naming conventions 61
PostgreSQL identifiers 62
Documentation 63
Version control system 63

PostgreSQL objects hierarchy 64
Template databases 65
User databases 66
Roles 69
Tablespace 70
Template procedural languages 71
Settings 71

Setting parameters 71
Setting a context 72

PostgreSQL high-level object interaction 74
PostgreSQL database components 75

Schema 75
Schema usages 76

Table 77
PostgreSQL native data types 78
Numeric types 79
Character types 81
Date and time types 86
The car web portal database 90

Summary 93
Chapter 4: PostgreSQL Advanced Building Blocks 95

Views 95
View synopsis 98
Views categories 99
Materialized views 100
Updatable views 102

Indexes 104
Index types 108
Partial indexes 108
Indexes on expressions 109
Unique indexes 110
Multicolumn indexes 111
Best practices on indexes 112

Table of Contents

[iv]

Functions 114
PostgreSQL native programming languages 114

Creating a function in the C language 115
Creating functions in the SQL language 117
Creating a function in the PL/pgSQL language 117

PostgreSQL function usages 118
PostgreSQL function dependency 118
PostgreSQL function categories 119
PostgreSQL anonymous functions 121

PostgreSQL user-defined data types 122
The PostgreSQL CREATE DOMAIN command 122
The PostgreSQL CREATE TYPE command 124

Triggers and rule systems 127
The PostgreSQL rule system 128
The PostgreSQL trigger system 131

Triggers with arguments 135
Using triggers to make views updatable 138

Summary 141
Chapter 5: SQL Language 143

SQL fundamentals 144
SQL lexical structure 145

Querying the data with the SELECT statement 149
The structure of the SELECT query 150
Select-list 152

SQL expressions 153
DISTINCT 158

FROM clause 159
Selecting from multiple tables 160
Self-joins 166

WHERE clause 167
Comparison operators 168
Pattern matching 169
Row and array comparison constructs 170

Grouping and aggregation 172
GROUP BY clause 172
HAVING clause 175

Ordering and limiting the results 176
Subqueries 178
Set operations – UNION, EXCEPT, and INTERSECT 180
Dealing with NULLs 182

Table of Contents

[v]

Changing the data in the database 184
INSERT statement 184
UPDATE statement 186

UPDATE using sub-select 186
UPDATE using additional tables 187

DELETE statement 188
TRUNCATE statement 189

Summary 189
Chapter 6: Advanced Query Writing 191

Common table expressions 191
Reusing SQL code with CTE 193
Recursive and hierarchical queries 196
Changing data in multiple tables at a time 201

Window functions 204
Window definition 205
The WINDOW clause 207
Using window functions 207
Window functions with grouping and aggregation 211

Advanced SQL 212
Selecting the first records 212
Set returning functions 213
Lateral subqueries 216
Advanced usage of aggregating functions 219

Transaction isolation and multiversion concurrency control 222
Summary 226

Chapter 7: Server-Side Programming with PL/pgSQL 227
Introduction 227

SQL language and PL/pgSQL – a comparison 228
PostgreSQL function parameters 229

Function authorization-related parameters 229
Function planner-related parameters 231
Function configuration-related parameters 235

The PostgreSQL PL/pgSQL control statements 236
Declaration statements 237
Assignment statements 239
Conditional statements 242
Iteration 246

The loop statement 246
The while loop statement 247
The for loop statement 248

Table of Contents

[vi]

Returning from the function 250
Returning void 250
Returning a single row 250
Returning multiple rows 251

Function predefined variables 253
Exception handling 254
Dynamic SQL 257

Executing DDL statements in dynamic SQL 257
Executing DML statements in dynamic SQL 258
Dynamic SQL and the caching effect 258
Recommended practices when using dynamic SQL 259

Summary 262
Chapter 8: PostgreSQL Security 263

Authentication in PostgreSQL 263
PostgreSQL pg_hba.conf 264
Listen addresses 265
Authentication best practices 266

PostgreSQL default access privileges 267
Role system and proxy authentication 271

PostgreSQL security levels 272
Database security level 273
Schema security level 274
Table-level security 275
Column-level security 275
Row-level security 276

Encrypting data 276
PostgreSQL role password encryption 276
pgcrypto 277

One-way encryption 278
Two-way encryption 280

Summary 283
Chapter 9: The PostgreSQL System Catalog and System
Administration Functions 285

The system catalog 285
Getting the database cluster and client tools version 289

Getting ready 289
How to do it… 289
There's more… 290

Table of Contents

[vii]

Terminating and canceling user sessions 290
Getting ready 290
How to do it… 290
How it works… 291
There's more… 291

Setting and getting database cluster settings 291
Getting ready 291
How to do it… 292
There's more… 293

Getting the database and database object size 293
Getting ready 294
How to do it… 294
There's more… 294

Cleaning up the database 295
Getting ready 295
How to do it… 296
There's more… 297

Cleaning up data in the database 298
Getting ready 298
How to do it… 299
There's more… 300

Managing database locks 301
Adding missing indexes on foreign keys and altering
the default statistic 303

Getting ready 303
How to do it… 303

Getting the views dependency tree 304
Getting ready 304
How to do it… 304
There's more… 308

Summary 308
Chapter 10: Optimizing Database Performance 311

PostgreSQL configuration tuning 312
Maximum number of connections 312
Memory settings 312
Hard disk settings 313
Planner-related settings 314
Benchmarking is your friend 314

Table of Contents

[viii]

Tuning PostgreSQL queries 315
The EXPLAIN command and execution plan 316
Detecting problems in query plans 319
Common mistakes in writing queries 320

Unnecessary operations 320
Misplaced indexes 322
Unnecessary table or index scans 324
Using correlated nested queries 325
Using CTE when not mandatory 325
Using the PL/pgSQL procedural language consideration 326

