

Web Development with
MongoDB and Node.js

Build an interactive and full-featured web application
from scratch using Node.js and MongoDB

Jason Krol

BIRMINGHAM - MUMBAI

Web Development with MongoDB and Node.js

Copyright © 2014 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the authors, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: September 2014

Production reference: 1180914

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78398-730-6

www.packtpub.com

Cover image by Jarek Blaminsky (milak6@wp.pl)

www.packtpub.com

Credits

Author
Jason Krol

Reviewers
Anthony Gilardi

James O'Brien

Mithun Satheesh

Peter Shannon

Acquisition Editor
Llewellyn Rozario

Content Development Editor
Susmita Panda Sabat

Technical Editor
Faisal Siddiqui

Copy Editors
Mradula Hegde

Adithi Shetty

Project Coordinator
Neha Thakur

Proofreaders
Simran Bhogal

Maria Gould

Ameesha Green

Paul Hindle

Lucy Rowland

Indexers
Monica Ajmera Mehta

Priya Sane

Graphics
Abhinash Sahu

Production Coordinator
Nitesh Thakur

Cover Work
Nitesh Thakur

About the Author

Jason Krol is a passionate web developer with over 15 years of professional
experience in creating highly interactive web applications using the latest in
both client and server technologies.

Previously, Jason spent a majority of his career working with the Microsoft stack
using ASP.net. Recently, he has been focusing on developing Single Page Applications
using JavaScript in the full stack with Node.js, MongoDB, and Backbone.js. After
co-owning and running a successful web development agency for a number
of years, Jason recently jumped back into the world of full time employment.

When not writing code for work or side projects, he blogs about his development
experiences and opinions at www.KrolTech.com and on Twitter at @ShortTompkins.
He loves spending his free time with his wife and 8-year-old son.

I would like to specially thank my wonderful wife for putting
up with me and for always being there to push me whenever
I doubt myself.

KrolTech.com

About the Reviewers

Anthony Gilardi is a full stack JavaScript developer at one of the top e-mail
marketing companies and a mobile technology enthusiast and app developer.
He started programming at the age of 12 on a Sinclair ZX80. During his formative
years, he worked on fighter jets and jet engines in the United States Air Force. He
later earned a Bachelor of Science degree from Rutgers University in Biochemical
Engineering. Programming, however, was his true passion, so he worked for over a
decade doing Microsoft development in the pharmaceutical industry. He is now fully
focused on working with JavaScript technologies for web and mobile development
in what he considers the most exciting time to be a JavaScript developer.

Anthony's personal passion and creative energy is focused toward his appMite
brand creating mobile hybrid apps. The introduction of Palm webOS and the Mojo
framework ignited his interest in using JavaScript for mobile apps. He has created
several hybrid apps, most notably his lifestyle application named lifeMite, which was
released for Android, iOS, Kindle, and Nook. He is excited about the future of hybrid
apps and learning budding technologies such as Polymer and Web Components.

If he doesn't know it, he learns it. If he doesn't understand it, he learns it more.
Anthony loves creative whims. This is something he has always had but has been
reinforced by his wife and three children who are always creating and learning.
He doesn't ever want to lose that creative drive.

Outside of technology, he is a husband and father of three, who loves camping,
walking, and finding obscure places to meditate. If you wish to see his latest apps
or programming projects, visit http://appmite.com, or if you wish to read his
personal ventures, please visit http://journeysimple.com.

http://appmite.com
http://journeysimple.com

James O'Brien is a software engineer with over 15 years of experience as a
web technologist, specializing in professional web application development with
technologies, including HTML5, JavaScript, CSS, Backbone.js, C#, ASP.NET, MVC,
PHP, and SQL Server. He also has experience in graphic design and online marketing.

James is a Philadelphia native and is currently Manager for Web Development
and Interactive Marketing at NextGen Healthcare. Besides this, he co-created
Fill The Part (fillthepart.com) and runs it. Launched in 2012, it gives you a
unique entertainment website experience: the chance to cast (or recast) a movie
the way you'd want to see it. His other interests include movies (of course),
playing basketball, and gaming. He's a proud husband and father.

Mithun Satheesh is an open source enthusiast and a full stack web developer
from India. Starting his career as a PHP developer, he has over 4 years of experience
in web development both in frontend and backend programming.

