

Test-Driven Java Development

Invoke TDD principles for end-to-end application
development with Java

Viktor Farcic

Alex Garcia

BIRMINGHAM - MUMBAI

Test-Driven Java Development

Copyright © 2015 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the authors, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: August 2015

Production reference: 1240815

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78398-742-9

www.packtpub.com

www.packtpub.com

Credits

Authors
Viktor Farcic

Alex Garcia

Reviewers
Muhammad Ali

Jeff Deskins

Alvaro Garcia

Esko Luontola

Commissioning Editor
Julian Ursell

Acquisition Editor
Reshma Raman

Content Development Editor
Divij Kotian

Technical Editors
Manali Gonsalves

Naveenkumar Jain

Copy Editors
Trishya Hajare

Janbal Dharmaraj

Project Coordinator
Neha Bhatnagar

Proofreader
Safis Editing

Indexer
Priya Sane

Production Coordinator
Shantanu N. Zagade

Cover Work
Shantanu N. Zagade

https://epic.packtpub.com/index.php?module=Contacts&action=DetailView&record=4f9553f3-6a9f-d2a0-cd88-5530aa267ac6

About the Authors

Viktor Farcic is a software architect. He has coded using a plethora of languages,
starting with Pascal (yes, he is old), Basic (before it got the Visual prefix), ASP
(before it got the .Net suffix) and moving on to C, C++, Perl, Python, ASP.Net, Visual
Basic, C#, JavaScript, and so on. He has never worked with Fortran. His current
favorites are Scala and JavaScript, even though he works extensively on Java. While
writing this book, he got sidetracked and fell in love with Polymer and GoLang.

His big passions are test-driven development (TDD), behavior-driven development
(BDD), Continuous Integration, Delivery, and Deployment (CI/CD).

He often speaks at community gatherings and conferences and helps different
organizations with his coaching and training sessions. He enjoys constant change
and loves working with teams eager to enhance their software craftsmanship skills.

He loves sharing his experiences on his blog, http://TechnologyConversations.com.

I would like to thank a lot of people who have supported me during
the writing of this book. The people at Everis and Defie (companies
I worked with earlier) provided all the support and encouragement
I needed. The technical reviewers, Alvaro Garcia, Esko Luontola,
Jeff Deskins, and Muhammad Ali, did a great job by constantly
challenging my views, my assumptions, and the quality of the code
featured throughout the examples. Alvaro provided even more help
by writing the Legacy Code chapter. His experience and expertise
in the subject were an invaluable help. The Packt Publishing team
was very forthcoming, professional, and always available to provide
guidance and support. Finally, I'd like to give a special thanks to my
daughter, Sara, and wife, Eva. With weekdays at my job and nights
and weekends dedicated to this book, they had to endure months
without the support and love they deserve. This book is dedicated to
"my girls".

http://TechnologyConversations.com

Alex Garcia started coding in C++ but later moved to Java. He is also interested in
Groovy, Scala, and JavaScript. He has been working as a system administrator and
also as a programmer and consultant.

He states that in the software industry, the final product quality is the key to success.
He truly believes that delivering bad code always means unsatisfied customers.
He is a big fan of Agile practices.

He is always interested in learning new languages, paradigms, and frameworks.
When the computer is turned off, he likes to walk around sunny Barcelona and
likes to practice sports.

I did enjoy writing this book and I want to thank those people
who made this possible. First of all, thanks to the staff at Packt
Publishing for giving me this opportunity and the guidance along
this difficult journey. Thanks to the technical reviewers, Alvaro
Garcia, Esko Luontola, Jeff Deskins, and Muhammad Ali, for the tips
and corrections; they added great value with their comments. Thank
you, Viktor Farcic, for sharing this experience with me. It has been a
pleasure to be your mate during this adventure. And finally, special
thanks to my parents, my brother, and my girlfriend for being there
whenever I need them. This book is dedicated with love to all
of them.

About the Reviewers

Muhammad Ali is a software development expert with extensive experience
in telecommunications and the air and rail transport industries. He holds a master's
degree in the distributed systems course of the year 2006 from the Royal Institute
of technology (KTH), Stockholm, Sweden, and holds a bachelor's honors degree in
computer science from the University of Engineering & Technology Lahore, Pakistan.

He has a passion for software design and development, cloud and big data
test-driven development, and system integration. He has built enterprise
applications using the open source stack for top-tier software vendors and large
government and private organizations worldwide. Ali has settled in Stockholm,
Sweden, and has been providing services to various IT companies within
Sweden and outside Europe.

I would like to thank my parents; my beloved wife; Sana Ali, and my
adorable kids, Hassan and Haniya, for making my life wonderful.

Jeff Deskins has been building commercial websites since 1995. He loves
to turn ideas into working solutions. Lately, he has been building most of his
web applications in the cloud and is continuously learning best practices for
high-performance sites.

Prior to his Internet development career, he worked for 13 years as a television
news photographer. He continues to provide Internet solutions for different
television stations through his website, www.tvstats.com.

I would like to thank my wife for her support and patience through
the many hours of me sitting behind my laptop learning new
technologies. Love you the most!

www.tvstats.com

Alvaro Garcia is a software developer who firmly believes in the eXtreme
Programming methodology. He's embarked on a lifelong learning process and is
now in a symbiotic exchange process with the Barcelona Software Craftsmanship
meet-up, where he is a co-organizer.

Alvaro has been working in the IT industry for product companies, consulting
firms, and on his own since 2005. He occasionally blogs at http://alvarogarcia7.
github.io.

He enjoys reading and reviewing technology books and providing feedback to the
author whenever possible to create the best experience for the final reader.

Esko Luontola has been programming since the beginning of the 21st century.
In 2007, he was bitten by the TDD bug and has been test-infected ever since. Today,
he has tens of projects under his belt using TDD and helps others get started with
it; some of his freely available learning material includes the TDD Tetris Tutorial
exercise and the Let's Code screencasts. He is also fluent in concurrency, distributed
systems, and the deep ends of the JVM platform. In recent years, his interests have
included Continuous Delivery, DevOps, and microservices.

Currently, Esko is working as a software consultant at Nitor Creations. He is the
developer of multiple open source projects such as Retrolambda for back porting
Java 8 code to Java 5-7 and the Jumi Test Runner in order to run tests faster and
more flexibly than JUnit.

http://alvarogarcia7.github.io
http://alvarogarcia7.github.io

www.PacktPub.com

Support files, eBooks, discount offers, and more
For support files and downloads related to your book, please visit www.PacktPub.com.

Did you know that Packt offers eBook versions of every book published, with PDF
and ePub files available? You can upgrade to the eBook version at www.PacktPub.
com and as a print book customer, you are entitled to a discount on the eBook copy.
Get in touch with us at service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign
up for a range of free newsletters and receive exclusive discounts and offers on
Packt books and eBooks.

TM

https://www2.packtpub.com/books/subscription/packtlib

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital
book library. Here, you can search, access, and read Packt's entire library of books.

Why subscribe?
•	 Fully searchable across every book published by Packt
•	 Copy and paste, print, and bookmark content
•	 On demand and accessible via a web browser

Free access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view 9 entirely free books. Simply use your login credentials for
immediate access.

http://www.PacktPub.com
www.PacktPub.com
http://www.PacktPub.com
http://www.PacktPub.com
mailto:service@packtpub.com
http://www.PacktPub.com
https://www2.packtpub.com/books/subscription/packtlib
http://www.packtpub.com/

[i]

Table of Contents
Preface	 ix
Chapter 1: Why Should I Care for Test-driven Development?	 1

Why TDD?	 2
Understanding TDD	 3
Red-green-refactor	 3
Speed is the key	 5
It's not about testing	 5

Testing	 5
The black-box testing	 6
The white-box testing	 6
The difference between quality checking and quality assurance	 7
Better tests	 8

Mocking	 8
Executable documentation	 9
No debugging	 11
Summary	 12

Chapter 2: Tools, Frameworks, and Environments	 13
Git	 14
Virtual machines	 14

Vagrant	 14
Docker	 17

Build tools	 18
The integrated development environment	 20

The IDEA demo project	 20
Unit testing frameworks	 22

JUnit	 23
TestNG	 25

Table of Contents

[ii]

Hamcrest and AssertJ	 27
Hamcrest	 27
AssertJ	 29

Code coverage tools	 29
JaCoCo	 30

Mocking frameworks	 31
Mockito	 34
EasyMock	 35
Extra power for mocks	 37

User interface testing	 38
Web testing frameworks	 38
Selenium	 38
Selenide	 40

The behavior-driven development	 41
JBehave	 42
Cucumber	 44

Summary	 46
Chapter 3: Red-Green-Refactor – from Failure through
Success until Perfection	 47