Cross column correlation 326
Table partitioning 328

Constraint exclusion limitations 331
Summary 331

Chapter 11: Beyond Conventional Data types 333
PostgreSQL arrays 334

Common functions of arrays and their operators 339
Modifying and accessing arrays 340
Indexing arrays in PostgreSQL 342

Hash store 342
Modifying and accessing an hstore 344
Indexing an hstore in PostgreSQL 345

The PostgreSQL JSON data type 346
JSON and XML 347
The JSON data type 347
Modifying and accessing JSON types 347
Indexing a JSON data type 350
The PostgreSQL RESTful API with JSON 351

A PostgreSQL full text search 356
The tsquery and tsvector data types 357

The tsvector data type 357
The tsquery data type 358

Pattern matching 358
Full text search indexing 360

Summary 361
Chapter 12: Testing 363

Unit testing 364
Unit testing in databases 364
Unit test frameworks 368

Schema difference 370

Table of Contents

[ix]

The interfaces test 372
Data difference 373

PostgreSQL benchmarks 376
Summary 378

Chapter 13: PostgreSQL JDBC 379
Introduction to JDBC 379
Connecting to a PostgreSQL database 380

Installing the driver 380
Initializing the driver 381
Obtaining a connection 381
Error handling 383
SQLWarnings 383

Issuing a query and processing the results 384
Static statements 384
PreparedStatements 385
Using a ResultSet 387

Navigating through a ResultSet 387
Reading row data 388
Handling null values 388
Scrollable and updateable ResultSets 389

Using cursors 391
Getting information about the table structure 392

Function handling 393
Calling a stored function 393
Getting a ResultSet from a stored function 394

Getting a ResultSet from a function returning SETOF 394
Getting a ResultSet from a function returning a refcursor 395

Design considerations 395
Summary 396

Chapter 14: PostgreSQL and Hibernate 397
Introduction to ORM and Hibernate 397

Hibernate overview and architecture 398
Installation and configuration 398

Installation of Hibernate 399
Configuring Hibernate 399
Getting a session from the SessionFactory 400
Mapping classes to tables 401

Creating an entity class 402
Creating a mapping file 402
Using annotation-based mapping 404

Table of Contents

[x]

Working with entities 405
States of an entity 405
Making a new entity persistent 406
Loading an entity from the database 407
Loading a list of entries 408

Named queries 409
Creating dynamic queries 410
Modifying entities 411
Deleting entities 412
Using association mapping 412

One-to-many and many-to-one mappings 412
One-to-one mapping and component mapping 415
Many-to-many mapping 416

Fetching strategies 417
Configuring the fetch type 418
Configuring the fetch mode 418

Tuning the performance of Hibernate 419
Using caching 420
Using connection pools 421
Dealing with partitioned tables 423

Summary 424
Index 425

[xi]

Preface
Picking the right database management system is a difficult task due to the vast
number of options on the market. Depending on the business model, one can pick a
commercial database or an open source database with commercial support. In addition
to this, there are several technical and nontechnical factors to assess. When it comes
to a relational database management system, PostgreSQL stands at the top for several
reasons. The PostgreSQL slogan, "The world's most advanced open source database",
shows the sophistication of PostgreSQL features and community confidence.

PostgreSQL is an open source object relational database management system. It
emphasizes extensibility and competes with major relational database vendors
such as Oracle, SQL server, and MySQL. Due to its rich extensions and open source
license, it is often used for research purposes, but PostgreSQL code is also the
base for many commercial database management systems such as Greenplum and
Vertica. Furthermore, start-up companies often favor PostgreSQL due to its licensing
costs and because there are a lot of companies that provide commercial support.

PostgreSQL runs on most modern operating systems, including Windows, Mac,
and Linux flavors. Also, there are several extensions to access, manage, and monitor
PostgreSQL clusters, such as pgAdmin III. PostgreSQL installation and configuration
is moderately easy as it is supported by most packaging tools, such as yum and apt.

Database developers can easily learn and use PostgreSQL because it complies with
ANSI SQL standards and comes with many client tools such as psql and pgAdmin III.
Other than this, there are a lot of resources to help developers learn PostgreSQL; it has
a very good documentation manual and a very active and organized community.

PostgreSQL can be used for both OLTP and OLAP applications. As it is ACID
compliant, it can be used out of the box for OLTP applications. For OLAP
applications, PostgreSQL supports Window functions, FDW, and table inheritance;
there are many external extensions for this purpose as well.

Preface

[xii]

Even though PostgreSQL is ACID compliant, it has very good performance as it
utilizes state of the art algorithms and techniques. For example, PostgreSQL utilizes
MVCC architecture to allow concurrent access to data. Also, PostgreSQL provides
a very good analyzer and advanced features, such as data partitioning using table
inheritance and constraint exclusion, to speed up the handling of very large data.
PostgreSQL supports several types of indexes such as B-Tree, GiN, and GiST, and
BRIN indexes are also supported by PostgreSQL 9.5 at the time of writing this book.

PostgreSQL is scalable thanks to the many replication solutions in the market,
such as Slony and pgpool-II. Additionally, PostgreSQL supports out-of-the-box
synchronous and asynchronous streaming replication. This makes PostgreSQL very
attractive because it can be used to set up highly available and performant systems.

What this book covers
Chapter 1, Relational Databases, introduces relational database system concepts,
including relational database properties, relational algebra, and database modeling.
Also, it describes different database management systems such as graph, document,
key value, and columnar databases.

Chapter 2, PostgreSQL in Action, provides first-hand experience in installing the
PostgreSQL server and client tools on different platforms. This chapter also
introduces PostgreSQL capabilities, such as out-of-the-box replication support
and its very rich data types.

Chapter 3, PostgreSQL Basic Building Blocks, provides some coding best practices,
such as coding conventions, identifier names, and so on. This chapter describes the
PostgreSQL basic building blocks and the interaction between these blocks, mainly
template databases, user databases, tablespaces, roles, and settings. Also, it describes
basic data types and tables.