He has written a couple of libraries on Node.js and published them on npm,
which have got a considerable user base. One of these is called node-rules,
a forward-chaining rule engine implementation written initially to handle
transaction risks on bookmyshow.com, one of his former employers. He is a
regular on programming sites such as Stack Overflow and loves contributing
to the open source world.

Apart from programming, he is also interested in experimenting with various
PaaS solutions. He has a number of applications listed in the developer spotlight
of PaaS providers such as Red Hat's OpenShift.

You can follow him on Twitter at @mithunsatheesh.

I would like to thank my parents for allowing me to live the life
that I wanted to live. I am thankful to all my teachers for whatever
knowledge I have gained in my life.

fillthepart.com
bookmyshow.com

Peter Shannon is a husband and father who moonlights as a software
engineer and data scientist. Originally a chemist, he found his passion for
software engineering in high performance computing and computational
chemistry—which never really became his forte. Now, he spends most of
his time writing data-driven tools, staring at graphs, and occasionally doing
math. When relaxing, he enjoys watching Star Trek Deep Space Nine reruns
and pondering about life's biggest questions.

I would like to thank the Flying Spaghetti Monster for the noodly
strength to review this book.

www.PacktPub.com

Support files, eBooks, discount offers, and more
You might want to visit www.PacktPub.com for support files and downloads related to
your book.

Did you know that Packt offers eBook versions of every book published, with PDF and ePub
files available? You can upgrade to the eBook version at www.PacktPub.com and as a print
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at
service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up for a
range of free newsletters and receive exclusive discounts and offers on Packt books and eBooks.

TM

http://PacktLib.PacktPub.com

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital book
library. Here, you can access, read and search across Packt's entire library of books.

Why subscribe?
•	 Fully searchable across every book published by Packt
•	 Copy and paste, print and bookmark content
•	 On demand and accessible via web browser

Free access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view nine entirely free books. Simply use your login credentials for
immediate access.

www.PacktPub.com
www.PacktPub.com
www.PacktPub.com
http://PacktLib.PacktPub.com
www.PacktPub.com

Table of Contents
Preface	 1
Chapter 1: Welcome to JavaScript in the Full Stack	 7

Node.js changed JavaScript forever	 8
Asynchronous callbacks	 9
Node Package Manager	 10
Networking and file IO	 10
Not just on the web	 10
Real-time web with Socket.io	 11

The NoSQL movement	 11
Node and MongoDB in the wild	 12
What to expect from this book	 13

Summary	 14
Chapter 2: Getting Up and Running	 15

Environment assumptions and requirements	 15
Installing Node.js	 16

Mac OS X installation instructions	 16
Windows 7 or 8 installation instructions	 17
Linux installation instructions	 18
Confirming successful Node.js installation	 19
Bookmarking the online documentation	 20

Installing the MongoDB server	 20
Mac OS X installation instructions	 21
Windows 7 or 8 installation instructions	 22
Linux installation instructions	 24
Confirming successful MongoDB installation	 25
Bookmarking the online documentation	 26

Table of Contents

[ii]

Writing your first app	 26
The code	 26
Launch the sample app	 30
Check the actual database	 30

Summary	 31
Chapter 3: Node and MongoDB Basics	 33

A JavaScript Primer	 33
Declaring variables	 34
Declaring functions	 35
Declaring objects	 36
Functions are objects	 37
Anonymous functions and callbacks	 38
Arrays	 40
Conditions and comparison operators	 40
Flow	 41
JSON	 42

The basics of NodeJS	 43
Event driven	 43
Asynchronous	 43
Require and modules	 44
The NodeJS core	 44

Installing modules using npm	 45
The basics of MongoDB	 46

The mongo shell	 47
Inserting data	 47
Querying	 48
Updating data	 49
Deleting data	 50

Additional resources	 50
Summary	 51

Chapter 4: Writing an Express.js Server	 53
What is Express.js?	 53
Building a complete web application	 54
Organizing the files	 56
Server.js – where it all begins	 57

Booting up server.js	 58
Configuration module	 59

Handlebars view engine	 60
Other template engines	 61

Table of Contents

[iii]

Using and understanding middleware	 62
Introducing Connect	 62
Activating the configure module	 65

Routers and controllers	 66
Custom middleware	 71
Migrating to Express v4.0.0	 72