Setting up the environment with Gradle and JUnit	 48
Setting up Gradle/Java project in IntelliJ IDEA	 48

The red-green-refactor process	 51
Write a test	 51
Run all the tests and confirm that the last one is failing	 52
Write the implementation code	 52
Run all the tests	 52
Refactor	 53
Repeat	 53

The Tic-Tac-Toe game requirements	 53
Developing Tic-Tac-Toe	 54

Requirement 1	 54
Test	 57
Implementation	 58
Test	 58
Implementation	 59
Test	 59
Implementation	 60
Refactoring	 60

Requirement 2	 61
Test	 62
Implementation	 62
Test	 63

Table of Contents

[iii]

Implementation	 63
Test	 63

Requirement 3	 64
Test	 64
Implementation	 65
Test	 65
Implementation	 65
Refactoring	 66
Test	 67
Implementation	 67
Test	 68
Implementation	 68
Test	 69
Implementation	 69
Refactoring	 70

Requirement 4	 70
Test	 71
Implementation	 71
Refactoring	 72

Code coverage	 73
More exercises	 74
Summary	 75

Chapter 4: Unit Testing – Focusing on What You Do and
Not on What Has Been Done	 77

Unit testing	 78
What is unit testing?	 78
Why unit testing?	 79
Code refactoring	 79
Why not use unit tests exclusively?	 79

Unit testing with TDD	 81
TestNG	 82

The @Test annotation	 82
The @BeforeSuite, @BeforeTest, @BeforeGroups, @AfterGroups,
@AfterTest, and @AfterSuite annotations	 83
The @BeforeClass and @AfterClass annotations	 83
The @BeforeMethod and @AfterMethod annotations	 84
The @Test(enable = false) annotation argument	 84
The @Test(expectedExceptions = SomeClass.class) annotation argument	 84
TestNG vs JUnit summary	 84

Remote controlled ship requirements	 85
Developing the remote-controlled ship	 85

Project setup	 86
Helper classes	 88

Table of Contents

[iv]

Requirement 1	 89
Specification	 90
Specification implementation	 90
Refactoring	 91

Requirement 2	 91
Specification	 92
Specification implementation	 94
Specification	 94
Specification implementation	 94

Requirement 3	 94
Specification	 95
Specification implementation	 95
Specification	 95
Specification implementation	 95

Requirement 4	 96
Specification	 96
Specification implementation	 96
Specification	 98
Specification implementation	 98

Requirement 5	 99
Specification	 99
Specification implementation	 100
Refactoring	 100
Specification	 102
Specification implementation	 102

Requirement 6	 103
Summary	 104

Chapter 5: Design – If It's Not Testable, It's Not Designed Well	 105
Why should we care about design?	 106

Design principles	 106
You Ain't Gonna Need It	 106
Don't Repeat Yourself	 106
Keep It Simple, Stupid	 107
Occam's Razor	 107
SOLID	 107

Connect4	 108
Requirements	 108

Test the last implementation of Connect4	 109
Requirement 1	 110
Requirement 2	 111
Requirement 3	 112
Requirement 4	 113
Requirement 5	 114
Requirement 6	 115

Table of Contents

[v]

Requirement 7	 116
Requirement 8	 117

The TDD implementation of Connect4	 118
Hamcrest	 118
Requirement 1	 119

Tests	 119
Code	 120

Requirement 2	 120
Tests	 120
Code	 122

Requirement 3	 123
Tests	 123
Code	 123

Requirement 4	 124
Tests	 124
Code	 125

Requirement 5	 126
Tests	 126
Code	 127

Requirement 6	 127
Tests	 127
Code	 127

Requirement 7	 128
Tests	 128
Code	 129

Requirement 8	 129
Tests	 129
Code	 130

Summary	 132
Chapter 6: Mocking – Removing External Dependencies	 133

Mocking	 134
Why mocks?	 135
Terminology	 135
Mock objects	 136

Mockito	 137
The Tic-Tac-Toe v2 requirements	 137
Developing Tic-Tac-Toe v2	 138

Requirement 1	 138
Specification and specification implementation	 139
Specification	 139
Specification implementation	 140
Specification	 140
Implementation	 141
Refactoring	 141

Table of Contents

[vi]

Specification	 142
Specification implementation	 145
Specification	 147
Specification implementation	 147
Refactoring	 147
Specification	 148
Specification implementation	 149
Specification	 149
Specification implementation	 150
Specification	 150
Specification implementation	 150
Specification	 150
Specification implementation	 151

Requirement 2	 151
Specification	 151
Specification implementation	 152
Specification refactoring	 152
Specification	 153
Specification implementation	 154
Specification	 155
Specification implementation	 156
Specification	 156
Specification implementation	 157
Exercises	 157

Integration tests	 158
Tests separation	 158
The integration test	 159

Summary	 162
Chapter 7: BDD – Working Together with the Whole Team	 163

Different specifications	 164
Documentation	 164
Documentation for coders	 165
Documentation for non-coders	 166

Behavior-driven development	 167
Narrative	 167
Scenarios	 169

The Books Store BDD story	 170
JBehave	 174

JBehave runner	 174
Pending steps	 176
Selenium and Selenide	 178
JBehave steps	 179
Final validation	 186

Summary	 188

Table of Contents

[vii]

Chapter 8: Refactoring Legacy Code – Making it Young Again	 189
Legacy code	 190

Legacy code example	 190
Other ways to recognize legacy code	 194
A lack of dependency injection	 195
The legacy code change algorithm	 196
Applying the legacy code change algorithm	 196

The Kata exercise	 201
Legacy Kata	 201
Description	 201
Technical comments	 202
Adding a new feature	 202
Black-box or spike testing	 202
Preliminary investigation	 203

How to find candidates for refactoring	 205
Introducing the new feature	 206

Applying the legacy code algorithm	 207
Writing end-to-end test cases	 207
Automating the test cases	 210
Injecting the BookRepository dependency	 213

Extract and override call	 213
Adding a new feature	 216

Removing the primitive obsession with status as Int	 218
Summary	 222

Chapter 9: Feature Toggles – Deploying Partially Done
Features to Production	 223

Continuous Integration, Delivery, and Deployment	 224
Feature Toggles	 226
A Feature Toggle example	 227

Implementing the Fibonacci service	 231
Working with the template engine	 235

Summary	 239
Chapter 10: Putting It All Together	 241

TDD in a nutshell	 241
Best practices	 242

Naming conventions	 243
Processes	 245
Development practices	 247
Tools	 251

This is just the beginning	 252
This does not have to be the end	 252

[ix]

Preface
Test-driven development has been around for a while and many people have still not
adopted it. The reason behind this is that TDD is difficult to master. Even though
the theory is very easy to grasp, it takes a lot of practice to become really proficient
with it.

Authors of this book have been practicing TDD for years and will try to pass on
their experience to you. They are developers and believe that the best way to learn
some coding practice is through code and constant practice. This book follows the
same philosophy. We'll explain all the TDD concepts through exercises. This will
be a journey through the TDD best practices applied to Java development. At the
end of it, you will earn a TDD black belt and have one more tool in your software
craftsmanship tool belt.

What this book covers
Chapter 1, Why Should I Care for Test-driven Development?, spells out our goal of
becoming a Java developer with a TDD black belt. In order to know where we're
going, we'll have to discuss and find answers to some questions that will define
our voyage.

Chapter 2, Tools, Frameworks, and Environments, will compare and set up all the tools,
frameworks and environments that will be used throughout this book. Each of them
will be accompanied with code that demonstrates their strengths and weaknesses.

Chapter 3, Red-Green-Refactor – from Failure through Success until Perfection, will help
us develop a Tic-Tac-Toe game using the red-green-refactor technique, which is the
pillar of TDD. We'll write a test and see it fail; we'll write a code that implements that
test, run all the tests and see them succeed, and finally, we'll refactor the code and try
to make it better.

Preface

[x]

Chapter 4, Unit Testing – Focusing on What You Do and Not on What Has Been Done,
shows that to demonstrate the power of TDD applied to unit testing, we'll need
to develop a Remote Controlled Ship. We'll learn what unit testing really is, how
it differs from functional and integration tests, and how it can be combined with
test-driven development.

Chapter 5, Design – If It's Not Testable, It's Not Designed Well, will help us develop a
Connect4 game without any tests and try to write tests at the end. This will give us
insights into the difficulties we are facing when applications are not developed in a
way that they can be tested easily.

Chapter 6, Mocking – Removing External Dependencies, shows how TDD is about speed.
We want to quickly demonstrate some idea/concept. We'll continue developing our
Tic-Tac-Toe game by adding MongoDB as our data storage. None of our tests will
actually use MongoDB since all communications to it will be mocked.

Chapter 7, BDD – Working Together with the Whole Team, discusses developing a Book
Store application by using the BDD approach. We'll define the acceptance criteria in
the BDD format, carry out the implementation of each feature separately, confirm
that it is working correctly by running BDD scenarios, and if required, refactor the
code to accomplish the desired level of quality.

Chapter 8, Refactoring Legacy Code – Making it Young Again, will help us refactor an
existing application. The process will start with creation of test coverage for the
existing code and from there on we'll be able to start refactoring until both the
tests and the code meet our expectations.

Chapter 9, Feature Toggles – Deploying Partially Done Features to Production, will
show us how to develop a Fibonacci calculator and use feature toggles to hide
functionalities that are not fully finished or that, for business reasons, should not
yet be available to our users.

Chapter 10, Putting It All Together, will walk you through all the TDD best practices in
detail and refresh the knowledge and experience you gained throughout this book.

What you need for this book
The exercises in this book require readers to have a 64 bit computer. Installation
instructions for all required software is provided throughout the book.

Preface

[xi]

Who this book is for
If you're an experienced Java developer and want to implement more effective
methods of programming systems and applications, then this book is for you.

Conventions
In this book, you will find a number of text styles that distinguish between different
kinds of information. Here are some examples of these styles and an explanation of
their meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows:
"We can include other contexts through the use of the include directive."

A block of code is set as follows:

public class Friendships {
 private final Map<String, List<String>> friendships = new
 HashMap<>();

 public void makeFriends(String person1, String person2) {
 addFriend(person1, person2);
 addFriend(person2, person1);
 }

Any command-line input or output is written as follows:

$> vagrant plugin install vagrant-cachier

$> git clone thttps://bitbucket.org/vfarcic/tdd-java-ch02-example-
 vagrant.git

New terms and important words are shown in bold. Words that you see on
the screen, for example, in menus or dialog boxes, appear in the text like this:
"Once we type our search query, we should find and click the Go button."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Preface

[xii]

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or disliked. Reader feedback is important for us as it
helps us develop titles that you will really get the most out of.

To send us general feedback, simply e-mail feedback@packtpub.com, and mention
the book's title in the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide at www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in the text or
the code—we would be grateful if you could report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
book. If you find any errata, please report them by visiting http://www.packtpub.
com/submit-errata, selecting your book, clicking on the Errata Submission Form
link, and entering the details of your errata. Once your errata are verified, your
submission will be accepted and the errata will be uploaded to our website or added
to any list of existing errata under the Errata section of that title.

To view the previously submitted errata, go to https://www.packtpub.com/books/
content/support and enter the name of the book in the search field. The required
information will appear under the Errata section.

www.packtpub.com/authors
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support

Preface

[xiii]

Piracy
Piracy of copyrighted material on the Internet is an ongoing problem across all
media. At Packt, we take the protection of our copyright and licenses very seriously.
If you come across any illegal copies of our works in any form on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors and our ability to bring you
valuable content.

Questions
If you have a problem with any aspect of this book, you can contact us at
questions@packtpub.com, and we will do our best to address the problem.

[1]

Why Should I Care for
Test-driven Development?

This book is written by developers for developers. As such, most of the learning
will be through code. Each chapter will present one or more TDD practices and
we'll try to master them by solving katas. In karate, kata is an exercise where you
repeat a form many times, making little improvements in each. Following the same
philosophy, we'll be making small, but significant improvements from one chapter to
the next. You'll learn how to design and code better, reduce time-to-market, produce
always up-to-date documentation, obtain high code coverage through quality tests,
and write clean code that works.

Every journey has a start and this one is no exception. Our destination is a Java
developer with the test-driven development (TDD) black-belt.

In order to know where we're going, we'll have to discuss, and find answers, to
some questions that will define our voyage. What is TDD? Is it a testing technique,
or something else? What are the benefits of applying TDD?

The goal of this chapter is to obtain an overview of TDD, to understand what it is
and to grasp the benefits it provides for its practitioners.

The following topics will be covered in this chapter:

• Understanding TDD
• What is TDD?
• Testing
• Mocking
• Executable documentation
• No debugging

Why Should I Care for Test-driven Development?

[2]

Why TDD?
You might be working in an agile or waterfall environment. Maybe you have
well-defined procedures that were battle-tested through years of hard work, or
maybe you just started your own start-up. No matter what the situation was, you
likely faced at least one, if not more, of the following pains, problems, or causes for
unsuccessful delivery:

•	 Part of your team is kept out of the loop during the creation of requirements,
specifications, or user stories

•	 Most, if not all, of your tests are manual, or you don't have tests at all
•	 Even though you have automated tests, they do not detect real problems
•	 Automated tests are written and executed when it's too late for them to

provide a real value to the project
•	 There is always something more urgent than dedicating time to testing
•	 Teams are split between testing, development, and functional analysis

departments, and they are often out of sync
•	 An inability to refactor the code because of the fear that something will

be broken
•	 The maintenance cost is too high
•	 The time-to-market is too big
•	 Clients do not feel that what was delivered is what they asked for
•	 Documentation is never up to date
•	 You're afraid to deploy to production because the result is unknown
•	 You're often not able to deploy to production because regression tests take

too long to run
•	 Team is spending too much time trying to figure out what some method

or a class does

Test-driven development does not magically solve all of these problems. Instead,
it puts us on the way towards the solution. There is no silver bullet, but if there is
one development practice that can make a difference on so many levels, that practice
is TDD.

Test-driven development speeds up the time-to-market, enables easier refactoring,
helps to create better design, and fosters looser coupling.

On top of the direct benefits, TDD is a prerequisite for many other practices
(continuous delivery being one of them). Better design, well-written code, faster
time-to-market, up-to-date documentation, and solid test coverage, are some of
the results you will accomplish by applying TDD.

Chapter 1

[3]

It's not an easy thing to master TDD. Even after learning all the theory and going
through best practices and anti-patterns, the journey is only just beginning. TDD
requires time and a lot of practice. It's a long trip that does not stop with this book.
As a matter a fact, it never truly ends. There are always new ways to become more
proficient and faster. However, even though the cost is high, the benefits are even
higher. People who spent enough time with TDD claim that there is no other way
to develop a software. We are one of them and we're sure that you will be too.

We are strong believers that the best way to learn some coding technique is by coding.
You won't be able to finish this book by reading it in a metro on the way to work. It's
not a book that one can read in bed. You'll have to get your hands dirty and code.

In this chapter, we'll go through basics; starting from the next, you'll be learning by
reading, writing, and running code. We'd like to say that by the time you're finished
with this book, you'll be an experienced TDD programmer, but this is not true. By
the end of this book, you'll be comfortable with TDD and you'll have a strong base
in both theory and practice. The rest is up to you and the experience you'll be
building by applying it in your day-to-day job.

Understanding TDD
At this time, you are probably saying to yourself "OK, I understand that TDD will
give me some benefits, but what exactly is test-driven development?" TDD is a
simple procedure of writing tests before the actual implementation. It's an inversion
of a traditional approach where testing is performed after the code is written.

Red-green-refactor
Test-driven development is a process that relies on the repetition of a very short
development cycle. It is based on the test-first concept of extreme programming
(XP) that encourages simple design with a high level of confidence. The procedure
that drives this cycle is called red-green-refactor.

The procedure itself is simple and it consists of a few steps that are repeated over
and over again:

1.	 Write a test.
2.	 Run all tests.
3.	 Write the implementation code.
4.	 Run all tests.
5.	 Refactor.
6.	 Run all tests.

Why Should I Care for Test-driven Development?

[4]

Since a test is written before the actual implementation, it is supposed to fail. If it
doesn't, the test is wrong. It describes something that already exists or it was written
incorrectly. Being in the green state while writing tests is a sign of a false positive.
Tests like these should be removed or refactored.

While writing tests, we are in the red state. When the implementation of a
test is finished, all tests should pass and then we will be in the green state.

If the last test failed, implementation is wrong and should be corrected. Either the
test we just finished is incorrect or the implementation of that test did not meet
the specification we had set. If any but the last test failed, we broke something and
changes should be reverted.

When this happens, the natural reaction is to spend as much time as needed to fix
the code so that all tests are passing. However, this is wrong. If a fix is not done in a
matter of minutes, the best thing to do is to revert the changes. After all, everything
worked not long ago. Implementation that broke something is obviously wrong,
so why not go back to where we started and think again about the correct way to
implement the test? That way, we wasted minutes on a wrong implementation
instead of wasting much more time to correct something that was not done right in
the first place. Existing test coverage (excluding the implementation of the last test)
should be sacred. We change the existing code through intentional refactoring, not
as a way to fix recently written code.

Do not make the implementation of the last test final, but provide just
enough code for this test to pass.

Write the code in any way you want, but do it fast. Once everything is green, we
have confidence that there is a safety net in the form of tests. From this moment on,
we can proceed to refactor the code. This means that we are making the code better
and more optimum without introducing new features. While refactoring is in place,
all tests should be passing all the time.

If, while refactoring, one of the tests failed, refactor broke an existing functionality
and, as before, changes should be reverted. Not only that at this stage we are not
changing any features, but we are also not introducing any new tests. All we're doing
is making the code better while continuously running all tests to make sure that
nothing got broken. At the same time, we're proving code correctness and cutting
down on future maintenance costs.

Once refactoring is finished, the process is repeated. It's an endless loop of a very
short cycle.

Chapter 1

[5]

Speed is the key
Imagine a game of ping pong (or table tennis). The game is very fast; sometimes it is
hard to even follow the ball when professionals play the game. TDD is very similar.
TDD veterans tend not to spend more than a minute on either side of the table (test and
implementation). Write a short test and run all tests (ping), write the implementation
and run all tests (pong), write another test (ping), write implementation of that test
(pong), refactor and confirm that all tests are passing (score), and then repeat—ping,
pong, ping, pong, ping, pong, score, serve again. Do not try to make the perfect code.
Instead, try to keep the ball rolling until you think that the time is right to
score (refactor).

Time between switching from tests to implementation (and vice versa)
should be measured in minutes (if not seconds).

It's not about testing
T in TDD is often misunderstood. Test-driven development is the way we approach
the design. It is the way to force us to think about the implementation and to what
the code needs to do before writing it. It is the way to focus on requirements and
implementation of just one thing at a time—organize your thoughts and better
structure the code. This does not mean that tests resulting from TDD are useless—it
is far from that. They are very useful and they allow us to develop with great speed
without being afraid that something will be broken. This is especially true when
refactoring takes place. Being able to reorganize the code while having the confidence
that no functionality is broken is a huge boost to the quality.

The main objective of test-driven development is testable code design
with tests as a very useful side product.

Testing
Even though the main objective of test-driven development is the approach to code
design, tests are still a very important aspect of TDD and we should have a clear
understanding of two major groups of techniques as follows:

•	 Black-box testing
•	 White-box testing

Why Should I Care for Test-driven Development?

[6]

The black-box testing
Black-box testing (also known as functional testing) treats software under test as
a black-box without knowing its internals. Tests use software interfaces and try to
ensure that they work as expected. As long as functionality of interfaces remains
unchanged, tests should pass even if internals are changed. Tester is aware of
what the program should do, but does not have the knowledge of how it does it.
Black-box testing is most commonly used type of testing in traditional organizations
that have testers as a separate department, especially when they are not proficient in
coding and have difficulties understanding it. This technique provides an external
perspective on the software under test.

Some of the advantages of black-box testing are as follows:

•	 Efficient for large segments of code
•	 Code access, understanding the code, and ability to code are not required
•	 Separation between user's and developer's perspectives

Some of the disadvantages of black-box testing are as follows:

•	 Limited coverage, since only a fraction of test scenarios is performed
•	 Inefficient testing due to tester's lack of knowledge about software internals
•	 Blind coverage, since tester has limited knowledge about the application

If tests are driving the development, they are often done in the form of acceptance
criteria that is later used as a definition of what should be developed.

Automated black-box testing relies on some form of automation such
as behavior-driven development (BDD).

The white-box testing
White-box testing (also known as clear-box testing, glass-box testing, transparent-box
testing, and structural testing) looks inside the software that is being tested and uses
that knowledge as part of the testing process. If, for example, an exception should be
thrown under certain conditions, a test might want to reproduce those conditions.
White-box testing requires internal knowledge of the system and programming
skills. It provides an internal perspective on the software under test.