Chapter 4, PostgreSQL Advanced Building Blocks, introduces several building blocks,
including views, indexes, functions, user-defined data types, triggers, and rules. This
chapter provides use cases of these building blocks and compares building blocks
that can be used for the same case, such as rules and triggers.

Chapter 5, SQL Language, introduces Structured Query Language (SQL) which is used
to interact with a database, create and maintain data structures, and enter data into
databases, change it, retrieve it, and delete it. SQL has commands related to Data
Definition Language (DDL), Data Manipulation Language (DML), and Data Control
Language (DCL). Four SQL statements form the basis of DML—SELECT, INSERT,
UPDATE, and DELETE—which are described in this chapter.

Preface

[xiii]

The SELECT statement is examined in detail to explain SQL concepts such as
grouping and filtering to show what SQL expressions and conditions are and how
to use subqueries. Some relational algebra topics are also covered in application to
joining tables.

Chapter 6, Advanced Query Writing, describes advanced SQL concepts and features,
such as common table expressions and window functions. This helps you implement
a logic that would not be possible without them, such as recursive queries. Other
techniques explained here, such as the DISTINCT ON clause, the FILTER clause, or
lateral subqueries, are not that irreplaceable. However, they can help make a query
smaller, easier, and faster.

Chapter 7, Server-Side Programming with PL/pgSQL, describes PL/pgSQL. It introduces
function parameters, such as the number of returned rows, and function cost, which
is mainly used by the query planner. Also, it presents control statements such as
conditional and iteration ones. Finally, it explains the concept of dynamic SQL and
some recommended practices when using dynamic SQL.

Chapter 8, PostgreSQL Security, discusses the concepts of authentication and
authorization. It describes PostgreSQL authentication methods and explains the
structure of a PostgreSQL host-based authentication configuration file. It also
discusses the permissions that can be granted to database building objects such as
schemas, tables, views, indexes, and columns. Finally, it shows how sensitive data,
such as passwords, can be protected using different techniques, including one-way
and two-way encryption.

Chapter 9, The PostgreSQL System Catalog and System Administration Functions,
provides several recipes to maintain a database cluster, including cleaning up data,
maintaining user processes, cleaning up indexes and unused databases objects,
discovering and adding indexes to foreign keys, and so on.

Chapter 10, Optimizing Database Performance, discusses several approaches to optimize
performance. It presents PostgreSQL cluster configuration settings, which are used
in tuning the whole cluster's performance. Also, it presents common mistakes in
writing queries and discusses several approaches to increase performance, such as
using indexes or table partitioning and constraint exclusion.

Chapter 11, Beyond Conventional Data types, discusses several rich data types,
including arrays, hash stores, and documents. It presents use cases as well as
operations and functions for each data type. Additionally, it presents full-text search.

Chapter 12, Testing, covers some aspects of the software testing process and how it
can be applied to databases. Unit tests for databases can be written as SQL scripts or
stored functions in a database. There are several frameworks that help us write unit
tests and process the results of testing.

Preface

[xiv]

Chapter 13, PostgreSQL JDBC, introduces the JDBC API. It covers basic operations,
including executing SQL statements and accessing their results as well as more
advanced features such as executing stored procedures and accessing the
metainformation of databases and tables.

Chapter 14, PostgreSQL and Hibernate, covers the concept of Object-Relational
Mapping, which is introduced using the Hibernate framework. This chapter explains
how to execute CRUD operations in Hibernate and fetch strategies and associative
mappings and also covers techniques such as caching and pooling for performance
optimization.

What you need for this book
In general, PostgreSQL server and client tools do not need an exceptional hardware.
PostgreSQL can be installed on almost all modern platforms, including Linux,
Windows, and Mac. Also, in the book, when a certain library is needed, the
installation instructions are given.

The example provided in this book requires PostgreSQL version 9.4; however, most
of the examples can be executed on earlier versions as well. In order to execute the
sample code, scripts, and examples provided in the book, you need to have at least
a PostgreSQL client tool installed on your machine—preferably psql—and access
to a remote server running the PostgreSQL server. In a Windows environment,
the cmd.exe command prompt is not very convenient; thus, the user might consider
using Cygwin http://www.cygwin.com/ or another alternative such as Powershell.

For some chapters, such as Chapter 13, PostgreSQL JDBC and Chapter 14, PostgreSQL
and Hibernate, one needs to install a development kit (JDK). Also, it is convenient to
use the NetBeans or Eclipse integrated development environment (IDE).

Who this book is for
If you are a student, database developer, or an administrator interested in
developing and maintaining a PostgreSQL database, this book is for you. No
knowledge of database programming or administration is necessary.

http://www.cygwin.com/

Preface

[xv]

Conventions
In this book, you will find a number of text styles that distinguish between different
kinds of information. Here are some examples of these styles and an explanation of
their meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows:
"The customer_service associates the customer and the service relations."

A block of code is set as follows:

<hibernate-mapping package="carportal" schema="carportal_app">
 <class name="Account" table="account">
 <id name="accountID" column="account_id">
 <generator class="identity"/>
 </id>

Any command-line input or output is written as follows:

SELECT first_name, last_name, service_id

FROM customer AS c CROSS JOIN customer_service AS cs

WHERE c.customer_id=cs.customer_id AND c.customer_id = 3;

New terms and important words are shown in bold. Words that you see on
the screen, for example, in menus or dialog boxes, appear in the text like this:
"Another option is to use a Linux emulator such as Cygwin and MobaXterm."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Preface

[xvi]

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or disliked. Reader feedback is important for us as it helps
us develop titles that you will really get the most out of.

To send us general feedback, simply e-mail feedback@packtpub.com, and mention
the book's title in the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide at www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Downloading the example code
You can download the example code files from your account at http://www.
packtpub.com for all the Packt Publishing books you have purchased. If you
purchased this book elsewhere, you can visit http://www.packtpub.com/support
and register to have the files e-mailed directly to you.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in the text or
the code—we would be grateful if you could report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
book. If you find any errata, please report them by visiting http://www.packtpub.
com/submit-errata, selecting your book, clicking on the Errata Submission Form
link, and entering the details of your errata. Once your errata are verified, your
submission will be accepted and the errata will be uploaded to our website or added
to any list of existing errata under the Errata section of that title.