Using new middleware	 72
server/configure.js	 73
server/routes.js	 76

Summary	 76
Chapter 5: Dynamic HTML with Handlebars	 77

Basic syntax for Handlebars	 77
Views	 78
Layouts	 85
Partial views	 87
Handlebars Helpers	 89

Global helpers	 89
View-specific helpers	 90

Rendering the views	 91
Summary	 93

Chapter 6: Controllers and View Models	 95
Controllers	 95
View models	 96
Updating the home controller	 97
Updating the image controller	 100

Displaying an image	 100
Uploading an image	 102

Helpers for reusable code	 106
The sidebar module	 106
The stats module	 108
The images module	 109
The comments module	 110
Testing the sidebar implementation	 111

Iterating on the UI	 112
Summary	 116

Chapter 7: Persisting Data with MongoDB	 117
Using MongoDB with Node	 118

Connecting to MongoDB	 119
Inserting a document	 120
Retrieving a document	 121

Table of Contents

[iv]

Introducing Mongoose	 122
Schemas	 123
Models	 124
Built-in validation	 126
Static methods	 128
Virtual properties	 128
Connecting with Mongoose	 129

Defining the schema and models	 130
Models index file	 132

Adding CRUD to the controllers	 133
The home controller	 134
The image controller	 136

Index – retrieving an image model	 137
Create – inserting an image model	 141
Like – updating an image model	 146
Comment – inserting a comment model	 148
Wrapping it up	 150

Helpers	 150
Introducing the async module	 151
The comments helper	 151
The helper sidebar	 155
Troubleshooting	 157
The stats helper	 158
The popular images helper	 161

Iterating by adding an image removal capability	 162
Adding a route	 162
Adding a controller handler	 162
Updating the Handlebars image page template	 163
Updating the jQuery	 164

Refactoring and improvements	 165
Summary	 166

Chapter 8: Creating a RESTful API	 167
What is an API?	 168
What is a RESTful API?	 168
Introducing Postman REST Client	 169

Installation instructions	 169
A quick tour of Postman REST Client	 170
Using the JSONView Chrome extension	 173

Creating a Basic API server	 174
Creating sample JSON data	 175

Responding to GET requests	 176
Receiving data – POST and PUT requests	 178

Table of Contents

[v]

Removing data – DELETE	 183
Consuming external APIs from Node.js	 185

Consuming an API endpoint using Request	 185
Summary	 188

Chapter 9: Testing Your Code	 189
Tools of the trade	 189

Running tests with the Mocha framework	 190
Asserting tests with Chai.js	 192

Installing Chai.js as a devDependency	 194
Spies and stubs with Sinon.js	 194
Stubbing node modules with Proxyquire	 197

Writing and running your first test	 199
Writing a test helper	 199

Testing the application	 201
Testing the routes	 202
Testing the server	 204
Testing a model	 207
Testing a controller	 210

Spy and stub everything!	 214
Summary	 215

Chapter 10: Deploying with Cloud-based Services	 217
Cloud versus traditional hosting	 217

Infrastructure as a Service (IaaS) versus Platform as a Service (PaaS)	 218
Introduction to Git	 219
Deploying your application	 220

Nodejitsu	 220
Heroku	 226
Amazon Web Services (AWS)	 231

Create a MongoLab account and database	 231
Create and configure the AWS environment	 233

Microsoft Azure	 236
Digital Ocean	 242

Summary	 244
Chapter 11: Single Page Applications with Popular
Frontend Frameworks	 245

What is a Single Page Application?	 245
Why use a frontend framework?	 246

The TodoMVC project	 247
Backbone.js	 248

Table of Contents

[vi]

Ember.js	 250
AngularJS	 251

Frontend development tools	 252
Automated build task managers	 252
Dependency management	 254
Modularity	 255
HTML template-rendering engines	 256
CSS transpiling	 256

Testing and test-driven development	 258
PhantomJS headless browser	 258

Summary	 259
Chapter 12: Popular Node.js Web Frameworks	 261

Meteor	 262
Sails	 263
hapi	 264
Koa	 265
Flatiron	 266
Summary	 267

Index	 269

Preface
My goal while writing Web Development with MongDB and Node.js was simple: to
empower you, the reader, with the tools and knowledge to be able to create web
applications from scratch using Node.js and MongoDB.

