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Preface
Test-driven development has been around for a while and many people have still not 
adopted it. The reason behind this is that TDD is difficult to master. Even though  
the theory is very easy to grasp, it takes a lot of practice to become really proficient  
with it.

Authors of this book have been practicing TDD for years and will try to pass on 
their experience to you. They are developers and believe that the best way to learn 
some coding practice is through code and constant practice. This book follows the 
same philosophy. We'll explain all the TDD concepts through exercises. This will 
be a journey through the TDD best practices applied to Java development. At the 
end of it, you will earn a TDD black belt and have one more tool in your software 
craftsmanship tool belt.

What this book covers
Chapter 1, Why Should I Care for Test-driven Development?, spells out our goal of 
becoming a Java developer with a TDD black belt. In order to know where we're 
going, we'll have to discuss and find answers to some questions that will define  
our voyage.

Chapter 2, Tools, Frameworks, and Environments, will compare and set up all the tools, 
frameworks and environments that will be used throughout this book. Each of them 
will be accompanied with code that demonstrates their strengths and weaknesses.

Chapter 3, Red-Green-Refactor – from Failure through Success until Perfection, will help 
us develop a Tic-Tac-Toe game using the red-green-refactor technique, which is the 
pillar of TDD. We'll write a test and see it fail; we'll write a code that implements that 
test, run all the tests and see them succeed, and finally, we'll refactor the code and try 
to make it better.
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Chapter 4, Unit Testing – Focusing on What You Do and Not on What Has Been Done,  
shows that to demonstrate the power of TDD applied to unit testing, we'll need  
to develop a Remote Controlled Ship. We'll learn what unit testing really is, how  
it differs from functional and integration tests, and how it can be combined with  
test-driven development.

Chapter 5, Design – If It's Not Testable, It's Not Designed Well, will help us develop a 
Connect4 game without any tests and try to write tests at the end. This will give us 
insights into the difficulties we are facing when applications are not developed in a 
way that they can be tested easily.

Chapter 6, Mocking – Removing External Dependencies, shows how TDD is about speed. 
We want to quickly demonstrate some idea/concept. We'll continue developing our 
Tic-Tac-Toe game by adding MongoDB as our data storage. None of our tests will 
actually use MongoDB since all communications to it will be mocked.

Chapter 7, BDD – Working Together with the Whole Team, discusses developing a Book 
Store application by using the BDD approach. We'll define the acceptance criteria in 
the BDD format, carry out the implementation of each feature separately, confirm 
that it is working correctly by running BDD scenarios, and if required, refactor the 
code to accomplish the desired level of quality.

Chapter 8, Refactoring Legacy Code – Making it Young Again, will help us refactor an 
existing application. The process will start with creation of test coverage for the 
existing code and from there on we'll be able to start refactoring until both the  
tests and the code meet our expectations.

Chapter 9, Feature Toggles – Deploying Partially Done Features to Production, will 
show us how to develop a Fibonacci calculator and use feature toggles to hide 
functionalities that are not fully finished or that, for business reasons, should not  
yet be available to our users. 

Chapter 10, Putting It All Together, will walk you through all the TDD best practices in 
detail and refresh the knowledge and experience you gained throughout this book.

What you need for this book
The exercises in this book require readers to have a 64 bit computer. Installation 
instructions for all required software is provided throughout the book.
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Who this book is for
If you're an experienced Java developer and want to implement more effective 
methods of programming systems and applications, then this book is for you.

Conventions
In this book, you will find a number of text styles that distinguish between different 
kinds of information. Here are some examples of these styles and an explanation of 
their meaning.

Code words in text, database table names, folder names, filenames, file extensions, 
pathnames, dummy URLs, user input, and Twitter handles are shown as follows: 
"We can include other contexts through the use of the include directive."