To view the previously submitted errata, go to https://www.packtpub.com/books/
content/support and enter the name of the book in the search field. The required
information will appear under the Errata section.

www.packtpub.com/authors
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com/support
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support

Preface

[xvii]

Piracy
Piracy of copyrighted material on the Internet is an ongoing problem across all
media. At Packt, we take the protection of our copyright and licenses very seriously.
If you come across any illegal copies of our works in any form on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors and our ability to bring you
valuable content.

Questions
If you have a problem with any aspect of this book, you can contact us at
questions@packtpub.com, and we will do our best to address the problem.

[1]

Relational Databases
This chapter will provide a high-level overview of topics related to database
development. Understanding the basic relational database concepts enables the
developers to not only come up with clean designs, but also to master relational
databases. This chapter is not restricted to learning PostgreSQL, but covers all
relational databases.

The topics covered in this chapter include the following:

• Database management systems: Understanding the different database
categories enables the developer to utilize the best in each world.

• Relational algebra: Understanding relational algebra enables the developers
to master the SQL language, especially, SQL code rewriting.

• Data modeling: Using data modeling techniques leads to better
communication.

Database management systems
Different database management systems support diverse application scenarios, use
cases, and requirements. Database management systems have a long history. First we
will quickly take a look at the recent history, and then explore the market-dominant
database management system categories.

Relational Databases

[2]

A brief history
Broadly, the term database can be used to present a collection of things. Moreover,
this term brings to mind many other terms including data, information, data
structure, and management. A database can be defined as a collection or a repository
of data, which has a certain structure, managed by a database management system
(DBMS). Data can be structured as tabular data, semi-structured as XML documents,
or unstructured data that does not fit a predefined data model.

In early days, databases were mainly aimed at supporting business applications; this
led us to the well-defined relational algebra and relational database systems. With the
introduction of object-oriented languages, new paradigms of database management
systems appeared such as object-relational databases and object-oriented databases.
Also, many businesses as well as scientific applications use arrays, images, and spatial
data; thus, new models such as raster, map, and array algebra are supported. Graph
databases are used to support graph queries such as the shortest path from one node
to another along with supporting traversal queries easily.

With the advent of web applications such as social portals, it is now necessary to
support a huge number of requests in a distributed manner. This has led to another
new paradigm of databases called NoSQL (Not Only SQL) which has different
requirements such as performance over fault tolerance and horizontal scaling
capabilities.

In general, the timeline of database evolution was greatly affected by many factors
such as:

• Functional requirements: The nature of the applications using a DBMS has
led to the development of extensions on top of relational databases such
as PostGIS (for spatial data) or even dedicated DBMS such as SCI-DB (for
scientific data analytics).

• Nonfunctional requirements: The success of object-oriented programming
languages has created new trends such as object-oriented databases. Object
relational database management systems have appeared to bridge the
gap between relational databases and the object-oriented programming
languages. Data explosion and the necessity to handle terabytes of data on
commodity hardware have led to columnar databases, which can easily scale
up horizontally.

Chapter 1

[3]

Database categories
Many database models have appeared and vanished such as the network model
and hierarchal model. The predominant categories now in the market are relational,
object-relational databases, and NoSQL databases. One should not think of NoSQL
and SQL databases as rivals; they are complementary to each other. By utilizing
different database systems, one can overcome many limitations, and get the best of
different technologies.

The NoSQL databases
The NoSQL databases are affected by the CAP theorem, also known as Brewer's
theorem. In 2002, S. Gilbert and N. Lynch published a formal proof of the CAP
theorem in their article: "Brewer's conjecture and the feasibility of consistent,
available, partition-tolerant web services". In 2009, the NoSQL movement began.
Currently, there are over 150 NoSQL databases (nosql-database.org).

The CAP theorem
The CAP theorem states that it is impossible for a distributed computing system to
simultaneously provide all three of the following guarantees:

• Consistency: All clients see (immediately) the latest data even in the case of
updates.

• Availability: All clients can find a replica of some data even in the case of
a node failure. That means even if some part of the system goes down, the
clients can still access the data.

• Partition tolerance: The system continues to work regardless of arbitrary
message loss or failure of part of the system.

The choice of which feature to discard determines the nature of the system. For
example, one could sacrifice consistency to get a scalable, simple, and high-
performance database management system.

Often, the main difference between a relational database and a NoSQL database
is consistency. A relational database enforces ACID. ACID is the acronym for
the following properties: Atomicity, Consistency, Isolation, and Durability. In
contrast, many NoSQL databases adopt the basically available soft-state, eventual-
consistency (BASE) model.

http://nosql-database.org/

Relational Databases

[4]

NoSQL motivation
A NoSQL database provides a means for data storage, manipulation, and retrieval
for non-relational data. The NoSQL databases are distributed, open source and
horizontally scalable. NoSQL often adopts the BASE model, which prizes availability
over consistency, and informally guarantees that if no new updates are made on a
data item, eventually all access to that data item will return the latest version of that
data item. The advantages of this approach include the following:

• Simplicity of design
• Horizontal scaling and easy replication
• Schema free
• Huge amount of data support

We will now explore a few types of NoSQL databases.

Key value databases
The key value store is the simplest database store. In this database model, the
storage, as its name suggests, is based on maps or hash tables. Some key-value
databases allow complex values to be stored as lists and hash tables. Key-value pairs
are extremely fast for certain scenarios, but lack the support for complex queries and
aggregation. Some of the existing open source key-value databases are Riak, Redis,
Memebase, and MemcacheDB.