In this book, we take a hands-on approach to building a complete, real-world,
interactive web application. Each chapter will build upon the previous one, exposing
new concepts, technologies, and best practices until finally ending with a completed
application deployed to the cloud. Every line of code will be covered, and you are
expected to code along with each chapter. Doing so will give you valuable insight
into the world of web development using Node.js.

By the end of this book, I hope you have the expertise to tackle any project using
Node.js and MongoDB and are limited only by your imagination!

What this book covers
Chapter 1, Welcome to JavaScript in the Full Stack, introduces you to the world
of full stack JavaScript development and reviews what to expect in the remainder
of the book.

Chapter 2, Getting Up and Running, walks you through the necessary steps to
download, install, and configure your development environment.

Chapter 3, Node and MongoDB Basics, is a brief introduction to the basics of
JavaScript, Node.js, and MongoDB.

Chapter 4, Writing an Express.js Server, introduces you to the Express.js Node.js
Web Framework and is a walkthrough of the code necessary to write the main
application server.

Preface

[2]

Chapter 5, Dynamic HTML with Handlebars, teaches you how to create dynamic HTML
pages using Handlebars, the popular template-rendering engine.

Chapter 6, Controllers and View Models, walks you through writing the Controllers and
View Models for the main application, the core of the application's functionalities.

Chapter 7, Persisting Data with MongoDB, continues with our Controllers and View
Models, where we wrap all of the logic using Mongoose with MongoDB as the main
data layer for the application.

Chapter 8, Creating a RESTful API, reviews the concepts behind REST APIs and
introduces the Postman REST Client tool to test and interact with our own custom
Node.js API.

Chapter 9, Testing Your Code, introduces the tools and techniques to write automated
tests for our Node.js code.

Chapter 10, Deploying with Cloud-based Services, is a step-by-step walkthrough of
deploying your application to a number of popular cloud-based hosting services
such as Heroku, Microsoft Azure, and Amazon's AWS.

Chapter 11, Single Page Applications with Popular Frontend Frameworks, takes a look
at the current trend in thick client applications by learning more about popular
frontend single application frameworks such as Ember.js, AngularJS, and Backbone.
js. Additionally, you will learn about the popular build tools frontend developers use
to make their lives easier.

Chapter 12, Popular Node.js Web Frameworks, takes a look at some very popular and
robust alternatives such as Meteor and Sails, even though Express.js is one of the
most popular web frameworks for Node.

What you need for this book
In this book, the following software will be required:

•	 Operating systems:
°° Windows XP or superior
°° Mac OS X or superior
°° Linux

Preface

[3]

•	 Miscellaneous:
°° A standard text editor of choice
°° A web browser, preferably Google Chrome

•	 A command-line terminal of choice

Who this book is for
This book is designed for developers of any skill level that want to get up and
running using Node.js and MongoDB to build full-featured web applications.
A basic understanding of JavaScript and HTML is the only requirement for this book.

Conventions
In this book, you will find a number of styles of text that distinguish between
different kinds of information. Here are some examples of these styles, and an
explanation of their meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows:
"Make sure you've npm installed all of the required modules for this chapter and
that they are saved to your package.json file."

A block of code is set as follows:

models.Image.aggregate({ $group : {
 _id : '1',
 viewsTotal : { $sum : '$views' }
}}, function(err, result) {
 var viewsTotal = 0;
 if (result.length > 0) {
 viewsTotal += result[0].viewsTotal;
 }
 next(null, viewsTotal);
});

When we wish to draw your attention to a particular part of a code block,
the relevant lines or items are set in bold:

.upload-button {
 border-bottom: solid 2px #005A8B;
 background: transparent $sprite-bg no-repeat;
 @include radius(4px);
 cursor: pointer;

Preface

[4]

Any command-line input or output is written as follows:

$ node server.js

Server up: http://localhost:3300

Mongoose connected.

New terms and important words are shown in bold. Words that you see on the
screen, in menus or dialog boxes for example, appear in the text like this: "Users
demand more from their apps these days, and if you think about the application
we've written, the Like button is a perfect example."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or may have disliked. Reader feedback is important for
us to develop titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com,
and mention the book title via the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide on www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Downloading the example code
You can download the example code files for all Packt books you have purchased
from your account at http://www.packtpub.com. If you purchased this book
elsewhere, you can visit http://www.packtpub.com/support and register to
have the files e-mailed directly to you.

