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Preface
My goal while writing Web Development with MongDB and Node.js was simple: to 
empower you, the reader, with the tools and knowledge to be able to create web 
applications from scratch using Node.js and MongoDB.

In this book, we take a hands-on approach to building a complete, real-world, 
interactive web application. Each chapter will build upon the previous one, exposing 
new concepts, technologies, and best practices until finally ending with a completed 
application deployed to the cloud. Every line of code will be covered, and you are 
expected to code along with each chapter. Doing so will give you valuable insight 
into the world of web development using Node.js.

By the end of this book, I hope you have the expertise to tackle any project using 
Node.js and MongoDB and are limited only by your imagination!

What this book covers
Chapter 1, Welcome to JavaScript in the Full Stack, introduces you to the world  
of full stack JavaScript development and reviews what to expect in the remainder  
of the book.

Chapter 2, Getting Up and Running, walks you through the necessary steps to 
download, install, and configure your development environment.

Chapter 3, Node and MongoDB Basics, is a brief introduction to the basics of  
JavaScript, Node.js, and MongoDB.

Chapter 4, Writing an Express.js Server, introduces you to the Express.js Node.js  
Web Framework and is a walkthrough of the code necessary to write the main 
application server.
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Chapter 5, Dynamic HTML with Handlebars, teaches you how to create dynamic HTML 
pages using Handlebars, the popular template-rendering engine.

Chapter 6, Controllers and View Models, walks you through writing the Controllers and 
View Models for the main application, the core of the application's functionalities.

Chapter 7, Persisting Data with MongoDB, continues with our Controllers and View 
Models, where we wrap all of the logic using Mongoose with MongoDB as the main 
data layer for the application.

Chapter 8, Creating a RESTful API, reviews the concepts behind REST APIs and 
introduces the Postman REST Client tool to test and interact with our own custom 
Node.js API.

Chapter 9, Testing Your Code, introduces the tools and techniques to write automated 
tests for our Node.js code.

Chapter 10, Deploying with Cloud-based Services, is a step-by-step walkthrough of 
deploying your application to a number of popular cloud-based hosting services 
such as Heroku, Microsoft Azure, and Amazon's AWS.

Chapter 11, Single Page Applications with Popular Frontend Frameworks, takes a look 
at the current trend in thick client applications by learning more about popular 
frontend single application frameworks such as Ember.js, AngularJS, and Backbone.
js. Additionally, you will learn about the popular build tools frontend developers use 
to make their lives easier.

Chapter 12, Popular Node.js Web Frameworks, takes a look at some very popular and 
robust alternatives such as Meteor and Sails, even though Express.js is one of the 
most popular web frameworks for Node.

What you need for this book
In this book, the following software will be required:

•	 Operating systems:
°° Windows XP or superior
°° Mac OS X or superior
°° Linux
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•	 Miscellaneous:
°° A standard text editor of choice
°° A web browser, preferably Google Chrome

•	 A command-line terminal of choice

Who this book is for
This book is designed for developers of any skill level that want to get up and 
running using Node.js and MongoDB to build full-featured web applications.  
A basic understanding of JavaScript and HTML is the only requirement for this book.

Conventions
In this book, you will find a number of styles of text that distinguish between 
different kinds of information. Here are some examples of these styles, and an 
explanation of their meaning.

Code words in text, database table names, folder names, filenames, file extensions, 
pathnames, dummy URLs, user input, and Twitter handles are shown as follows: 
"Make sure you've npm installed all of the required modules for this chapter and  
that they are saved to your package.json file."

A block of code is set as follows:

models.Image.aggregate({ $group : {
    _id : '1',
    viewsTotal : { $sum : '$views' }
}}, function(err, result) {
    var viewsTotal = 0;
    if (result.length > 0) {
        viewsTotal += result[0].viewsTotal;
    }
    next(null, viewsTotal);
});

When we wish to draw your attention to a particular part of a code block,  
the relevant lines or items are set in bold:

.upload-button {
    border-bottom: solid 2px #005A8B;
    background: transparent $sprite-bg no-repeat;
    @include radius(4px);
    cursor: pointer;
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Any command-line input or output is written as follows:

$ node server.js

Server up: http://localhost:3300

Mongoose connected.

New terms and important words are shown in bold. Words that you see on the 
screen, in menus or dialog boxes for example, appear in the text like this: "Users 
demand more from their apps these days, and if you think about the application 
we've written, the Like button is a perfect example."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about 
this book—what you liked or may have disliked. Reader feedback is important for  
us to develop titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com, 
and mention the book title via the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing 
or contributing to a book, see our author guide on www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to 
help you to get the most from your purchase.

Downloading the example code
You can download the example code files for all Packt books you have purchased 
from your account at http://www.packtpub.com. If you purchased this book 
elsewhere, you can visit http://www.packtpub.com/support and register to  
have the files e-mailed directly to you.
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Errata
Although we have taken every care to ensure the accuracy of our content, mistakes 
do happen. If you find a mistake in one of our books—maybe a mistake in the text or 
the code—we would be grateful if you would report this to us. By doing so, you can 
save other readers from frustration and help us improve subsequent versions of this 
book. If you find any errata, please report them by visiting http://www.packtpub.
com/submit-errata, selecting your book, clicking on the errata submission form link, 
and entering the details of your errata. Once your errata are verified, your submission 
will be accepted and the errata will be uploaded on our website, or added to any list of 
existing errata, under the Errata section of that title. Any existing errata can be viewed 
by selecting your title from http://www.packtpub.com/support.

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media. 
At Packt, we take the protection of our copyright and licenses very seriously. If you 
come across any illegal copies of our works, in any form, on the Internet, please 
provide us with the location address or website name immediately so that we can 
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected  
pirated material.

We appreciate your help in protecting our authors, and our ability to bring you 
valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with 
any aspect of the book, and we will do our best to address it.





Welcome to JavaScript in  
the Full Stack

What an exciting time to be a JavaScript developer! What was once only considered 
a language to add enhancements and widgets to a webpage has since evolved into 
its own full-fledged ecosystem. I believe Atwood's law says it best— any application 
that can be written in JavaScript, will eventually be written in JavaScript. While this 
quote dates back to 2007, it's never been more true than today. Not only can you use 
JavaScript to develop a complete single-page web application such as Gmail, but you 
will also see how we can achieve the following projects with JavaScript throughout 
the remaining part of the book:

•	 How to completely power the backend using Node.js and Express.js
•	 How to persist data with a powerful database like MongoDB
•	 How to write dynamic HTML pages using Handlebars.js
•	 How to deploy your entire project to the cloud using services like  

Heroku and AWS

With the introduction of Node.js, JavaScript has officially gone in a direction that 
was never even possible before. Now, you can use JavaScript on the server, and you 
can also use it to develop full-scale enterprise-level applications. When you combine 
this with the power of MongoDB and its JSON-powered data, you can work with 
JavaScript in every layer of your application.

One of the great advantages of developing with JavaScript in the "full stack" of a 
web application is that you are using a consistent language and syntax. Frameworks 
and libraries are no longer exclusive only to the frontend or backend but can be 
integrated into other layers of the application as well. 
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Underscore.js is an extremely popular JavaScript library to work with collections 
that is used equally on the backend with Node.js as much as on the frontend directly 
within the browser.

JavaScript in the full stack of a web application

Node.js changed JavaScript forever
Back in 2009, Ryan Dahl gave a presentation at JSConf that changed JavaScript 
forever. During his presentation, he introduced Node.js to the JavaScript community, 
and after a roughly 45-minute talk, he concluded it, receiving a standing ovation 
from the audience in the process. He was inspired to write Node.js after he saw a 
simple file upload progress bar on Flickr, the image-sharing site. Realizing that the 
site was going about the whole process the wrong way, he decided that there had to 
be a better solution.

As stated on the Node.js homepage, the goal of Node is to provide an easy way to build 
scalable network programs. It achieves this by providing an event-driven, nonblocking 
IO model that is extremely lightweight. Compared to traditional web-serving 
technologies that require a new CPU thread for every connection to the server that 
would eventually max out the systems resources, Node instead uses a single thread 
but doesn't block the I/O of the CPU. Thus, this allows Node to support tens of 
thousands of concurrent connections. It's for this very reason that Node is so popular 
with high-traffic web applications.

To see an example of just how lightweight Node can be, let's take a look at some 
sample code that starts up an HTTP server and sends Hello World to a browser:

var http = require('http');
http.createServer(function (req, res) {
  res.writeHead(200, {'Content-Type': 'text/plain'});
  res.end('Hello World\n');
}).listen(8080, 'localhost');
console.log('Server running at http://localhost:8080');
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A few basic lines of code are all it takes to write a complete Node application. 
Running it with a simple node app.js command will launch an HTTP server that is 
listening on port 8080. Point any browser to http://localhost:8080, and you will 
see the simple output Hello World on your screen! While this sample app doesn't 
actually do anything useful, it should give you a glimpse of the kind of power you 
will have while writing web applications using Node.js.

At its core, Node is very low-level. It consists of a small set of modules that do very 
specific things and do them very well. These modules include tools to work with the 
file system, networking with TCP and HTTP, security, and streams.

Asynchronous callbacks
One of the most powerful features of Node is that it is event-driven and 
asynchronous. Code gets executed via callback functions whenever an event  
is broadcast. Simply put, you assign a callback function to an event, and when  
Node determines that the event has been fired, it will execute your callback function 
at that moment. No other code will get blocked waiting for an event to occur. 
Consider the following example to see asynchronous callbacks in action:

console.log('One');
console.log('Two');
setTimeout(function() {
    console.log('Three');
}, 2000);
console.log('Four');
console.log('Five');

Downloading the example code
You can download the example code files for all Packt books you have 
purchased from your account at http://www.packtpub.com. If you 
purchased this book elsewhere, you can visit http://www.packtpub.
com/support and register to have the files e-mailed directly to you.

In a typical synchronous programming language, executing the preceding code  
will yield the following output:

One
Two
... (2 second delay) ...
Three
Four
Five
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However, in JavaScript and Node, the following output is seen:

One
Two
Four
Five
... (approx. 2 second delay) ...
Three

The function that actually logs Three is known as a callback to the  
setTimeout function.

Node Package Manager
Writing applications with Node is really enjoyable when you realize the sheer wealth 
of information and tools at your disposal! Using Node's built-in package manager 
npm, you can find literally tens of thousands of modules that can be installed and 
used within your application with just a few keystrokes! You can view the library of 
available modules by visiting http://npmjs.org. Downloading and installing any 
module within your application is as simple as executing the npm install package 
command. Have you written a module that you want to share with the world? Package 
it up using npm, and upload it to the public npmjs.org registry just as easily! Not sure 
how a module works that you downloaded and installed? The source code is right 
there in your projects' node_modules/ folder waiting to be explored!

Networking and file IO
In addition to the powerful nonblocking asynchronous nature of Node, it also has 
very robust networking and filesystem tools available via its core modules. With 
Node's networking modules, you can create server and client applications that accept 
network connections and communicate via streams and pipes.

Not just on the web
Node isn't just for web development! It can be a powerful solution to  
create command-line tools as well as full-featured locally run applications that  
have nothing to do with the Web or a browser. Grunt.js is a great example of a 
Node-powered command-line tool that many web developers use daily to automate 
everyday tasks such as build processes, compiling CoffeeScript, launching Node 
servers, running tests, and more.

http://npmjs.org
npmjs.org
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In addition to command-line tools, Node has recently become increasingly  
popular among the hardware crowd with the Nodebots movement. Johnny-Five  
and Cylon.js are two popular Node libraries that exist to provide a framework to 
work with robotics.

Real-time web with Socket.io
Node achieves real-time communication with Socket.io. Using Socket.io, you can 
create features such as instant collaboration, which is similar to multiuser editing in 
Google Docs. What was once achieved using cumbersome (and not real-time) long 
polling can now be achieved using WebSockets. While WebSockets is a feature that 
is only supported in modern browsers, Socket.io also features seamless fallback 
implementations for legacy browsers.

Using this lightweight core, everything else is left to the developer—but don't let that 
scare you. The beauty of working with Node is that there is a thriving community 
developing and releasing modules every day via npm. As of this writing, npm has 
over 61,000 packages available! Throughout this book, we will use some of the most 
popular packages that help make writing web applications fun and easy!

The NoSQL movement
The term NoSQL has come to mean any kind of database that doesn't adhere to the 
strict structures of a typical relational database such as Microsoft SQL, MySQL, 
PostgreSQL, and so on. With a relational database, you are required to define ahead 
of time the exact structure of your schema. This means that you must have defined 
the exact number of columns, length, and datatype for every field in a table, and that 
each field must always match that exact set of criteria.

With a NoSQL database server such as MongoDB, records are stored as JSON-like 
documents. A typical document (record) in a MongoDB collection (table) might look 
like the following code:

$ mongo
> db.contacts.find({email: 'jason@kroltech.com'}).pretty()

{
    "email" : "jason@kroltech.com",
    "phone" : "123-456-7890",
    "gravatar" : "751e957d48e31841ff15d8fa0f1b0acf",
    "_id" : ObjectId("52fad824392f58ac2452c992"),
    "name" : {
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        "first" : "Jason",
        "last" : "Krol"
    },
    "__v" : 0
}

One of the biggest advantages of using a NoSQL database server such as MongoDB 
is that it has a dynamic schema system, allowing records in a collection to be 
completely different from one another.

Some advantages of working with MongoDB are:

•	 Dynamic schema design
•	 Fast querying and indexing
•	 Aggregate framework
•	 Sharding and replication

In addition, as MongoDB was written using a JSON-like document structure, 
JavaScript becomes a powerful tool when working with queries and the interactive 
shell mongo. Like Node, MongoDB is also built for high performance, making it 
a great counterpart for building ever demanding, high traffic web and mobile 
applications. Depending on your exact needs, MongoDB may or may not be the 
right solution for your application. You should truly weigh the pros and cons of each 
technology before making a decision to determine which technology is right for you.

Node and MongoDB in the wild
Both Node and MongoDB are extremely popular and active in the development 
community. This is true for enterprises as well. Some of the biggest names in the 
Fortune 500 space have fully embraced Node to power their web applications.  
This is due in large part to the asynchronous nature of Node, which makes it a  
great alternative for high traffic, high IO applications such as e-commerce websites 
and mobile applications.

The following is just a small list of some big companies that are working with Node:

•	 PayPal
•	 LinkedIn
•	 eBay
•	 Walmart
•	 Yahoo!
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•	 Microsoft
•	 Dow Jones
•	 Uber
•	 New York Times

MongoDB's use in the enterprise sector is equally as impressive and wide reaching 
with an increasing number of companies adopting the leading NoSQL database 
server, such as:

•	 Cisco
•	 Craigslist Inc.
•	 Forbes
•	 FourSquare
•	 Intuit
•	 McAfee
•	 MTV
•	 MetLife
•	 Shutterfly
•	 Under Armour

What to expect from this book
The remainder of this book is going to be a guided tour that walks you through 
creating a complete data-driven website. The website we create will feature almost 
every aspect of a typical large-scale web development project. At its core, it will be 
powered by Node.js using a popular third-party framework called Express, and it 
will persist data using MongoDB.

In the first few chapters, we will cover the groundwork involved in getting the core 
of the server up and serving content. This includes configuring your environment 
so you are up and running with Node and MongoDB, and a basic introduction 
to the core concepts of both technologies. Then, we will write a web server from 
scratch powered by ExpressJS that will handle serving all of the necessary files 
for the website. From there, we will work with the Handlebars template engine to 
serve both static and dynamic HTML webpages. Diving deeper, we will make the 
application persistent by adding a data layer where the records for the website will 
be saved and retrieved via a MongoDB server. We will cover writing a RESTful API 
so that third parties can interact with your application. Finally, we will go into detail 
examining how to write and execute tests for all of your code.
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Wrapping up, we will take a brief detour as we examine some popular,  
emerging frontend technologies that are becoming increasingly popular  
while writing single-page applications. These technologies include Backbone.js, 
Angular, and Ember.js.

Last but not least, we will go into details of how to deploy your new website to the 
Internet using popular cloud-based hosting services such as Heroku and Amazon 
Web Services.

Summary
In this chapter, we reviewed what is to be expected throughout the remainder of this 
book. We discussed the amazing current state of JavaScript and how it can be used 
to power the full stack of a web application. Not that you needed any convincing 
in the first place, but I hope you're excited and ready to get started writing web 
applications using Node.js and MongoDB!

Next up, we will set up your development environment and get you up and running 
with Node, MongoDB, and npm as well as write and launch a quick first Node app 
that uses MongoDB!



Getting Up and Running
The first thing you need to take care of is to make sure your development 
environment is equipped with the necessary requirements in order for you  
to use both Node and MongoDB while launching the apps you write.

In this chapter, we will cover the following topics:

•	 Installing and testing Node.js
•	 Installing, configuring, and testing MongoDB
•	 Writing and launching a simple app

Environment assumptions and 
requirements
For the remainder of this book, I will assume that you are using either a Mac with 
OS X, Linux, or Windows 7 or 8. You will also need superuser and/or administrator 
privileges on the computer, as you will be installing the Node and MongoDB server 
software. The code and examples after this chapter will all be OS agnostic and should 
work in any environment, assuming you have taken the steps I outline here so that 
you are prepared ahead of time.

You will need a good text editor to write and edit the code. Any editor of your liking 
will do. Personally, I am a huge fan of Sublime Text 3 (http://sublimetext.com). It 
is a simple, lightweight editor that has great color-coding syntax support. However, 
its true power comes from the unlimited plugins made available by other developers. 
There is literally a plugin for everything in Sublime! VI and Notepad are also good 
options if you want to stay super lightweight.

http://sublimetext.com