Columnar databases
Columnar or column-oriented databases are based on columns. Data in a certain
column in a two dimensional relation is stored together. Unlike relational databases,
adding columns is inexpensive, and is done on a row-by-row basis. Rows can have
a different set of columns. Tables can benefit from this structure by eliminating the
storage cost of the null values. This model is best suited for distributed databases.
HBase is one of the most famous columnar databases. It is based on the Google
big table storage system. Column-oriented databases are designed for huge data
scenarios, so they scale up easily. For small datasets, HBase is not a suitable
architecture. First, the recommended hardware topology for HBase is a five-node
or server deployment. Also, it needs a lot of administration, and is difficult to
master and learn.

Chapter 1

[5]

Document databases
A document-oriented database is suitable for documents and semi-structured data.
The central concept of a document-oriented database is the notion of a document.
Documents encapsulate and encode data (or information) in some standard
formats or encodings such as XML, JSON, and BSON. Documents do not adhere
to a standard schema or have the same structure; so, they provide a high degree of
flexibility. Unlike relational databases, changing the structure of the document is
simple, and does not lock the clients from accessing the data.

Document databases merge the power of relational databases and column-oriented
databases. They provide support for ad-hoc queries, and can be scaled up easily.
Depending on the design of the document database, MongoDB is designed to handle
a huge amount of data efficiently. On the other hand, CouchDB provides high
availability even in the case of hardware failure.

Graph databases
Graph databases are based on the graph theory, where a database consists of nodes
and edges. The nodes as well as the edges can be assigned data. Graph databases
allow traversing between the nodes using edges. Since a graph is a generic data
structure, graph databases are capable of representing different data. A famous
implementation of an open source commercially supported graph databases is Neo4j.

Relational and object relational databases
Relational database management systems are one of the most-used DBMSs in the
world. It is highly unlikely that any organization, institution, or personal computer
today does not have or use a piece of software that does not rely on RBDMS.
Software applications can use relational databases via dedicated database servers or
via lightweight RDBMS engines, embedded in the software applications as shared
libraries.

The capabilities of a relational database management system vary from one vendor
to another, but most of them adhere to the ANSI SQL standards. A relational
database is formally described by relational algebra, and is modeled on the relational
model. Object-relational database (ORD) are similar to relational databases. They
support object-oriented model concepts such as:

• User defined and complex data types
• Inheritance

Relational Databases

[6]

ACID properties
In a relational database, a single logical operation is called a transaction. The
technical translation of a transaction is a set of database operations, which are create,
read, update, and delete (CRUD). The simplest example for explaining a transaction
is money transfer from one bank account to another, which normally involves
debiting one account and crediting another. The ACID properties in this context
could be described as follows:

• Atomicity: All or nothing, which means that if a part of a transaction fails,
then the transaction fails as a whole.

• Consistency: Any transaction gets the database from one valid state to
another valid state. Database consistency is governed normally by data
constraints and the relation between data and any combination thereof. For
example, imagine if one would like to completely purge his account on a
shopping service. In order to purge his account, his account details, such as
list of addresses, will also need to be purged. This is governed by foreign key
constraints, which will be explained in detail in the next chapter.

• Isolation: Concurrent execution of transactions results in a system state that
would be obtained if the transactions were executed serially.

• Durability: The transactions which are committed, that is executed
successfully, are persistent even with power loss or some server crashes. This
is done normally by a technique called write-ahead log (WAL).

The SQL Language
Relational databases are often linked to the Structured Query Language (SQL).
SQL is a declarative programming language, and is the standard relational database
language. American National Standard Institute (ANSI) and International
standard organization (ISO) published the SQL standard for the first time in 1986,
followed by many versions such as SQL:1999, SQL:2003, SQL:2006, SQL:2008, and so
on.

The SQL language has several parts:

• Data definition language (DDL): It defines and amends the relational
structure.

• Data manipulation language (DML): It retrieves and extracts information
from the relations.

• Data control language (DCL): It controls the access rights to relations.

Chapter 1

[7]

Basic concepts
A relational model is a first-order predicate logic, which was first introduced by
Edgar F. Codd. A database is represented as a collection of relations. The state of the
whole database is defined by the state of all the relations in the database. Different
information can be extracted from the relations by joining and aggregating data
from different relations, and by applying filters on the data.

In this section, the basic concepts of the relational model are introduced using the
top-down approach by first describing the relation, tuple, attribute, and domain.

The terms relation, tuple, attribute, and unknown, which are used in the
formal relational model, are equivalent to table, row, column, and null
in the SQL language.

Relation
Think of a relation as a table with a header, columns, and rows. The table name and
the header help in interpreting the data in the rows. Each row represents a group of
related data, which points to a certain object.

A relation is represented by a set of tuples. Tuples should have the same set of
ordered attributes. Attributes have a domain, that is, a type and a name.

Customer relation
customer_
id

first_name last_
name

Email Phone

Tuple

→

1 Thomas Baumann 6622347

Tuple

→

2 Wang Kim kim@wang_kim.com 6622345

Tuple

→

3 Christian Bayer 6622919

Tuple

→

4 Ali Ahmad 3322123

↑ Attribute ↑ Attribute ↑ Attribute ↑ Attribute ↑ Attribute

Relational Databases

[8]

The relation schema is denoted by the relation name and the relation attributes.
For example, customer (customer_id, first_name, last_name, and Email) is the
relation schema for the customer relation. Relation state is defined by the set of
relation tuples; thus, adding, deleting, and amending a tuple will change the relation
to another state.

Tuple order or position in the relation is not important, and the relation is not
sensitive to tuple order. The tuples in the relation could be ordered by a single
attribute or a set of attributes. Also, a relation cannot have duplicate tuples.

A relation can represent entities in the real world, such as a customer, or can be
used to represent an association between relations. For example, the customer
could have several services, and a service can be offered to several customers. This
could be modeled by three relations: customer, service, and customer_service.
The customer_service relation associates the customer and the service relations.
Separating the data in different relations is a key concept in relational database
modeling. This concept called normalization is the process of organizing relation
columns and relations to reduce data redundancy. For example, let us assume a
collection of services is stored in the customer relation. If a service is assigned to
multiple customers, that would result in data redundancy. Also, updating a certain
service would require updating all its copies in the customer table.