Preface

[5]

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in the text or
the code—we would be grateful if you would report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
book. If you find any errata, please report them by visiting http://www.packtpub.
com/submit-errata, selecting your book, clicking on the errata submission form link,
and entering the details of your errata. Once your errata are verified, your submission
will be accepted and the errata will be uploaded on our website, or added to any list of
existing errata, under the Errata section of that title. Any existing errata can be viewed
by selecting your title from http://www.packtpub.com/support.

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media.
At Packt, we take the protection of our copyright and licenses very seriously. If you
come across any illegal copies of our works, in any form, on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors, and our ability to bring you
valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with
any aspect of the book, and we will do our best to address it.

Welcome to JavaScript in
the Full Stack

What an exciting time to be a JavaScript developer! What was once only considered
a language to add enhancements and widgets to a webpage has since evolved into
its own full-fledged ecosystem. I believe Atwood's law says it best— any application
that can be written in JavaScript, will eventually be written in JavaScript. While this
quote dates back to 2007, it's never been more true than today. Not only can you use
JavaScript to develop a complete single-page web application such as Gmail, but you
will also see how we can achieve the following projects with JavaScript throughout
the remaining part of the book:

•	 How to completely power the backend using Node.js and Express.js
•	 How to persist data with a powerful database like MongoDB
•	 How to write dynamic HTML pages using Handlebars.js
•	 How to deploy your entire project to the cloud using services like

Heroku and AWS

With the introduction of Node.js, JavaScript has officially gone in a direction that
was never even possible before. Now, you can use JavaScript on the server, and you
can also use it to develop full-scale enterprise-level applications. When you combine
this with the power of MongoDB and its JSON-powered data, you can work with
JavaScript in every layer of your application.

One of the great advantages of developing with JavaScript in the "full stack" of a
web application is that you are using a consistent language and syntax. Frameworks
and libraries are no longer exclusive only to the frontend or backend but can be
integrated into other layers of the application as well.

Welcome to JavaScript in the Full Stack

[8]

Underscore.js is an extremely popular JavaScript library to work with collections
that is used equally on the backend with Node.js as much as on the frontend directly
within the browser.

JavaScript in the full stack of a web application

Node.js changed JavaScript forever
Back in 2009, Ryan Dahl gave a presentation at JSConf that changed JavaScript
forever. During his presentation, he introduced Node.js to the JavaScript community,
and after a roughly 45-minute talk, he concluded it, receiving a standing ovation
from the audience in the process. He was inspired to write Node.js after he saw a
simple file upload progress bar on Flickr, the image-sharing site. Realizing that the
site was going about the whole process the wrong way, he decided that there had to
be a better solution.

As stated on the Node.js homepage, the goal of Node is to provide an easy way to build
scalable network programs. It achieves this by providing an event-driven, nonblocking
IO model that is extremely lightweight. Compared to traditional web-serving
technologies that require a new CPU thread for every connection to the server that
would eventually max out the systems resources, Node instead uses a single thread
but doesn't block the I/O of the CPU. Thus, this allows Node to support tens of
thousands of concurrent connections. It's for this very reason that Node is so popular
with high-traffic web applications.

To see an example of just how lightweight Node can be, let's take a look at some
sample code that starts up an HTTP server and sends Hello World to a browser:

var http = require('http');
http.createServer(function (req, res) {
 res.writeHead(200, {'Content-Type': 'text/plain'});
 res.end('Hello World\n');
}).listen(8080, 'localhost');
console.log('Server running at http://localhost:8080');

Chapter 1

[9]

A few basic lines of code are all it takes to write a complete Node application.
Running it with a simple node app.js command will launch an HTTP server that is
listening on port 8080. Point any browser to http://localhost:8080, and you will
see the simple output Hello World on your screen! While this sample app doesn't
actually do anything useful, it should give you a glimpse of the kind of power you
will have while writing web applications using Node.js.

At its core, Node is very low-level. It consists of a small set of modules that do very
specific things and do them very well. These modules include tools to work with the
file system, networking with TCP and HTTP, security, and streams.

