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Preface
JavaScript is starting to become one of the most popular languages in the  
world. However, its history as a bit of a toy language, means that developers  
are tempted to ignore good design. Design patterns are a great tool to suggest  
some well-tried solutions.

What this book covers
This book is divided into two main parts, each of which contains a number of 
chapters. The first part of the book, which I'm calling Part 1, covers the classical 
design patterns, which are found in the GoF book. Part 2 looks at patterns, which are 
either not covered in the GoF book or the ones that are more specific to JavaScript.

Chapter 1, Designing for Fun and Profit, provides an introduction to what design 
patterns are and why we are interested in using design patterns. We will also talk 
about the history of JavaScript to give a historical context.

Chapter 2, Organizing Code, explains how to create the classical structures used  
to organize code: namespaces or modules and classes as JavaScript lack these 
constructs as first class citizens.

Chapter 3, Creational Patterns, covers the creational patterns outlined in the Gang of 
Four book. We'll discuss how these patterns apply to JavaScript, as opposed to the 
languages which were popular at the time when the Gang of Four wrote their book.

Chapter 4, Structural Patterns, examines the structural patterns from the Gang of Four 
book following on our look at creational patterns.

Chapter 5, Behavioral Patterns, covers the final set of patterns from the Gang of  
Four book that we'll examine. These patterns govern different ways to link  
classes together.
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Chapter 6, Functional Programming, explains some of the patterns which can be found 
in functional programming languages. We'll look at how these patterns can be used 
in JavaScript to improve code.

Chapter 7, Model View Patterns, examines the confusing variety of different  
patterns to create single-page applications. We'll provide clarity and look at  
how to use libraries which use each of the existing patterns, as well as create  
their own lightweight framework.

Chapter 8, Web Patterns, covers a number of patterns which have specific applicability 
to web applications. We'll also look at some patterns around deploying code to 
remote runtimes such as the browser.

Chapter 9, Messaging Patterns, explains messaging which is a powerful technique  
to communicate inside, and even between, applications. We'll also look at some 
common structures around messaging and discuss why messaging is so useful.

Chapter 10, Patterns for Testing, focuses on some patterns which make for easier  
testing, giving you more confidence that your application is working as it should.

Chapter 11, Advanced Patterns, includes some patterns, such as aspect-oriented 
programming, that are rarely applied in JavaScript. We'll look at how these  
patterns can be applied in JavaScript and discuss if we should apply them.

Chapter 12, ES6 Solutions Today, discusses some of the tools available to allow you 
to use features from future versions of JavaScript today. We'll examine Microsoft's 
TypeScript as well as Traceur.

Appendix, Conclusion, covers what you have learned, in general, in the book, and you 
will be reminded of the goal of using patterns.

What you need for this book
There is no specialized software needed for this book. JavaScript runs on all modern 
browsers. There are standalone JavaScript engines written in C++ (V8) and Java 
(Rhino), and these are used to power all sorts of tools such as Node.js, CouchDB,  
and even Elasticsearch. These patterns can be applied to any of these technologies.
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Who this book is for
The intended audience is developers who have some experience with JavaScript,  
but not necessarily with entire applications written in JavaScript. Also, developers  
who are interested in creating easily maintainable applications that can grow  
and change with need.

Conventions
In this book, you will find a number of styles of text that distinguish between 
different kinds of information. Here are some examples of these styles, and an 
explanation of their meaning.

Code words in text, database table names, folder names, filenames, file extensions, 
pathnames, dummy URLs, user input, and Twitter handles are shown as follows: 
"The next item of interest is that we need to make use of the this qualifier to address 
the greeting variable from within the doThings function."

A block of code is set as follows:

var Wall = (function () {
  function Wall() {
    console.log("Wall constructed");
  }
  return Wall;
})();
Structures.Wall = Wall;

When we wish to draw your attention to a particular part of a code block, the 
relevant lines or items are set in bold:

var Wall = (function () {
  function Wall() {
    console.log("Wall constructed");
  }
  return Wall;
})();
Structures.Wall = Wall;

Any command-line input or output is written as follows:

npm install –g traceur
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New terms and important words are shown in bold. Words that you see on  
the screen, in menus or dialog boxes for example, appear in the text like this: 
"clicking the Next button moves you to the next screen".

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about 
this book—what you liked or disliked. Reader feedback is important for us as it helps 
us develop titles that you really get the most out of.

To send us general feedback, simply e-mail feedback@packtpub.com, and mention 
the book's title in the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing 
or contributing to a book, see our author guide at www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to 
help you to get the most from your purchase.

Downloading the example code
You can download the example code files from your account at http://www.
packtpub.com for all the Packt Publishing books you have purchased. If you 
purchased this book elsewhere, you can visit http://www.packtpub.com/support 
and register to have the files e-mailed directly to you.

You can also download the example code files for this book from GitHub at 
https://github.com/stimms/JavaScriptPatterns.
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Errata
Although we have taken every care to ensure the accuracy of our content, mistakes do 
happen. If you find a mistake in one of our books—maybe a mistake in the text or the 
code—we would be grateful if you could report this to us. By doing so, you can save 
other readers from frustration and help us improve subsequent versions of this book. 
If you find any errata, please report them by visiting http://www.packtpub.com/
submit-errata, selecting your book, clicking on the Errata Submission Form link, 
and entering the details of your errata. Once your errata are verified, your submission 
will be accepted and the errata will be uploaded to our website or added to any list of 
existing errata, under the Errata section of that title.

To view the previously submitted errata, go to https://www.packtpub.com/books/
content/support and enter the name of the book in the search field. The required 
information will appear under the Errata section.

Piracy
Piracy of copyrighted material on the Internet is an ongoing problem across all 
media. At Packt, we take the protection of our copyright and licenses very seriously. 
If you come across any illegal copies of our works in any form on the Internet, please 
provide us with the location address or website name immediately so that we can 
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected  
pirated material.

We appreciate your help in protecting our authors and our ability to bring you 
valuable content.

Questions
If you have a problem with any aspect of this book, you can contact us at 
questions@packtpub.com, and we will do our best to address the problem.

mailto:copyright@packtpub.com




Designing for Fun and Profit
JavaScript is an evolving language that has come a long way from its inception. 
Possibly more than any other programming language, it has grown and changed 
with the growth of the World Wide Web. The exploration of how JavaScript can be 
written using good design principles is the topic of this book. The preface of this 
book contains a detailed explanation of the sections of the book.

In the first half of this chapter, we'll explore the history of JavaScript and how it came 
to be the important language that it is today. As JavaScript has evolved and grown in 
importance, the need to apply rigorous methods to its construction has also grown. 
Design patterns can be a very useful tool to assist in developing maintainable code. 
The second half of the chapter will be dedicated to the theory of design patterns. 
Finally, we'll look briefly at antipatterns.

The topics covered in this chapter are:

•	 The history of JavaScript
•	 What is a design pattern?
•	 Antipatterns

The road to JavaScript
We'll never know how language first came into being. Did it slowly evolve from 
a series of grunts and guttural sounds made during grooming rituals? Perhaps it 
developed to allow mothers and their offsprings to communicate. Both of these are 
theories, all but impossible to prove. Nobody was around to observe our ancestors 
during that important period. In fact, the general lack of empirical evidence lead 
the Linguistic Society of Paris to ban further discussions on the topic, seeing it as 
unsuitable for serious study.
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The early days
Fortunately, programming languages have developed in recent history and we've 
been able to watch them grow and change. JavaScript has one of the more interesting 
histories in modern programming languages. During what must have been an 
absolutely frantic 10 days in May of 1995, a programmer at Netscape wrote the 
foundation for what would grow up to be modern JavaScript.

At that time, Netscape was involved in the first of the browser wars with  
Microsoft. The vision for Netscape was far grander than simply developing a 
browser. They wanted to create an entire distributed operating system making 
use of Sun Microsystems' recently released Java programming language. Java was 
a much more modern alternative to C++ that Microsoft was pushing. However, 
Netscape didn't have an answer to Visual Basic. Visual Basic was an easier to use 
programming language, which was targeted at developers with less experience.  
It avoided some of the difficulties around memory management which makes C  
and C++ notoriously difficult to program. Visual Basic also avoided strict typing  
and overall allowed more leeway.

Brendan Eich was tasked with developing Netscape repartee to VB. The project was 
initially codenamed Mocha but was renamed LiveScript before Netscape 2.0 beta 
was released. By the time the full release was available, Mocha/LiveScript had been 
renamed JavaScript to tie it into the Java applet integration. Java applets were small 
applications that ran on the browser. They had a different security model from the 
browser itself and so were limited in how they could interact with both the browser 
and the local system. It is quite rare to see applets these days, as much of their 
functionality has become part of the browser. Java was riding a popular wave  
at that time and any relationship to it was played up.

The name has caused much confusion over the years. JavaScript is a very  
different language from Java. JavaScript is an interpreted language with loose 
typing that runs primarily on the browser. Java is a language that is compiled to 
bytecode, which is then executed on the Java Virtual Machine. It has applicability in 
numerous scenarios from the browser (through the use of Java applets) to the server 
(Tomcat, JBoss, and so on) to full desktop applications (Eclipse, OpenOffice). In most 
laypeople's minds, the confusion remains.
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JavaScript turned out to be really quite useful for interacting with the web browser.  
It was not long until Microsoft had also adopted JavaScript in their Internet Explorer  
to complement VBScript. The Microsoft implementation was known as JScript.

By late 1996, it was clear that JavaScript was going to be the winning web language 
for the near future. In order to limit the amount of language deviation between 
implementations, Sun and Netscape began working with the European Computer 
Manufacturers Association (ECMA) to develop a standard to which future versions 
of JavaScript would need to comply. The standard was released very quickly (very 
quickly in terms of how rapidly standard organizations move) in July of 1997. On 
the off chance that you have not seen enough names yet for JavaScript, the standard 
version was called ECMAScript, a name which still persists in some circles.

Unfortunately, the standard only specified the very core parts of JavaScript. With the 
browser wars raging, it was apparent that any vendor that stuck with only the basic 
implementation of JavaScript would quickly be left behind. At the same time, there 
was much work going on to establish a standard document object model (DOM) for 
browsers. The DOM was, in effect, an API for a web page that could be manipulated 
using JavaScript.

For many years, every JavaScript script would start by attempting to determine the 
browser on which it was running. This would dictate how to address elements in 
the DOM, as there were dramatic deviations between each browser. The spaghetti 
of code that was required to perform simple actions was legendary. I remember 
reading a year-long 20 part series on developing Dynamic HTML (DHTML) drop-
down menus such that they would work on both Internet Explorer and Netscape 
Navigator. The same functionality can now be achieved with pure CSS without even 
having to resort to JavaScript.

DHTML was a popular term in the late 1990s and early 2000s.  
It really referred to any web page that had some sort of dynamic  
content that was executed on the client side. It has fallen out of use as 
the popularity of JavaScript has made almost every page a dynamic one.
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Fortunately, the efforts to standardize JavaScript continued behind the scenes. 
Versions 2 and 3 of ECMAScript were released in 1998 and 1999. It looked like there 
might finally be some agreement between the various parties interested in JavaScript. 
Work began in early 2000 on ECMAScript 4, which was to be a major new release.

A pause
Then, disaster struck! The various groups involved in the ECMAScript effort had 
major disagreements about the direction JavaScript was to take. Microsoft seemed to 
have lost interest in the standardization effort. It was somewhat understandable as 
it was around that time that Netscape self-destructed and Internet Explorer became 
the de facto standard. Microsoft implemented parts of ECMAScript 4 but not all of it. 
Others implemented more fully featured support but, without the market leader on 
board, developers didn't bother using them.

Years passed without consensus and without a new release of ECMAScript. 
However, as frequently happens, the evolution of the Internet could not be  
stopped by a lack of agreement between major players. Libraries such as jQuery, 
Prototype, Dojo, and MooTools papered over the major differences in browsers, 
making cross-browser development far easier. At the same time, the amount of 
JavaScript used in applications increased dramatically.

The way of Gmail
The turning point was, perhaps, the release of Google's Gmail application in 2004. 
Although XMLHttpRequest, the technology behind Asynchronous JavaScript and 
XML (AJAX), had been around for about 5 years when Gmail was released, it had 
not been well used. When Gmail was released, I was totally knocked off my feet by 
how smooth it was. We've grown used to applications that avoid full reloads, but 
at that time it was a revolution. To make applications like that work, a great deal of 
JavaScript is needed.

AJAX is a method by which small chunks of data are retrieved 
from the server by a client instead of refreshing the entire page. 
The technology allows for more interactive pages that avoid the 
jolt of full page reloads.