Tuple
A tuple is a set of ordered attributes. They are written by listing the elements
within parentheses () and separated by commas, such as (john, smith, 1971). Tuple
elements are identified via the attribute name. Tuples have the following properties:

• (a1,a2, a3, …an) = (b1, b2,b3,…,bn) if and only if a1 = ba ,
a2=b2, … an= bn

• A tuple is not a set, the order of attributes matters.

 ° (a1, a2) ≠(a2, a1)

 ° (a1, a1) ≠(a1)

 ° A tuple has a finite set of attributes

In the formal relational model, multi-valued attributes as well as composite attributes
are not allowed. This is important to reduce data redundancy and increasing data
consistency. This isn't strictly true in modern relational database systems because of
the utilization of complex data types such as JSON and key-value stores. There is a
lot of debate regarding the application of normalization; the rule of thumb is to apply
normalization unless there is a good reason not to do so.

Chapter 1

[9]

Another important concept is that of the unknown values, that is, NULL values.
For example, in the customer relation, the phone number of a customer might be
unknown. Predicates in relational databases uses three-valued logic (3VL), where
there are three truth values: true, false, and unknown. In a relational database, the
third value, unknown, can be interpreted in many ways, such as unknown data,
missing data, or not applicable. The three-valued logic is used to remove ambiguity.
Imagine two tuples in the customer relation with missing phone values; does
that mean both have the same phone, that is, NULL=NULL? The evaluation of the
expression NULL=NULL is also NULL.

Logical operator OR truth table

Logical AND truth table

Logical NOT truth table

Attribute
Each attribute has a name and a domain, and the name should be distinct within the
relation. The domain defines the possible set of values that the attribute can have.
One way to define the domain is to define the data type and a constraint on this data
type. For example, hourly wage should be a positive real number and bigger than
five if we assume the minimum hourly wage is five dollars. The domain could be
continuous, such as salary which is any positive real number, or discrete, such
as gender.

Relational Databases

[10]

The formal relational model puts a constraint on the domain: the value should be
atomic. Atomic means that each value in the domain is indivisible. For instance, the
name attribute domain is not atomic, because it can be divided into first name and
last name. Some examples of domains are as follows:

• Phone number: Numeric text with a certain length.
• Country code: Defined by ISO 3166 as a list of two letter codes (ISO alpha-2)

and three letter codes (ISO alpha-3). The country codes for Germany are DE
and DEU for alpha-2 and alpha-3 respectively.

It is good practice if you have lookup tables such as country code,
currency code, and languages to use the already defined codes in ISO
standards, instead of inventing your own codes.

Constraint
The relational model defines many constraints in order to control data integrity,
redundancy, and validity.

• Redundancy: Duplicate tuples are not allowed in the relation.
• Validity: Domain constraints control data validity.
• Integrity: The relations within a single database are linked to each other. An

action on a relation such as updating or deleting a tuple might leave the other
relations in an invalid state.

We could classify the constraints in a relational database roughly into two categories:

• Inherited constraints from the relational model: Domain integrity, entity
integrity, and referential integrity constraints.

• Semantic constraint, business rules, and application specific constraints:
These constraints cannot be expressed explicitly by the relational model.
However, with the introduction of procedural SQL languages such as PL/
pgsql for PostgreSQL, relational databases can also be used to model these
constraints.

Domain integrity constraint
The domain integrity constraint ensures data validity. The first step in defining the
domain integrity constraint is to determine the appropriate data type. The domain
data types could be integer, real, boolean, character, text, inet, and so on. For
example, the data type of first name and e-mail address is text. After specifying the
data type, check constraints, such as the mail address pattern, need to be defined.

Chapter 1

[11]

• Check constraint: A check constraint can be applied to a single attribute or
a combination of many attributes in a tuple. Let us assume that customer_
service schema is defined as (customr_id, service_id, start_date, end _
date, order_date). For this relation, we can have a check constraint to make
sure that start_date and end_date are entered correctly by applying the
following check (start_date<end_date).

• Default constraint: The attribute can have a default value. The default value
could be a fixed value such as the default hourly wage of the employees ,
for example, $10. It may also have a dynamic value based on a function such
as random, current time, and date. For example, in the customer_service
relation, order_date can have a default value which is the current date.

• Unique constraint: A unique constraint guarantees that the attribute has a
distinct value in each tuple. It allows null values. For example, let us assume
we have a relation player defined as player (player_id, player_nickname).
The player uses his ID to play with others; he can also pick up a nickname
which is not used by someone else.

• Not null constraint: By default, the attribute value can be null. The not null
constraint restricts an attribute from having a null value. For example, each
person in the birth registry record should have a name.

Entity integrity constraint
In the relational model, a relation is defined as a set of tuples. By definition, the
element of the set is distinct. This means that all the tuples in a relation must be
distinct. The entity integrity constraint is enforced by having a primary key which is
an attribute/set of attributes having the following characteristics:

• The attribute should be unique
• The attributes should be not null

Each relation must have only one primary key, but can have many unique keys.
A candidate key is a minimal set of attributes which can identify a tuple. All unique,
not null attributes can be candidate keys. The set of all attributes form a super
key. In practice, we often pick up a single attribute to be a primary key instead of a
compound key (key that consists of two or more attributes that uniquely identify a
tuple) to reduce data redundancy, and to ease the joining of the relations with
each other.

Relational Databases

[12]

If the primary key is generated by the DBMS, then it is called a surrogate key.
Otherwise, it is called a natural key. The surrogate key candidates can be sequences
and universal unique identifiers (UUID). A surrogate key has many advantages such
as performance, requirement change tolerance, agility, and compatibility with object
relational mappers. More on surrogate keys will be covered in the following chapters.