Asynchronous callbacks
One of the most powerful features of Node is that it is event-driven and
asynchronous. Code gets executed via callback functions whenever an event
is broadcast. Simply put, you assign a callback function to an event, and when
Node determines that the event has been fired, it will execute your callback function
at that moment. No other code will get blocked waiting for an event to occur.
Consider the following example to see asynchronous callbacks in action:

console.log('One');
console.log('Two');
setTimeout(function() {
 console.log('Three');
}, 2000);
console.log('Four');
console.log('Five');

Downloading the example code
You can download the example code files for all Packt books you have
purchased from your account at http://www.packtpub.com. If you
purchased this book elsewhere, you can visit http://www.packtpub.
com/support and register to have the files e-mailed directly to you.

In a typical synchronous programming language, executing the preceding code
will yield the following output:

One
Two
... (2 second delay) ...
Three
Four
Five

Welcome to JavaScript in the Full Stack

[10]

However, in JavaScript and Node, the following output is seen:

One
Two
Four
Five
... (approx. 2 second delay) ...
Three

The function that actually logs Three is known as a callback to the
setTimeout function.

Node Package Manager
Writing applications with Node is really enjoyable when you realize the sheer wealth
of information and tools at your disposal! Using Node's built-in package manager
npm, you can find literally tens of thousands of modules that can be installed and
used within your application with just a few keystrokes! You can view the library of
available modules by visiting http://npmjs.org. Downloading and installing any
module within your application is as simple as executing the npm install package
command. Have you written a module that you want to share with the world? Package
it up using npm, and upload it to the public npmjs.org registry just as easily! Not sure
how a module works that you downloaded and installed? The source code is right
there in your projects' node_modules/ folder waiting to be explored!

Networking and file IO
In addition to the powerful nonblocking asynchronous nature of Node, it also has
very robust networking and filesystem tools available via its core modules. With
Node's networking modules, you can create server and client applications that accept
network connections and communicate via streams and pipes.

Not just on the web
Node isn't just for web development! It can be a powerful solution to
create command-line tools as well as full-featured locally run applications that
have nothing to do with the Web or a browser. Grunt.js is a great example of a
Node-powered command-line tool that many web developers use daily to automate
everyday tasks such as build processes, compiling CoffeeScript, launching Node
servers, running tests, and more.

http://npmjs.org
npmjs.org

Chapter 1

[11]

In addition to command-line tools, Node has recently become increasingly
popular among the hardware crowd with the Nodebots movement. Johnny-Five
and Cylon.js are two popular Node libraries that exist to provide a framework to
work with robotics.

Real-time web with Socket.io
Node achieves real-time communication with Socket.io. Using Socket.io, you can
create features such as instant collaboration, which is similar to multiuser editing in
Google Docs. What was once achieved using cumbersome (and not real-time) long
polling can now be achieved using WebSockets. While WebSockets is a feature that
is only supported in modern browsers, Socket.io also features seamless fallback
implementations for legacy browsers.

Using this lightweight core, everything else is left to the developer—but don't let that
scare you. The beauty of working with Node is that there is a thriving community
developing and releasing modules every day via npm. As of this writing, npm has
over 61,000 packages available! Throughout this book, we will use some of the most
popular packages that help make writing web applications fun and easy!

The NoSQL movement
The term NoSQL has come to mean any kind of database that doesn't adhere to the
strict structures of a typical relational database such as Microsoft SQL, MySQL,
PostgreSQL, and so on. With a relational database, you are required to define ahead
of time the exact structure of your schema. This means that you must have defined
the exact number of columns, length, and datatype for every field in a table, and that
each field must always match that exact set of criteria.

With a NoSQL database server such as MongoDB, records are stored as JSON-like
documents. A typical document (record) in a MongoDB collection (table) might look
like the following code:

$ mongo
> db.contacts.find({email: 'jason@kroltech.com'}).pretty()

{
 "email" : "jason@kroltech.com",
 "phone" : "123-456-7890",
 "gravatar" : "751e957d48e31841ff15d8fa0f1b0acf",
 "_id" : ObjectId("52fad824392f58ac2452c992"),
 "name" : {

Welcome to JavaScript in the Full Stack

[12]

 "first" : "Jason",
 "last" : "Krol"
 },
 "__v" : 0
}

One of the biggest advantages of using a NoSQL database server such as MongoDB
is that it has a dynamic schema system, allowing records in a collection to be
completely different from one another.

Some advantages of working with MongoDB are:

•	 Dynamic schema design
•	 Fast querying and indexing
•	 Aggregate framework
•	 Sharding and replication

In addition, as MongoDB was written using a JSON-like document structure,
JavaScript becomes a powerful tool when working with queries and the interactive
shell mongo. Like Node, MongoDB is also built for high performance, making it
a great counterpart for building ever demanding, high traffic web and mobile
applications. Depending on your exact needs, MongoDB may or may not be the
right solution for your application. You should truly weigh the pros and cons of each
technology before making a decision to determine which technology is right for you.

Node and MongoDB in the wild
Both Node and MongoDB are extremely popular and active in the development
community. This is true for enterprises as well. Some of the biggest names in the
Fortune 500 space have fully embraced Node to power their web applications.
This is due in large part to the asynchronous nature of Node, which makes it a
great alternative for high traffic, high IO applications such as e-commerce websites
and mobile applications.

The following is just a small list of some big companies that are working with Node:

•	 PayPal
•	 LinkedIn
•	 eBay
•	 Walmart
•	 Yahoo!

Chapter 1

[13]

•	 Microsoft
•	 Dow Jones
•	 Uber
•	 New York Times

MongoDB's use in the enterprise sector is equally as impressive and wide reaching
with an increasing number of companies adopting the leading NoSQL database
server, such as:

•	 Cisco
•	 Craigslist Inc.
•	 Forbes
•	 FourSquare
•	 Intuit
•	 McAfee
•	 MTV
•	 MetLife
•	 Shutterfly
•	 Under Armour

What to expect from this book
The remainder of this book is going to be a guided tour that walks you through
creating a complete data-driven website. The website we create will feature almost
every aspect of a typical large-scale web development project. At its core, it will be
powered by Node.js using a popular third-party framework called Express, and it
will persist data using MongoDB.

In the first few chapters, we will cover the groundwork involved in getting the core
of the server up and serving content. This includes configuring your environment
so you are up and running with Node and MongoDB, and a basic introduction
to the core concepts of both technologies. Then, we will write a web server from
scratch powered by ExpressJS that will handle serving all of the necessary files
for the website. From there, we will work with the Handlebars template engine to
serve both static and dynamic HTML webpages. Diving deeper, we will make the
application persistent by adding a data layer where the records for the website will
be saved and retrieved via a MongoDB server. We will cover writing a RESTful API
so that third parties can interact with your application. Finally, we will go into detail
examining how to write and execute tests for all of your code.

Welcome to JavaScript in the Full Stack

[14]

Wrapping up, we will take a brief detour as we examine some popular,
emerging frontend technologies that are becoming increasingly popular
while writing single-page applications. These technologies include Backbone.js,
Angular, and Ember.js.

Last but not least, we will go into details of how to deploy your new website to the
Internet using popular cloud-based hosting services such as Heroku and Amazon
Web Services.

Summary
In this chapter, we reviewed what is to be expected throughout the remainder of this
book. We discussed the amazing current state of JavaScript and how it can be used
to power the full stack of a web application. Not that you needed any convincing
in the first place, but I hope you're excited and ready to get started writing web
applications using Node.js and MongoDB!

Next up, we will set up your development environment and get you up and running
with Node, MongoDB, and npm as well as write and launch a quick first Node app
that uses MongoDB!

Getting Up and Running
The first thing you need to take care of is to make sure your development
environment is equipped with the necessary requirements in order for you
to use both Node and MongoDB while launching the apps you write.

In this chapter, we will cover the following topics:

•	 Installing and testing Node.js
•	 Installing, configuring, and testing MongoDB
•	 Writing and launching a simple app

Environment assumptions and
requirements
For the remainder of this book, I will assume that you are using either a Mac with
OS X, Linux, or Windows 7 or 8. You will also need superuser and/or administrator
privileges on the computer, as you will be installing the Node and MongoDB server
software. The code and examples after this chapter will all be OS agnostic and should
work in any environment, assuming you have taken the steps I outline here so that
you are prepared ahead of time.

You will need a good text editor to write and edit the code. Any editor of your liking
will do. Personally, I am a huge fan of Sublime Text 3 (http://sublimetext.com). It
is a simple, lightweight editor that has great color-coding syntax support. However,
its true power comes from the unlimited plugins made available by other developers.
There is literally a plugin for everything in Sublime! VI and Notepad are also good
options if you want to stay super lightweight.

http://sublimetext.com