A block of code is set as follows:

public class Friendships {
    private final Map<String, List<String>> friendships = new  
      HashMap<>();

    public void makeFriends(String person1, String person2) {
        addFriend(person1, person2);
        addFriend(person2, person1);
    }

Any command-line input or output is written as follows:

$> vagrant plugin install vagrant-cachier

$> git clone thttps://bitbucket.org/vfarcic/tdd-java-ch02-example- 
  vagrant.git

New terms and important words are shown in bold. Words that you see on  
the screen, for example, in menus or dialog boxes, appear in the text like this:  
"Once we type our search query, we should find and click the Go button."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.
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Reader feedback
Feedback from our readers is always welcome. Let us know what you think about 
this book—what you liked or disliked. Reader feedback is important for us as it  
helps us develop titles that you will really get the most out of.

To send us general feedback, simply e-mail feedback@packtpub.com, and mention 
the book's title in the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing 
or contributing to a book, see our author guide at www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to 
help you to get the most from your purchase.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes 
do happen. If you find a mistake in one of our books—maybe a mistake in the text or 
the code—we would be grateful if you could report this to us. By doing so, you can 
save other readers from frustration and help us improve subsequent versions of this 
book. If you find any errata, please report them by visiting http://www.packtpub.
com/submit-errata, selecting your book, clicking on the Errata Submission Form 
link, and entering the details of your errata. Once your errata are verified, your 
submission will be accepted and the errata will be uploaded to our website or added 
to any list of existing errata under the Errata section of that title.

To view the previously submitted errata, go to https://www.packtpub.com/books/
content/support and enter the name of the book in the search field. The required 
information will appear under the Errata section.

www.packtpub.com/authors
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
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Piracy
Piracy of copyrighted material on the Internet is an ongoing problem across all 
media. At Packt, we take the protection of our copyright and licenses very seriously. 
If you come across any illegal copies of our works in any form on the Internet, please 
provide us with the location address or website name immediately so that we can 
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected  
pirated material.

We appreciate your help in protecting our authors and our ability to bring you 
valuable content.

Questions
If you have a problem with any aspect of this book, you can contact us at 
questions@packtpub.com, and we will do our best to address the problem.
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Why Should I Care for  
Test-driven Development?

This book is written by developers for developers. As such, most of the learning 
will be through code. Each chapter will present one or more TDD practices and 
we'll try to master them by solving katas. In karate, kata is an exercise where you 
repeat a form many times, making little improvements in each. Following the same 
philosophy, we'll be making small, but significant improvements from one chapter to 
the next. You'll learn how to design and code better, reduce time-to-market, produce 
always up-to-date documentation, obtain high code coverage through quality tests, 
and write clean code that works.

Every journey has a start and this one is no exception. Our destination is a Java 
developer with the test-driven development (TDD) black-belt.

In order to know where we're going, we'll have to discuss, and find answers, to  
some questions that will define our voyage. What is TDD? Is it a testing technique, 
or something else? What are the benefits of applying TDD?

The goal of this chapter is to obtain an overview of TDD, to understand what it is 
and to grasp the benefits it provides for its practitioners.

The following topics will be covered in this chapter:

• Understanding TDD
• What is TDD?
• Testing
• Mocking
• Executable documentation
• No debugging
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Why TDD?
You might be working in an agile or waterfall environment. Maybe you have 
well-defined procedures that were battle-tested through years of hard work, or 
maybe you just started your own start-up. No matter what the situation was, you 
likely faced at least one, if not more, of the following pains, problems, or causes for 
unsuccessful delivery:

•	 Part of your team is kept out of the loop during the creation of requirements, 
specifications, or user stories

•	 Most, if not all, of your tests are manual, or you don't have tests at all
•	 Even though you have automated tests, they do not detect real problems
•	 Automated tests are written and executed when it's too late for them to 

provide a real value to the project
•	 There is always something more urgent than dedicating time to testing
•	 Teams are split between testing, development, and functional analysis 

departments, and they are often out of sync
•	 An inability to refactor the code because of the fear that something will  

be broken
•	 The maintenance cost is too high
•	 The time-to-market is too big
•	 Clients do not feel that what was delivered is what they asked for
•	 Documentation is never up to date
•	 You're afraid to deploy to production because the result is unknown
•	 You're often not able to deploy to production because regression tests take 

too long to run
•	 Team is spending too much time trying to figure out what some method  

or a class does

Test-driven development does not magically solve all of these problems. Instead,  
it puts us on the way towards the solution. There is no silver bullet, but if there is  
one development practice that can make a difference on so many levels, that practice 
is TDD.

Test-driven development speeds up the time-to-market, enables easier refactoring, 
helps to create better design, and fosters looser coupling.

On top of the direct benefits, TDD is a prerequisite for many other practices 
(continuous delivery being one of them). Better design, well-written code, faster 
time-to-market, up-to-date documentation, and solid test coverage, are some of  
the results you will accomplish by applying TDD.
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It's not an easy thing to master TDD. Even after learning all the theory and going 
through best practices and anti-patterns, the journey is only just beginning. TDD 
requires time and a lot of practice. It's a long trip that does not stop with this book. 
As a matter a fact, it never truly ends. There are always new ways to become more 
proficient and faster. However, even though the cost is high, the benefits are even 
higher. People who spent enough time with TDD claim that there is no other way  
to develop a software. We are one of them and we're sure that you will be too.

We are strong believers that the best way to learn some coding technique is by coding. 
You won't be able to finish this book by reading it in a metro on the way to work. It's 
not a book that one can read in bed. You'll have to get your hands dirty and code.

In this chapter, we'll go through basics; starting from the next, you'll be learning by 
reading, writing, and running code. We'd like to say that by the time you're finished 
with this book, you'll be an experienced TDD programmer, but this is not true. By 
the end of this book, you'll be comfortable with TDD and you'll have a strong base  
in both theory and practice. The rest is up to you and the experience you'll be 
building by applying it in your day-to-day job.

Understanding TDD
At this time, you are probably saying to yourself "OK, I understand that TDD will 
give me some benefits, but what exactly is test-driven development?" TDD is a 
simple procedure of writing tests before the actual implementation. It's an inversion 
of a traditional approach where testing is performed after the code is written.

Red-green-refactor
Test-driven development is a process that relies on the repetition of a very short 
development cycle. It is based on the test-first concept of extreme programming  
(XP) that encourages simple design with a high level of confidence. The procedure 
that drives this cycle is called red-green-refactor.

The procedure itself is simple and it consists of a few steps that are repeated over 
and over again:

1.	 Write a test.
2.	 Run all tests.
3.	 Write the implementation code.
4.	 Run all tests.
5.	 Refactor.
6.	 Run all tests.
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Since a test is written before the actual implementation, it is supposed to fail. If it 
doesn't, the test is wrong. It describes something that already exists or it was written 
incorrectly. Being in the green state while writing tests is a sign of a false positive. 
Tests like these should be removed or refactored.

While writing tests, we are in the red state. When the implementation of a 
test is finished, all tests should pass and then we will be in the green state.

If the last test failed, implementation is wrong and should be corrected. Either the 
test we just finished is incorrect or the implementation of that test did not meet 
the specification we had set. If any but the last test failed, we broke something and 
changes should be reverted.

When this happens, the natural reaction is to spend as much time as needed to fix 
the code so that all tests are passing. However, this is wrong. If a fix is not done in a 
matter of minutes, the best thing to do is to revert the changes. After all, everything 
worked not long ago. Implementation that broke something is obviously wrong, 
so why not go back to where we started and think again about the correct way to 
implement the test? That way, we wasted minutes on a wrong implementation 
instead of wasting much more time to correct something that was not done right in 
the first place. Existing test coverage (excluding the implementation of the last test) 
should be sacred. We change the existing code through intentional refactoring, not  
as a way to fix recently written code.

Do not make the implementation of the last test final, but provide just 
enough code for this test to pass.

Write the code in any way you want, but do it fast. Once everything is green, we 
have confidence that there is a safety net in the form of tests. From this moment on, 
we can proceed to refactor the code. This means that we are making the code better 
and more optimum without introducing new features. While refactoring is in place, 
all tests should be passing all the time.

If, while refactoring, one of the tests failed, refactor broke an existing functionality 
and, as before, changes should be reverted. Not only that at this stage we are not 
changing any features, but we are also not introducing any new tests. All we're doing 
is making the code better while continuously running all tests to make sure that 
nothing got broken. At the same time, we're proving code correctness and cutting 
down on future maintenance costs.

Once refactoring is finished, the process is repeated. It's an endless loop of a very 
short cycle.
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Speed is the key
Imagine a game of ping pong (or table tennis). The game is very fast; sometimes it is 
hard to even follow the ball when professionals play the game. TDD is very similar. 
TDD veterans tend not to spend more than a minute on either side of the table (test and 
implementation). Write a short test and run all tests (ping), write the implementation 
and run all tests (pong), write another test (ping), write implementation of that test 
(pong), refactor and confirm that all tests are passing (score), and then repeat—ping, 
pong, ping, pong, ping, pong, score, serve again. Do not try to make the perfect code. 
Instead, try to keep the ball rolling until you think that the time is right to  
score (refactor).

Time between switching from tests to implementation (and vice versa) 
should be measured in minutes (if not seconds).

It's not about testing
T in TDD is often misunderstood. Test-driven development is the way we approach 
the design. It is the way to force us to think about the implementation and to what 
the code needs to do before writing it. It is the way to focus on requirements and 
implementation of just one thing at a time—organize your thoughts and better 
structure the code. This does not mean that tests resulting from TDD are useless—it 
is far from that. They are very useful and they allow us to develop with great speed 
without being afraid that something will be broken. This is especially true when 
refactoring takes place. Being able to reorganize the code while having the confidence 
that no functionality is broken is a huge boost to the quality.

The main objective of test-driven development is testable code design 
with tests as a very useful side product.

Testing
Even though the main objective of test-driven development is the approach to code 
design, tests are still a very important aspect of TDD and we should have a clear 
understanding of two major groups of techniques as follows:

•	 Black-box testing
•	 White-box testing
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The black-box testing
Black-box testing (also known as functional testing) treats software under test as 
a black-box without knowing its internals. Tests use software interfaces and try to 
ensure that they work as expected. As long as functionality of interfaces remains 
unchanged, tests should pass even if internals are changed. Tester is aware of  
what the program should do, but does not have the knowledge of how it does it. 
Black-box testing is most commonly used type of testing in traditional organizations 
that have testers as a separate department, especially when they are not proficient in 
coding and have difficulties understanding it. This technique provides an external 
perspective on the software under test.

Some of the advantages of black-box testing are as follows:

•	 Efficient for large segments of code
•	 Code access, understanding the code, and ability to code are not required
•	 Separation between user's and developer's perspectives

Some of the disadvantages of black-box testing are as follows:

•	 Limited coverage, since only a fraction of test scenarios is performed
•	 Inefficient testing due to tester's lack of knowledge about software internals
•	 Blind coverage, since tester has limited knowledge about the application

If tests are driving the development, they are often done in the form of acceptance 
criteria that is later used as a definition of what should be developed.

Automated black-box testing relies on some form of automation such 
as behavior-driven development (BDD).

The white-box testing
White-box testing (also known as clear-box testing, glass-box testing, transparent-box 
testing, and structural testing) looks inside the software that is being tested and uses 
that knowledge as part of the testing process. If, for example, an exception should be 
thrown under certain conditions, a test might want to reproduce those conditions. 
White-box testing requires internal knowledge of the system and programming 
skills. It provides an internal perspective on the software under test.