Referential integrity constraints
Relations are associated with each other via common attributes. Referential
integrity constraints govern the association between two relations, and ensure data
consistency between tuples. If a tuple in one relation references a tuple in another
relation, then the referenced tuple must exist. In the customer service example, if a
service is assigned to a customer, then the service and the customer must exist as
shown in the following example. For instance, in the customer_service relation, we
cannot have a tuple with values (5, 1,01-01-2014, NULL), because we do not have a
customer with customer_id equal to 5.

Association between customer and service

The lack of referential integrity constraints can lead to many problems such as:

• Invalid data in the common attributes
• Invalid information during joining of data from different relations.

Chapter 1

[13]

Referential integrity constraints are achieved via foreign keys. A foreign key is an
attribute or a set of attributes that can identify a tuple in the referenced relation.
Since the purpose of a foreign key is to identify a tuple in the referenced relation,
foreign keys are generally primary keys in the referenced relation. Unlike a primary
key, a foreign key can have a null value. It can also reference a unique attribute in the
referenced relation. Allowing a foreign key to have a null value enables us to model
different cardinality constraints. Cardinality constraints define the participation
between two different relations. For example, a parent can have more than one child;
this relation is called one-to-many relationship, because one tuple in the referenced
relation is associated with many tuples in the referencing relation. Also, a relation
could reference itself. This foreign key is called a self-referencing or recursive foreign
key. For example, a company acquired by another company:

company_id Name acquisitioned_by

1 Facebook

2 WhatsApp 1

Primary key Foreign key
Recursive foreign key

To ensure data integrity, foreign keys can be used to define several behaviors when
a tuple in the referenced relation is updated or deleted. The following behaviors are
called referential actions:

• Cascade: When a tuple is deleted or updated in the referenced relation, the
tuples in the referencing relation are also updated or deleted.

• Restrict: The tuple cannot be deleted or the referenced attribute cannot be
updated if it is referenced by another relation.

• No action: Similar to restrict, but it is deferred to the end of the transaction.
• Set default: When a tuple in the referenced relation is deleted or the

referenced attribute is updated, then the foreign key value is assigned the
default value.

• Set null: The foreign key attribute value is set to null when the referenced
tuple is deleted.

Relational Databases

[14]

Semantic constraints
Semantic integrity constraints or business logic constraints describe the database
application constraints in general. Those constraints are either enforced by the
business logic tier of the application program or by SQL procedural languages.
Trigger and rule systems can also be used for this purpose. For example, the
customer should have at most one active service at a time. Based on the nature of
the application, one could favor using an SQL procedural language or a high-level
programming language to meet the semantic constraints. The advantages of using
the SQL programming language are:

• Performance: RDBMSs often have complex analyzers to generate efficient
execution plans. Also, in some cases such as data mining, the amount of
data that needs to be manipulated is very large. Manipulating the data using
procedural SQL language eliminates the network data transfer. Finally, some
procedural SQL languages utilize clever caching algorithms.

• Last minute change: For the SQL procedural languages, one could deploy
bug fixes without service disruption.

Relational algebra
Relational algebra is the formal language of the relational model. It defines a set of
closed operations over relations, that is, the result of each operation is a new relation.
Relational algebra inherits many operators from set algebra. Relational algebra
operations could be categorized into two groups:

• The first one is a group of operations which are inherited from set theory
such as UNION, INTERSECTION, SET DIFFERENCE, and CARTESIAN PRODUCT,
also known as CROSS PRODUCT.

• The second is a group of operations which are specific to the relational model
such as SELECT and PROJECT.

Relational algebra operations could also be classified as binary and unary operations.
Primitive relational algebra operators have ultimate power of reconstructing
complex queries. The primitive operators are:

• SELECT (σ): A unary operation written as Rϕσ Ο where ϕ is a predicate.
The selection retrieves the tuples in R, where ϕ holds.

Chapter 1

[15]

• PROJECT (π): A unary operation used to slice the relation in a vertical

dimension, that is, attributes. This operation is written as a1,a2…anRπ Ο , where
1, 2, ,a a an are a set of attribute names.

• CARTESIAN PRODUCT (×): A binary operation used to generate
a more complex relation by joining each tuple of its operands
together. Let us assume that R and S are two relations, then

{ }1, 2, , , 1, 2, ,R S r r rn s s sn× = , where 1, 2, ,r r rn R∈ and
1, 2, ,s s sn S∈ .

• UNION (∪): Appends two relations together; note that the relations should
be union compatible, that is, they should have the same set of ordered

attributes. Formally, () ()1, 2, , 1, 2, ,R S r r rn s s sn∪ = ∪ , where
()1, 2, ,r r rn R∈ and ()1, 2, ,s s sn R∈ .

• DIFFERENCE (/ or -): A binary operation in which the operands should be
union compatible. Difference creates a new relation from the tuples, which
exist in one relation but not in the other. The set difference for the relation R

and S can be given as ()/ 1, 2, ,R S r r rn= , where ()1, 2, ,r r rn R∈ and
()1, 2, ,r r rn S∉ .

• RENAME (ρ): A unary operation that works on attributes. It simply renames
an attribute. This operator is mainly used in JOIN operations to distinguish
the attributes with the same names but in different relation tuples. Rename is

expressed as a bRρ .

In addition to the primitive operators, there are aggregation functions such as sum,
count, min, max, and average aggregates. Primitive operators can be used to define
other relation operators such as left-join, right-join, equi-join, and intersection.
Relational algebra is very important due to its expressive power in optimizing and

rewriting queries. For example, the selection is commutative, so a b b aR Rσ σ σ σ= . A
cascaded selection may also be replaced by a single selection with a conjunction of all

the predicates, that is, a b a ANDbR Rσ σ σ= .

Relational Databases

[16]

The SELECT and PROJECT operations
SELECT is used to restrict tuples from the relation. If no predicate is given then
the whole set of tuples is returned. For example, the query "give me the customer
information where the customer_id equals to 2" is written as:

2idcustomer customerσ =

The selection is commutative; the query "give me all customers where the customer
mail is known, and the customer first name is kim" is written in three different ways,
as follows:

()_emails is not null first name kimcustomerσ σ =

()_first name kim emails is not null customerσ σ=

_first name kim AND emails is not null customerσ =

The selection predicates are certainly determined by the data types. For numeric data
types, the comparison operator might be (, , , ,≠ =< > ≥ ≤). The predicate expression
can contain complex expressions and functions.

