

Mastering JavaScript
Design Patterns

Discover how to use JavaScript design patterns
to create powerful applications with reliable and
maintainable code

Simon Timms

BIRMINGHAM - MUMBAI

Mastering JavaScript Design Patterns

Copyright © 2014 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the author, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: November 2014

Production reference: 1151114

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78398-798-6

www.packtpub.com

www.packtpub.com

Credits

Author
Simon Timms

Reviewers
Amrita Chaturvedi

Philippe Renevier Gonin

Pedro Miguel Barros Morgado

Mani Nilchiani

Commissioning Editor
Kunal Parikh

Acquisition Editor
Meeta Rajani

Content Development Editor
Sweny M. Sukumaran

Technical Editor
Siddhi Rane

Copy Editor
Laxmi Subramanian

Project Coordinator
Rashi Khivansara

Proofreaders
Simran Bhogal

Lawrence A. Herman

Elinor Perry-Smith

Indexer
Hemangini Bari

Graphics
Sheetal Aute

Ronak Dhruv

Valentina D'silva

Disha Haria

Abhinash Sahu

Production Coordinator
Nitesh Thakur

Cover Work
Nitesh Thakur

About the Author

Simon Timms is a developer who loves to write code. He writes in a variety of
languages using a number of tools. For the most part, he develops web applications
with .NET backends. He is very interested in visualizations and cloud computing.
A background in build and system administration keeps him on the straight and
narrow when it comes to DevOps.

He is the author of Social Data Visualization with HTML5 and JavaScript, Packt
Publishing. He blogs at http://blog.simontimms.com/ and is also a frequent
contributor to the Canadian Developer Connection, where his latest series explores
evolving ASP.NET applications.

He is the President of the Calgary .NET User Group and a member of half a
dozen others. He speaks on a variety of topics from DevOps to how the telephone
system works.

He works as a web developer for Pacesetter Directional Drilling, the friendliest
performance drilling company around.

I would like to thank my wonderful wife for all her support and my
children who provided a welcome distraction from writing. I would
also like to thank the Prime team at Pacesetter for their sense of
humor and for putting up with me.

http://blog.simontimms.com/

About the Reviewers

Amrita Chaturvedi is a PhD researcher in the Department of Computer
Science and Engineering at Indian Institute of Technology, Kanpur, Uttar
Pradesh, India (http://www.cse.iitk.ac.in/users/amrita/index.htm).
She was schooled (kindergarten to intermediate) at City Montessori School,
Aliganj, Lucknow, Uttar Pradesh, India. She received a Bachelor of Technology
degree in Information Technology from Institute of Engineering and Technology,
Lucknow, Uttar Pradesh, India and a Master of Technology degree in Information
Technology (with a specialization in Software Engineering) from Indian Institute
of Information Technology, Allahabad (Deemed University), Uttar Pradesh, India.
She has worked in Nucleus Software Exports Ltd., Noida, Uttar Pradesh, India as
a software engineer. She was also employed as a faculty in Institute of Engineering
and Technology, Lucknow, Uttar Pradesh, India. She has worked in user interface
design as a senior project associate at Indian Institute of Technology, Kanpur, Uttar
Pradesh, India. She was selected as the first female PhD student from Asia under
EURECA (European Research and Educational Collaboration with Asia) project
2009 to conduct research at VU University Amsterdam, the Netherlands. Her areas
of specialization are software engineering, software architecture, software design
patterns, and ontologies. Her research interests include software architecture and
design, ontologies-based software engineering, service-oriented and model-driven
architecture, semantic web, Internet technologies, and mobile agents.

She has given several talks and seminars as well as conference welcome/key notes
at international conferences. She has also earned various awards such as best paper
award for her research paper in an international conference, ACM SIGAPP award,
and has also been a Physics Olympiad topper. She has traveled several European,
North American, African, and Asian countries for educational/conference/research
purposes. She has teaching as well as research experience and has worked on several
implementation-based projects both jointly in a team as well as independently. She
has acted as a session chair and program committee member, as well as research
paper reviewer for various international conferences.

I would like to thank my incredible and beloved husband,
Bhartendu Chaturvedi, for his constant support.

Philippe Renevier Gonin has been an assistant professor at the
University of Nice Sophia-Antipolis (UNS), France, since 2005. He teaches
web technologies, software engineering (architecture, development),
and HCI (Human Computer Interaction).

In the research area, he works on connections between user-centered design
(for example, user and task models) and software engineering (for example,
component architecture and UI development).

Pedro Miguel Barros Morgado holds a Master's degree in Informatics and
Computing Engineering at FEUP (Faculdade de Engenharia da Universidade do Porto)
and did his master thesis on Object-Oriented Patterns and Service-Oriented Patterns.

Since 2009, he has been working with several different programming languages,
frameworks, and technologies, which included the main OO programming
languages such as PHP, Python, C/C++, Java, and JavaScript as well as web
languages such as HTML, JSON, and XML. He has worked with different database
technologies such as MySQL, PostgreSQL, Oracle SQL, and SQL Server and also with
different caching systems and search engines.

He has worked as an IT consultant in the banking field for a year, and built a
recommendation system (data mining and text mining) as a research assistant
at INESC (Technology and Science-Associated Laboratory) for a period of 1 year.
Finally, he focused on web projects as a technical lead at Rocket Internet AG, for
which he built scalable systems for FoodPanda, CupoNation, Camudi, and Lamudi.
Due to his experience, he has specialized in project management and product
development based on an e-commerce area. For more information, take a look
at his LinkedIn account at https://www.linkedin.com/in/pedrombmorgado.

https://www.linkedin.com/in/pedrombmorgado

Mani Nilchiani is a developer, an artist, and a teacher based in Brooklyn, New
York. He holds an MFA degree in Design and Technology from Parsons The New
School for Design. He is a frontend engineer at The Daily Beast where he focuses on
UI Development, API design, integration, and architecture, and works as an adjunct
faculty at Parsons The New School for Design, where he teaches a graduate-level
curriculum of JavaScript development and design patterns. As a digital artist, he
approaches code as an expressive medium to create interactive, site-specific, and
generative works of art.

www.PacktPub.com

Support files, eBooks, discount offers, and more
For support files and downloads related to your book, please visit www.PacktPub.com.

Did you know that Packt offers eBook versions of every book published, with PDF and
ePub files available? You can upgrade to the eBook version at www.PacktPub.com and
as a print book customer, you are entitled to a discount on the eBook copy. Get in touch
with us at service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles,
sign up for a range of free newsletters, and receive exclusive discounts and offers
on Packt books and eBooks.

TM

http://PacktLib.PacktPub.com

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital
book library. Here, you can search, access, and read Packt's entire library of books.

Why subscribe?
•	 Fully searchable across every book published by Packt
•	 Copy and paste, print, and bookmark content
•	 On demand and accessible via a web browser

Free access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view 9 entirely free books. Simply use your login credentials for
immediate access.

www.PacktPub.com
www.PacktPub.com
www.PacktPub.com
http://PacktLib.PacktPub.com
www.PacktPub.com

To my wife, Melissa, and children, Oliver and Sebastian, who have been with me
every step of the way. Without their support, I would be but half a person.

Table of Contents
Preface	 1
Chapter 1: Designing for Fun and Profit	 7

The road to JavaScript	 7
The early days	 8
A pause	 10
The way of Gmail	 10
JavaScript everywhere	 13

What is a design pattern?	 16
Antipatterns	 18
Summary	 20

Part 1: Classical Design Patterns

Chapter 2: Organizing Code	 23
Chunks of code	 23
What's the matter with global scope anyway?	 25
Objects in JavaScript	 27
Build me a prototype	 31
Inheritance	 34
Modules	 36
ECMAScript 6 classes and modules	 40
Best practices and troubleshooting	 41
Summary	 41

Chapter 3: Creational Patterns	 43
Abstract Factory	 44

Implementation	 49
Builder	 51

Implementation	 52

Table of Contents

[ii]

Factory Method	 55
Implementation	 55

Singleton	 58
Implementation	 59
Disadvantages	 60

Prototype	 60
Implementation	 61

Hints and tips	 62
Summary	 63

Chapter 4: Structural Patterns	 65
Adapter	 65

Implementation	 67
Bridge	 69

Implementation	 71
Composite	 74

An example	 75
Implementation	 76

Decorator	 78
Implementation	 79

Façade	 80
Implementation	 81

Flyweight	 83
Implementation	 83

Proxy	 85
Implementation	 86

Hints and tips	 87
Summary	 87

Chapter 5: Behavioral Patterns	 89
Chain of responsibility	 90

Implementation	 91
Command	 94

The command message	 95
The invoker	 97
The receiver	 98

Interpreter	 99
An example	 99
Implementation	 100

Iterator	 101
Implementation	 101
ECMAScript 6 iterators	 103

Table of Contents

[iii]

Mediator	 103
Implementation	 104

Memento	 105
Implementation	 106

Observer	 109
Implementation	 110

State	 112
Implementation	 113

Strategy	 116
Implementation	 117

Template method	 119
Implementation	 121

Visitor	 123
Hints and tips	 128
Summary	 128

Part 2: Other Patterns

Chapter 6: Functional Programming	 131
Functional functions are side-effect free	 132
Function passing	 132

Implementation	 134
Filters and pipes	 136

Implementation	 137
Accumulators	 139

Implementation	 140
Memoization	 141

Implementation	 142
Immutability	 144
Lazy instantiation	 145

Implementation	 145
Hints and tips	 147
Summary	 148

Chapter 7: Model View Patterns	 149
First, some history	 150
Model View Controller	 150

The MVC code	 155
Model View Presenter	 160

The MVP code	 161

Table of Contents

[iv]

Model View ViewModel	 164
The MVVM code	 165
A better way to transfer changes between the model and the view	 167
Observing view changes	 169

Hints and tips	 170
Summary	 170

Chapter 8: Web Patterns	 171
Sending JavaScript	 171

Combining files	 172
Minification	 175
Content delivery networks	 176

Plugins	 177
jQuery	 177
d3	 179

Doing two things at once – multithreading	 182
The circuit breaker pattern	 185

Back-off	 186
Degraded application behavior	 187

The promise pattern	 188
Hints and tips	 190
Summary	 190

Chapter 9: Messaging Patterns	 191
What's a message anyway?	 192

Commands	 193
Events	 194

Request-reply	 196
Publish-subscribe	 199

Fan out and fan in	 202
Dead-letter queues	 205

Message replay	 207
Pipes and filters	 208
Versioning messages	 209

Hints and tips	 210
Summary	 211

Chapter 10: Patterns for Testing	 213
The testing pyramid	 214
Test in the small with unit tests	 214
Arrange-Act-Assert	 216

Asserts	 217

Table of Contents

[v]

Fake objects	 218
Test spies	 219
Stub	 220
Mock	 222

Monkey patching	 223
Interacting with the user interface	 224

Browser testing	 224
Faking the DOM	 225
Wrapping the manipulation	 226

Build and test tools	 227
Hints and tips	 227
Summary	 228

Chapter 11: Advanced Patterns	 229
Dependency injection	 229
Live postprocessing	 233
Aspect-oriented programming	 234
Macros	 238
Hints and tips	 239
Summary	 240

Chapter 12: ES6 Solutions Today	 241
TypeScript	 241

The class syntax	 242
The module syntax	 243
Arrow functions	 244
Typing	 246

Traceur	 248
Classes	 249
Default parameters	 250
Template literals	 251
Block bindings with let	 252
Async	 254
Conclusion	 255

Hints and tips	 255
Summary	 256

Appendix: Conclusion	 257
Index	 261

Preface
JavaScript is starting to become one of the most popular languages in the
world. However, its history as a bit of a toy language, means that developers
are tempted to ignore good design. Design patterns are a great tool to suggest
some well-tried solutions.

What this book covers
This book is divided into two main parts, each of which contains a number of
chapters. The first part of the book, which I'm calling Part 1, covers the classical
design patterns, which are found in the GoF book. Part 2 looks at patterns, which are
either not covered in the GoF book or the ones that are more specific to JavaScript.

Chapter 1, Designing for Fun and Profit, provides an introduction to what design
patterns are and why we are interested in using design patterns. We will also talk
about the history of JavaScript to give a historical context.

Chapter 2, Organizing Code, explains how to create the classical structures used
to organize code: namespaces or modules and classes as JavaScript lack these
constructs as first class citizens.

Chapter 3, Creational Patterns, covers the creational patterns outlined in the Gang of
Four book. We'll discuss how these patterns apply to JavaScript, as opposed to the
languages which were popular at the time when the Gang of Four wrote their book.

Chapter 4, Structural Patterns, examines the structural patterns from the Gang of Four
book following on our look at creational patterns.

Chapter 5, Behavioral Patterns, covers the final set of patterns from the Gang of
Four book that we'll examine. These patterns govern different ways to link
classes together.

Preface

[2]

Chapter 6, Functional Programming, explains some of the patterns which can be found
in functional programming languages. We'll look at how these patterns can be used
in JavaScript to improve code.

Chapter 7, Model View Patterns, examines the confusing variety of different
patterns to create single-page applications. We'll provide clarity and look at
how to use libraries which use each of the existing patterns, as well as create
their own lightweight framework.

Chapter 8, Web Patterns, covers a number of patterns which have specific applicability
to web applications. We'll also look at some patterns around deploying code to
remote runtimes such as the browser.

Chapter 9, Messaging Patterns, explains messaging which is a powerful technique
to communicate inside, and even between, applications. We'll also look at some
common structures around messaging and discuss why messaging is so useful.

Chapter 10, Patterns for Testing, focuses on some patterns which make for easier
testing, giving you more confidence that your application is working as it should.

Chapter 11, Advanced Patterns, includes some patterns, such as aspect-oriented
programming, that are rarely applied in JavaScript. We'll look at how these
patterns can be applied in JavaScript and discuss if we should apply them.

Chapter 12, ES6 Solutions Today, discusses some of the tools available to allow you
to use features from future versions of JavaScript today. We'll examine Microsoft's
TypeScript as well as Traceur.

Appendix, Conclusion, covers what you have learned, in general, in the book, and you
will be reminded of the goal of using patterns.

What you need for this book
There is no specialized software needed for this book. JavaScript runs on all modern
browsers. There are standalone JavaScript engines written in C++ (V8) and Java
(Rhino), and these are used to power all sorts of tools such as Node.js, CouchDB,
and even Elasticsearch. These patterns can be applied to any of these technologies.

Preface

[3]

Who this book is for
The intended audience is developers who have some experience with JavaScript,
but not necessarily with entire applications written in JavaScript. Also, developers
who are interested in creating easily maintainable applications that can grow
and change with need.

Conventions
In this book, you will find a number of styles of text that distinguish between
different kinds of information. Here are some examples of these styles, and an
explanation of their meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows:
"The next item of interest is that we need to make use of the this qualifier to address
the greeting variable from within the doThings function."

A block of code is set as follows:

var Wall = (function () {
 function Wall() {
 console.log("Wall constructed");
 }
 return Wall;
})();
Structures.Wall = Wall;

When we wish to draw your attention to a particular part of a code block, the
relevant lines or items are set in bold:

var Wall = (function () {
 function Wall() {
 console.log("Wall constructed");
 }
 return Wall;
})();
Structures.Wall = Wall;

Any command-line input or output is written as follows:

npm install –g traceur

Preface

[4]

New terms and important words are shown in bold. Words that you see on
the screen, in menus or dialog boxes for example, appear in the text like this:
"clicking the Next button moves you to the next screen".

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or disliked. Reader feedback is important for us as it helps
us develop titles that you really get the most out of.

To send us general feedback, simply e-mail feedback@packtpub.com, and mention
the book's title in the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide at www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Downloading the example code
You can download the example code files from your account at http://www.
packtpub.com for all the Packt Publishing books you have purchased. If you
purchased this book elsewhere, you can visit http://www.packtpub.com/support
and register to have the files e-mailed directly to you.

You can also download the example code files for this book from GitHub at
https://github.com/stimms/JavaScriptPatterns.

Preface

[5]

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes do
happen. If you find a mistake in one of our books—maybe a mistake in the text or the
code—we would be grateful if you could report this to us. By doing so, you can save
other readers from frustration and help us improve subsequent versions of this book.
If you find any errata, please report them by visiting http://www.packtpub.com/
submit-errata, selecting your book, clicking on the Errata Submission Form link,
and entering the details of your errata. Once your errata are verified, your submission
will be accepted and the errata will be uploaded to our website or added to any list of
existing errata, under the Errata section of that title.

To view the previously submitted errata, go to https://www.packtpub.com/books/
content/support and enter the name of the book in the search field. The required
information will appear under the Errata section.

Piracy
Piracy of copyrighted material on the Internet is an ongoing problem across all
media. At Packt, we take the protection of our copyright and licenses very seriously.
If you come across any illegal copies of our works in any form on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors and our ability to bring you
valuable content.

Questions
If you have a problem with any aspect of this book, you can contact us at
questions@packtpub.com, and we will do our best to address the problem.

mailto:copyright@packtpub.com

Designing for Fun and Profit
JavaScript is an evolving language that has come a long way from its inception.
Possibly more than any other programming language, it has grown and changed
with the growth of the World Wide Web. The exploration of how JavaScript can be
written using good design principles is the topic of this book. The preface of this
book contains a detailed explanation of the sections of the book.

In the first half of this chapter, we'll explore the history of JavaScript and how it came
to be the important language that it is today. As JavaScript has evolved and grown in
importance, the need to apply rigorous methods to its construction has also grown.
Design patterns can be a very useful tool to assist in developing maintainable code.
The second half of the chapter will be dedicated to the theory of design patterns.
Finally, we'll look briefly at antipatterns.

The topics covered in this chapter are:

•	 The history of JavaScript
•	 What is a design pattern?
•	 Antipatterns

The road to JavaScript
We'll never know how language first came into being. Did it slowly evolve from
a series of grunts and guttural sounds made during grooming rituals? Perhaps it
developed to allow mothers and their offsprings to communicate. Both of these are
theories, all but impossible to prove. Nobody was around to observe our ancestors
during that important period. In fact, the general lack of empirical evidence lead
the Linguistic Society of Paris to ban further discussions on the topic, seeing it as
unsuitable for serious study.

Designing for Fun and Profit

[8]

The early days
Fortunately, programming languages have developed in recent history and we've
been able to watch them grow and change. JavaScript has one of the more interesting
histories in modern programming languages. During what must have been an
absolutely frantic 10 days in May of 1995, a programmer at Netscape wrote the
foundation for what would grow up to be modern JavaScript.

At that time, Netscape was involved in the first of the browser wars with
Microsoft. The vision for Netscape was far grander than simply developing a
browser. They wanted to create an entire distributed operating system making
use of Sun Microsystems' recently released Java programming language. Java was
a much more modern alternative to C++ that Microsoft was pushing. However,
Netscape didn't have an answer to Visual Basic. Visual Basic was an easier to use
programming language, which was targeted at developers with less experience.
It avoided some of the difficulties around memory management which makes C
and C++ notoriously difficult to program. Visual Basic also avoided strict typing
and overall allowed more leeway.

Brendan Eich was tasked with developing Netscape repartee to VB. The project was
initially codenamed Mocha but was renamed LiveScript before Netscape 2.0 beta
was released. By the time the full release was available, Mocha/LiveScript had been
renamed JavaScript to tie it into the Java applet integration. Java applets were small
applications that ran on the browser. They had a different security model from the
browser itself and so were limited in how they could interact with both the browser
and the local system. It is quite rare to see applets these days, as much of their
functionality has become part of the browser. Java was riding a popular wave
at that time and any relationship to it was played up.

The name has caused much confusion over the years. JavaScript is a very
different language from Java. JavaScript is an interpreted language with loose
typing that runs primarily on the browser. Java is a language that is compiled to
bytecode, which is then executed on the Java Virtual Machine. It has applicability in
numerous scenarios from the browser (through the use of Java applets) to the server
(Tomcat, JBoss, and so on) to full desktop applications (Eclipse, OpenOffice). In most
laypeople's minds, the confusion remains.

Chapter 1

[9]

JavaScript turned out to be really quite useful for interacting with the web browser.
It was not long until Microsoft had also adopted JavaScript in their Internet Explorer
to complement VBScript. The Microsoft implementation was known as JScript.

By late 1996, it was clear that JavaScript was going to be the winning web language
for the near future. In order to limit the amount of language deviation between
implementations, Sun and Netscape began working with the European Computer
Manufacturers Association (ECMA) to develop a standard to which future versions
of JavaScript would need to comply. The standard was released very quickly (very
quickly in terms of how rapidly standard organizations move) in July of 1997. On
the off chance that you have not seen enough names yet for JavaScript, the standard
version was called ECMAScript, a name which still persists in some circles.

Unfortunately, the standard only specified the very core parts of JavaScript. With the
browser wars raging, it was apparent that any vendor that stuck with only the basic
implementation of JavaScript would quickly be left behind. At the same time, there
was much work going on to establish a standard document object model (DOM) for
browsers. The DOM was, in effect, an API for a web page that could be manipulated
using JavaScript.

For many years, every JavaScript script would start by attempting to determine the
browser on which it was running. This would dictate how to address elements in
the DOM, as there were dramatic deviations between each browser. The spaghetti
of code that was required to perform simple actions was legendary. I remember
reading a year-long 20 part series on developing Dynamic HTML (DHTML) drop-
down menus such that they would work on both Internet Explorer and Netscape
Navigator. The same functionality can now be achieved with pure CSS without even
having to resort to JavaScript.

DHTML was a popular term in the late 1990s and early 2000s.
It really referred to any web page that had some sort of dynamic
content that was executed on the client side. It has fallen out of use as
the popularity of JavaScript has made almost every page a dynamic one.

Designing for Fun and Profit

[10]

Fortunately, the efforts to standardize JavaScript continued behind the scenes.
Versions 2 and 3 of ECMAScript were released in 1998 and 1999. It looked like there
might finally be some agreement between the various parties interested in JavaScript.
Work began in early 2000 on ECMAScript 4, which was to be a major new release.

A pause
Then, disaster struck! The various groups involved in the ECMAScript effort had
major disagreements about the direction JavaScript was to take. Microsoft seemed to
have lost interest in the standardization effort. It was somewhat understandable as
it was around that time that Netscape self-destructed and Internet Explorer became
the de facto standard. Microsoft implemented parts of ECMAScript 4 but not all of it.
Others implemented more fully featured support but, without the market leader on
board, developers didn't bother using them.

Years passed without consensus and without a new release of ECMAScript.
However, as frequently happens, the evolution of the Internet could not be
stopped by a lack of agreement between major players. Libraries such as jQuery,
Prototype, Dojo, and MooTools papered over the major differences in browsers,
making cross-browser development far easier. At the same time, the amount of
JavaScript used in applications increased dramatically.

The way of Gmail
The turning point was, perhaps, the release of Google's Gmail application in 2004.
Although XMLHttpRequest, the technology behind Asynchronous JavaScript and
XML (AJAX), had been around for about 5 years when Gmail was released, it had
not been well used. When Gmail was released, I was totally knocked off my feet by
how smooth it was. We've grown used to applications that avoid full reloads, but
at that time it was a revolution. To make applications like that work, a great deal of
JavaScript is needed.

AJAX is a method by which small chunks of data are retrieved
from the server by a client instead of refreshing the entire page.
The technology allows for more interactive pages that avoid the
jolt of full page reloads.