The equivalent SQL statement for the SELECT operator is the SELECT * statement,
and the predicate is defined in the WHERE clause. Finally, the * means all the relation
attributes; note that in the production environment, it is not recommended to use *.
Instead, one should list all the relation attributes explicitly.

SELECT * FROM customer WHERE customer_id=2

The project operation could be visualized as vertical slicing of the table. The query:
"give me the customer names" is written in relational algebra as follows:

_ , _first name last nameCustomerπ

first_name last_name
Thomas Baumann
Wang Kim
Christian Bayer
Ali Ahmad

The result of project operation

Chapter 1

[17]

Duplicate tuples are not allowed in the formal relational model; the number of
returned tuples from the project operator is always equal to or less than the number
of total tuples in the relation. If a project operator's attribute list contains a primary
key, then the resulting relation has the same number of tuples as the projected
relation.

Cascading projections could be optimized as the following expression:

()1 1, 2 1att att att attR Rπ π π π=

The SQL equivalent for the PROJECT operator in SQL is SELECT DISTINCT. The
DISTINCT keyword is used to eliminate duplicates. To get the result shown in the
preceding expression, one could execute the following SQL statement:

SELECT DISTINCT first_name, last_name FROM customers;

The sequence of the execution of the PROJECT and SELECT operations can be
interchangeable in some cases.

The query "give me the name of the customer with customer_id equal to 2" could be
written as:

()_ 2 _ , _customer id first name last name customerσ π=

()_ , _ _ 2first name last name customer id customerπ σ =

In other cases, the PROJECT and SELECT operators must have an explicit order as
shown in the following example; otherwise, it will lead to an incorrect expression.
The query "give me the last name of the customers where the first name is kim" could
be written as the following expression:

()_ _last name first name kim customerπ σ =

Relational Databases

[18]

The RENAME operation
The Rename operation is used to alter the attribute name of the resultant relation, or
to give a specific name to the resultant relation. The Rename operation is used to:

• Remove confusion if two or more relations have attributes with the same name
• Provide user-friendly names for attributes, especially when interfacing with

reporting engines
• Provide a convenient way to change the relation definition, and still be

backward compatible

The AS keyword in SQL is the equivalent of the RENAME operator in relational algebra.
the following SQL example creates a relation with one tuple and one attribute, which
is renamed PI.

SELECT 3.14::real AS PI;

The Set theory operations
The set theory operations are union, intersection, and minus (difference). Intersection
is not a primitive relational algebra operator, because it is can be written using the
union and difference operators:

() ()() ()A B A B A B B A∩ = ∪ − − − −

The intersection and union are commutative:

()A B B A∪ = ∪

()A B B A∩ = ∩

For example, the query "give me all the customer IDs where the customer does not
have a service assigned to him" could be written as:

_ _ _customer id customer idcustomer customer serviceσ σ−

Chapter 1

[19]

The CROSS JOIN (Cartesian product)
operation
The CROSS JOIN operation is used to combine tuples from two relations into a single
relation. The number of attributes in a single relation equals the sum of the number
of attributes of the two relations. The number of tuples in the single relation equals
the product of the number of tuples in the two relations. Let us assume A and B are
two relations, and C A B= × . Then:

() () ()number of attribute C number of attributes A number of attributes B= +

() () ()number of tuples C number of tuples A number of tuples B= ∗

The following image shows the cross join of customer and customer service, that is,
_customer customer service× :

customer.
customer_
id

first_name last_
name

Email phone customer_
service.
customer_
id

service_
id

start_
date

end_
date

1 Thomas Baumann 6622347 1 1 01-
01-
2014

2 Wang Kim kim@
kim_
wang.
com

6622345 1 1 01-
01-
2014

3 Christian Bayer 6622919 1 1 01-
01-
2014

4 Ali Ahmad ahmad@
ali.
com

3322123 1 1 01-
01-
2014

1 Thomas Baumann 6622347 1 2 01-
01-
2014

2 Wang Kim kim@
kim_
wang.
com

6622345 1 2 01-
01-
2014

3 Christian Bayer 6622919 1 2 01-
01-
2014

Relational Databases

[20]

customer.
customer_
id

first_name last_
name

Email phone customer_
service.
customer_
id

service_
id

start_
date

end_
date

4 Ali Ahmad ahmad@
ali.
com

3322123 1 2 01-
01-
2014

1 Thomas Baumann 6622347 3 1 12-
04-
2014

12-
05-
2014

2 Wang Kim kim@
kim_
wang.
com

6622345 3 1 12-
04-
2014

12-
05-
2014

3 Christian Bayer 6622919 3 1 12-
04-
2014

12-
05-
2014

4 Ali Ahmad ahmad@
ali.
com

3322123 3 1 12-
04-
2014

12-
05-
2014

1 Thomas Baumann 6622347 4 1 01-
06-
2014

2 Wang Kim kim@
kim_
wang.
com

6622345 4 1 01-
06-
2014

3 Christian Bayer 6622919 4 1 01-
06-
2014

4 Ali Ahmad ahmad@
ali.
com

3322123 4 1 01-
06-
2014

CROSS JOIN of customer and customer_service relations

For example, the query "for the customer with customer_id equal to 3, retrieve the
customer name and the customer service IDs" could be written in SQL as follows:

SELECT first_name, last_name, service_id

FROM customer AS c CROSS JOIN customer_service AS cs

WHERE c.customer_id=cs.customer_id AND c.customer_id = 3;

In the preceding example, one can see the relationship between relational algebra
and the SQL language. It shows how relational algebra could be used to optimize
query execution. This example could be executed in several ways, such as:

