

Mastering Puppet

Pull the strings of Puppet to configure enterprise-grade
environments for performance optimization

Thomas Uphill

BIRMINGHAM - MUMBAI

Mastering Puppet

Copyright © 2014 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the author, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: July 2014

Production reference: 1090714

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78398-218-9

www.packtpub.com

Cover image by Gagandeep Sharma (er.gagansharma@gmail.com)

www.packtpub.com

Credits

Author
Thomas Uphill

Reviewers
Ugo Bellavance

C. N. A. Corrêa

Jeroen Hooyberghs

Johan De Wit

Commissioning Editor
Edward Gordon

Acquisition Editor
Meeta Rajani

Content Development Editor
Sharvari Tawde

Technical Editors
Veena Pagare

Anand Singh

Copy Editors
Sarang Chari

Mradula Hegde

Project Coordinator
Danuta Jones

Proofreaders
Faye Coulman

Maria Gould

Indexers
Mariammal Chettiyar

Tejal Soni

Priya Subramani

Graphics
Sheetal Aute

Ronak Dhruv

Production Coordinator
Shantanu Zagade

Cover Work
Shantanu Zagade

About the Author

Thomas Uphill is an RHCA who has been using Puppet since version 0.24.
He has been a system administrator for nearly 20 years, more than 10 of which
have been with Red Hat Linux and its derivatives. He has presented tutorials on
Puppet at LOPSA-East and has spoken at PuppetConf 2013. He enjoys teaching
others how to use Puppet to automate as much system administration tasks
as possible. When he's not at the Seattle Puppet Meetup, you can find him
at http://ramblings.narrabilis.com.

I am very thankful to my friend and colleague Joško Plazonić for
introducing me to Puppet and getting me started on this journey. I
would like to thank my wife Priya Fernandes for putting up with the
long nights and weekends it took to finish this book. Thanks to Nate
Tade for his encouragement while I worked on this book, the rest of
my team for trying my crazy ideas, and Shawn Foley for a few
not-so-crazy ideas. Thanks to Theresa, David, and Ben for
their support.

http://ramblings.narrabilis.com

About the Reviewers

Ugo Bellavance has done most of his studies in e-commerce. He started using
Linux from RedHat 5.2, got Linux training from Savoir-faire Linux at age 20, and
got his RHCE on RHEL 6 in 2011. He's been a consultant in the past, but he's now
an employee for a provincial government agency for which he manages the IT
infrastructure (servers, workstations, network, security, virtualization, SAN/NAS,
and PBX). He's a big fan of open source software and its underlying philosophy.
He has worked with Debian, Ubuntu, and SUSE, but what he knows best is
RHEL-based distributions. He's known for his contributions to the MailScanner
project (he has been a technical reviewer for MailScanner User Guide and Training
Manual, Julian Field), but he has also given time to different open source projects
such as Mondo Rescue, OTRS, SpamAssassin, pfSense, and a few others. He's
been a technical reviewer for Centos 6 Linux Server Cookbook, Jonathan Hobson,
Packt Publishing and Puppet 3 Beginner's Guide, John Arundel, Packt Publishing.

I thank my lover, Lysanne, who accepted to allow me some free
time slots for this review even with two dynamic children to take
care of. The presence of these three human beings in my life is
simply invaluable.

I must also thank my friend Sébastien, whose generosity is only
matched by his knowledge and kindness. I would never have
reached this high in my career if it wasn't for him.

C. N. A. Corrêa (@cnacorrea) is an IT operations manager and consultant. He is
also a Puppet enthusiast and an old-school Linux hacker. He has a master's degree
in Systems Virtualization and holds the CISSP and RHCE certifications. Backed
by a 15-year career on systems administration, Carlos leads IT operations teams
for companies in Brazil, Africa, and the USA. He is also a part-time professor for
graduate and undergraduate courses in Brazil. Carlos co-authored several research
papers on network virtualization and OpenFlow, presented on peer-reviewed IEEE
and ACM conferences worldwide.

I thank God for all the opportunities of hard work and all the lovely
people I always find on my way. I thank the sweetest of them all,
my wife Nanda, for all her loving care and support that pushes me
forward. I would also like to thank my parents, Nilton and Zélia, for
being such a big inspiration for all the things I do.

Jeroen Hooyberghs has eight years of professional experience in many different
Linux environments. Currently, he's employed as an Open Source and Linux
Consultant at Open-Future in Belgium. Since the past year, a lot of his time has
been going into implementing and maintaining Puppet installations for clients.

I would like to thank my two girls, Eveline and Tess, for
understanding that a passion for open source requires evenings
and weekends spent on it.

Johan De Wit was an early Linux user, and he still remembers the day he built
a 0.9x Linux kernel on his brand new 486 computer that took an entire night. His
love for the UNIX operating systems existed before Linux was announced. It is not
surprising that he started a career as a UNIX system administrator.

He doesn't remember precisely when he started working with open source software,
but since 2009, he is working as an Open Source Consultant at Open-Future, where
he got the opportunity to work with Puppet. Right now, Puppet has become Johan's
biggest interest. He also loves to teach Puppet as one of the few official Puppet
trainers in Belgium.

Johan started the Belgian Puppet User Group a year ago, where he tries to bring
some Puppeteers together having great and interesting meetups. When he takes
time writing some Puppet-related blogs, he mostly does that at http://puppet-be.
github.io/, the BPUG website. Also, from time to time, he tries to spread some
hopefully wise Puppet words by presenting talks at Puppet camps across
in Europe.

Besides having fun at work, he spends a lot of his free time with his two lovely
kids, his two Belgian draft horses, and if time and the weather permits, he likes
to (re)build and drive his old-school chopper.

http://puppet-be.github.io/
http://puppet-be.github.io/

www.PacktPub.com

Support files, eBooks, discount offers, and more
You might want to visit www.PacktPub.com for support files and downloads related to
your book.

Did you know that Packt offers eBook versions of every book published, with PDF and
ePub files available? You can upgrade to the eBook version at www.PacktPub.com and
as a print book customer, you are entitled to a discount on the eBook copy. Get in touch
with us at service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up
for a range of free newsletters and receive exclusive discounts and offers on Packt books
and eBooks.

TM

http://PacktLib.PacktPub.com

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital
book library. Here, you can access, read and search across Packt's entire library of books.

Why subscribe?
• Fully searchable across every book published by Packt
• Copy and paste, print and bookmark content
• On demand and accessible via web browser

Free access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view nine entirely free books. Simply use your login credentials
for immediate access.

www.PacktPub.com
www.PacktPub.com
www.PacktPub.com
http://PacktLib.PacktPub.com
www.PacktPub.com

Table of Contents
Preface 1
Chapter 1: Dealing with Load/Scale 7

Divide and conquer 7
Puppet with passenger 8
Splitting up the workload 15

Certificate signing 15
Reporting 15
Storeconfigs 15
Catalog compilation 16
Keeping the code consistent 22

One more split 23
One last split or maybe a few more 27

Conquer by dividing 28
Creating an rpm 30
Creating the YUM repository 33

Summary 35
Chapter 2: Organizing Your Nodes and Data 37

Getting started 37
Organizing the nodes with ENC 38

A simple example 39
Hostname strategy 42
Modified ENC using hostname strategy 43

LDAP backend 47
OpenLDAP configuration 47

Hiera 53
Configuring hiera 53
Using hiera_include 56

Summary 62

Table of Contents

[ii]

Chapter 3: Git and Environments 63
Environments 63

Environments and hiera 66
Multiple hierarchies 67
Single hierarchy for all environments 68

Dynamic environments 70
Git 71

Why Git? 72
A simple Git workflow 73
Git Hooks 81

Using post-receive to set up environments 82
Puppet-sync 85

Playing nice with other developers 86
Not playing nice with others 89

Git for everyone 93
Summary 95

Chapter 4: Public Modules 97
Getting modules 97
Using GitHub for public modules 97
Modules from the Forge 101
Using librarian 102
Using r10k 105
Using modules 110

concat 110
inifile 114
firewall 119
lvm 123
stdlib 127

Summary 130
Chapter 5: Custom Facts and Modules 131

Module manifest files 132
Module files and templates 135
Naming a module 136
Creating modules with a Puppet module 137

Comments in modules 137
Multiple definitions 139

Custom facts 142
Creating custom facts 143
Creating a custom fact for use in hiera 150

Summary 153

Table of Contents

[iii]

Chapter 6: Custom Types 155
Parameterized classes 155
Defined types 156
Types and providers 167

Creating a new type 168
Summary 174

Chapter 7: Reporting and Orchestration 175
Turning on reporting 175
Syslog 176
Store 177
IRC 177
Foreman 181

Installing Foreman 182
Attaching Foreman to Puppet 182
Using Foreman 185

Puppet Dashboard 187
Using passenger with Dashboard 189
Linking Dashboard to Puppet 192
Processing reports 193
mcollective 194

Installing activemq 195
Configuring nodes to use activemq 198
Connecting a client to activemq 201
Using mcollective 203

Summary 205
Chapter 8: Exported Resources 207

Configuring puppetdb – using the forge module 208
Manually installing puppetdb 210

Installing Puppet and puppetdb 211
Installing and configuring PostgreSQL 211
Configuring puppetdb to use PostgreSQL 213
Configuring Puppet to use puppetdb 214

Exported resource concepts 215
Declaring exported resources 215
Collecting exported resources 216

Simple example: a host entry 216
Resource tags 218

Exported SSH keys 219
sshkey collection for laptops 220

Putting it all together 222
Summary 231

Table of Contents

[iv]

Chapter 9: Roles and Profiles 233
Design pattern 233
Creating an example CDN role 234

Creating a sub-CDN role 238
Dealing with exceptions 240
Summary 241

Chapter 10: Troubleshooting 243
Connectivity issues 243
Catalog failures 247

Full trace of a catalog compile 251
The classes.txt file 252

Debugging 253
Personal and bugfix branches 254

Echo statements 255
Scope 255
Profiling and summarizing 257

Summary 258
Index 259

Preface
Every project changes when you scale it out. Puppet is no different. Working on a
small number of nodes with a small team of developers is a completely different
task than working with thousands of nodes with a large group of developers.

Mastering Puppet deals with the issues faced with larger deployments, such as scaling
and duplicate resource definitions. It will show you how to fit Puppet into your
organization and keep everyone working. The concepts presented can be adopted
to suit organizations of any size.

What this book covers
Chapter 1, Dealing with Load/Scale, deals with scaling out your Puppet infrastructure
to handle a large number of nodes. Using proxying techniques, a sample deployment
is presented.

Chapter 2, Organizing Your Nodes and Data, is where we examine different methods of
applying modules to nodes. In addition to ENCs (external node classifiers), we use
hiera and hiera_include to apply modules to nodes.

Chapter 3, Git and Environments, shows you how to use Git hooks to deploy your code
to your Puppet masters and enforce access control for your modules.

Chapter 4, Public Modules, presents several supported modules from the Puppet Forge
and has real-world example use cases.

Chapter 5, Custom Facts and Modules, is all about extending facter with custom facts
and rolling your own modules to solve problems.

Chapter 6, Custom Types, covers how to implement defined types and create your own
custom types where appropriate.

Preface

[2]

Chapter 7, Reporting and Orchestration, says that without reporting you'll never know
when everything is broken. We explore two popular options for reporting, Foreman
and Puppet Dashboard. We then configure and use the marionette collective
(mcollective or mco) to perform orchestration tasks.

Chapter 8, Exported Resources, is an advanced topic where we have resource
definitions on one node applying to another node. We start by configuring puppetdb
and more onto real-world exported resources examples with Forge modules.

Chapter 9, Roles and Profiles, is a popular design paradigm used by many large
installations. We show how this design can be implemented using all of the
knowledge from the previous chapters.

Chapter 10, Troubleshooting, is a necessity. Things will always break, and we will always
need to fix them. This chapter shows some common techniques for troubleshooting.

What you need for this book
All the examples in this book were written and tested using an Enterprise Linux 6.5
derived installation such as CentOS 6.5, Scientific Linux 6.5, or Springdale Linux 6.5.
Additional repositories used were EPEL (Extra Packages for Enterprise Linux), the
Software Collections (SCL) Repository, the Foreman repository, and Puppet Labs
repository. The version of Puppet used was the latest 3.4 series at the time of writing.

Who this book is for
This book is for system administrators and Puppeteers writing Puppet code
in an enterprise setting. Puppet masters will appreciate the scaling and
troubleshooting chapters and Puppet implementers will find useful tips
in the customization chapters.

Conventions
In this book, you will find a number of styles of text that distinguish between
different kinds of information. Here are some examples of these styles, and an
explanation of their meaning.

Puppet code words in text, module names, folder names, filenames, dummy URLs,
and user input are shown as follows: "The file /var/lib/puppet/classes.txt
contains a list of the classes applied to the machine."

Preface

[3]

A block of code is set as follows:

class base {
 file {'one':
 path => '/tmp/one',
 ensure => 'directory',
 }
 file {"two":
 path => "/tmp/one$one",
 ensure => 'file',
 }
}

When we wish to draw your attention to a particular part of a code block,
the relevant lines or items are set in bold:

service {'nginx':
 require => Package['nginx'],
 ensure => true,
 enable => true,
}

Any command-line input or output is written as follows:

$ mco ping

worker1.example.com time=86.03 ms

node2.example.com time=96.21 ms

node1.example.com time=97.64 ms

---- ping statistics ----

3 replies max: 97.64 min: 86.03 avg: 93.29

New terms and important words are shown in bold. Words that you see on the
screen, in menus or dialog boxes for example, appear in the text like this: "Then
navigate to the settings section and update the trusted_puppetmaster_hosts setting."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Preface

[4]

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or may have disliked. Reader feedback is important for
us to develop titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com,
and mention the book title via the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide on www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Downloading the example code
You can download the example code files for all Packt books you have purchased
from your account at http://www.packtpub.com. If you purchased this book
elsewhere, you can visit http://www.packtpub.com/support and register to
have the files e-mailed directly to you.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in the text or
the code—we would be grateful if you would report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
book. If you find any errata, please report them by visiting http://www.packtpub.
com/submit-errata, selecting your book, clicking on the errata submission form link,
and entering the details of your errata. Once your errata is verified, your submission
will be accepted and the errata will be uploaded on our website, or added to any list of
existing errata, under the Errata section of that title. Any existing errata can be viewed
by selecting your title from http://www.packtpub.com/support.

http://www.packtpub.com
http://www.packtpub.com/support
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/support

Preface

[5]

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media.
At Packt, we take the protection of our copyright and licenses very seriously. If you
come across any illegal copies of our works, in any form, on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors, and our ability to bring you
valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with
any aspect of the book, and we will do our best to address it.

copyright@packtpub.com

Dealing with Load/Scale
A large deployment will have a large number of nodes. If you are growing your
installation from scratch, you may have started with a single Puppet master running
the built-in WEBrick server and moved up to a passenger installation. At a certain
point in your deployment, a single Puppet master just won't cut it—the load will
become too great. In my experience, this limit was around 600 nodes. Puppet agent
runs begin to fail on the nodes, and catalogs fail to compile. There are two ways to
deal with this problem: divide and conquer or conquer by dividing.

That is, we can either split up our Puppet master and divide the workload among
several machines or we can make each of our nodes apply our code directly using
Puppet agent (this is known as a masterless configuration). We'll examine each of
these solutions separately.

Divide and conquer
When you start to think about dividing up your Puppet server, the main thing to
realize is that many parts of Puppet are simply HTTP SSL transactions. If you treat
those things as you would a web service, you can scale out to any size required using
HTTP load balancing techniques.

The first step in splitting up the Puppet master is to configure the Puppet master to
run under passenger. To ensure we all have the same infrastructure, we'll install a
stock passenger configuration together and then start tweaking the configuration.
We'll begin building on an x86_64 Enterprise 6 rpm-based Linux; the examples in
this book were built using CentOS 6.5 and Springdale Linux 6.5 distributions.
Once we have passenger running, we'll look at splitting up the workload.

Dealing with Load/Scale

[8]

Puppet with passenger
In our example installation, we will be using the name puppet.example.com for
our Puppet server. Starting with a server installation of Enterprise Linux version 6,
we install httpd and mod_ssl using the following code:

yum install httpd mod_ssl

Installed:

 httpd-2.2.15-29.el6_4.x86_64

 mod_ssl-2.2.15-29.el6_4.x86_64

Downloading the example code
You can download the example code files for all Packt books you have
purchased from your account at http://www.packtpub.com. If you
purchased this book elsewhere, you can visit http://www.packtpub.
com/support and register to have the files e-mailed directly to you.

In each example, I will install the latest available version for Enterprise
Linux 6.5 and display the version for the package requested (some
packages may pull in dependencies—those versions are not shown).

To install mod_passenger, we pull in the Extra Packages for Enterprise Linux
(EPEL) repository available at https://fedoraproject.org/wiki/EPEL. Install
the EPEL repository by downloading the rpm file from http://download.
fedoraproject.org/pub/epel/6/x86_64/repoview/epel-release.html
or use the following code:

yum install http://dl.fedoraproject.org/pub/epel/6/x86_64/epel-
release-6-8.noarch.rpm

Installed:

 epel-release-6-8.noarch

Once EPEL is installed, we install mod_passenger from that repository using the
following code:

yum install mod_passenger

Installed:

 mod_passenger-3.0.21-5.el6.x86_64

http://www.packtpub.com
http://www.packtpub.com/support
http://www.packtpub.com/support
https://fedoraproject.org/wiki/EPEL
http://download.fedoraproject.org/pub/epel/6/x86_64/repoview/epel-release.html
http://download.fedoraproject.org/pub/epel/6/x86_64/repoview/epel-release.html

Chapter 1

[9]

Next, we will pull in Puppet from the puppetlabs repository available at http://
docs.puppetlabs.com/guides/puppetlabs_package_repositories.html#for-
red-hat-enterprise-linux-and-derivatives using the following code:

yum install http://yum.puppetlabs.com/el/6/products/x86_64/puppetlabs-
release-6-7.noarch.rpm

Installed:

 puppetlabs-release-6-7.noarch

With the puppetlabs repository installed, we can then install Puppet using the
following command:

yum install puppet
Installed:
 puppet-3.3.2-1.el6.noarch

The Puppet rpm will create the /etc/puppet and /var/lib/puppet directories.
In /etc/puppet, there will be a template puppet.conf; we begin by editing that
file to set the name of our Puppet server (puppet.example.com) in the certname
setting using the following code:

[main]
 logdir = /var/log/puppet
 rundir = /var/run/puppet
 vardir = /var/lib/puppet
 ssldir = $vardir/ssl
 certname = puppet.example.com
 [agent]
 server = puppet.example.com
 classfile = $vardir/classes.txt
 localconfig = $vardir/localconfig

The other lines in this file are defaults. At this point, we would expect puppet.
example.com to be resolved with a DNS query correctly, but if you do not control
DNS at your organization or cannot have this name resolved properly at this point,
edit /etc/hosts, and put in an entry for your host pointing to puppet.example.com.
In all the examples, you would substitute example.com for your own domain name.

127.0.0.1 localhost localhost.localdomain puppet
 puppet.example.com

We now need to create certificates for our master; to ensure the Certificate Authority
(CA) certificates are created, run Puppet cert list using the following command:

puppet cert list
Notice: Signed certificate request for ca

http://docs.puppetlabs.com/guides/puppetlabs_package_repositories.html#for-red-hat-enterprise-linux-and-derivatives
http://docs.puppetlabs.com/guides/puppetlabs_package_repositories.html#for-red-hat-enterprise-linux-and-derivatives
http://docs.puppetlabs.com/guides/puppetlabs_package_repositories.html#for-red-hat-enterprise-linux-and-derivatives

Dealing with Load/Scale

[10]

In your enterprise, you may have to answer requests from multiple DNS names,
for example, puppet.example.com, puppet, and puppet.devel.example.com.
To make sure our certificate is valid for all those DNS names, we will pass the
dns-alt-names option to puppet certificate generate; we also need to
specify that the certificates are to be signed by the local machine using the
following command:

puppet# puppet certificate generate --ca-location local --dns-alt-names
puppet,puppet.prod.example.com,puppet.dev.example.com puppet.example.com
Notice: puppet.example.com has a waiting certificate request
true

Now, to sign the certificate request, first verify the certificate list using the
following commands:

puppet# puppet cert list

 "puppet.example.com" (SHA256) E5:F7:26:0A:6C:41:26:FA:80:02:E5:A6:A1
:DB:F4:E0:9D:9C:5B:2D:A5:BF:EC:D1:FA:84:51:F4:8C:FD:9B:AF (alt names:
"DNS:puppet", "DNS:puppet.dev.example.com", "DNS:puppet.example.com",
"DNS:puppet.prod.example.com")

puppet# puppet cert sign puppet.example.com

Notice: Signed certificate request for puppet.example.com

Notice: Removing file Puppet::SSL::CertificateRequest puppet.example.com
at '/var/lib/puppet/ssl/ca/requests/puppet.example.com.pem'

We specified the ssldir directive in our configuration.
To interactively determine where the certificates will be
stored using the following command line:
$ puppet config print ssldir

One last task is to copy the certificate that you just signed into certs by navigating
to /var/lib/puppet/ssl/certs. You can use Puppet certificate find to do this using
the following command:

puppet certificate find puppet.example.com --ca-location local
-----BEGIN CERTIFICATE-----
MIIF1TCCA72gAwIBAgIBAjANBgkqhkiG9w0BAQsFADAoMSYwJAYDVQQDDB1QdXBw
...
-----END CERTIFICATE-----

When you install Puppet from the puppetlabs repository, the rpm will create an
Apache configuration file called apache2.conf. Locate this file and copy it into
your Apache configuration directory using the following command:

cp /usr/share/puppet/ext/rack/example-passenger-vhost.conf /etc/httpd/
conf.d/puppet.conf

Chapter 1

[11]

We will now show the Apache config file and point out the important settings using
the following configuration:

PassengerHighPerformance on
PassengerMaxPoolSize 12
PassengerPoolIdleTime 1500
PassengerMaxRequests 1000
PassengerStatThrottleRate 120
RackAutoDetect Off
RailsAutoDetect Off

The preceding lines of code configure passenger for performance.
PassengerHighPerformance turns off some compatibility that isn't required. The
other options are tuning parameters. For more information on these settings, see
http://www.modrails.com/documentation/Users%20guide%20Apache.html.

Next we will need to modify the file to ensure it points to the newly created
certificates. We will need to edit the lines for SSLCertificateFile and
SSLCertificateKeyFile. The other SSL file settings should point to the
correct certificate, chain, and revocation list files as shown in the following code:

Listen 8140
<VirtualHost *:8140>
 ServerName puppet.example.com
 SSLEngine on
 SSLProtocol -ALL +SSLv3 +TLSv1
 SSLCipherSuite ALL:!ADH:RC4+RSA:+HIGH:+MEDIUM:-LOW:-SSLv2:-EXP

 SSLCertificateFile /var/lib/puppet/ssl/certs/puppet.example.com.pem
 SSLCertificateKeyFile /var/lib/puppet/ssl/private_keys/puppet.
example.com.pem
 SSLCertificateChainFile /var/lib/puppet/ssl/ca/ca_crt.pem
 SSLCACertificateFile /var/lib/puppet/ssl/ca/ca_crt.pem
 # If Apache complains about invalid signatures on the CRL, you can
try disabling
 # CRL checking by commenting the next line, but this is not
recommended.
 SSLCARevocationFile /var/lib/puppet/ssl/ca/ca_crl.pem
 SSLVerifyClient optional
 SSLVerifyDepth 1
 # The `ExportCertData` option is needed for agent certificate
expiration warnings
 SSLOptions +StdEnvVars +ExportCertData
 RequestHeader set X-SSL-Subject %{SSL_CLIENT_S_DN}e
 RequestHeader set X-Client-DN %{SSL_CLIENT_S_DN}e
 RequestHeader set X-Client-Verify %{SSL_CLIENT_VERIFY}e

 DocumentRoot /etc/puppet/rack/public/

http://www.modrails.com/documentation/Users%20guide%20Apache.html

Dealing with Load/Scale

[12]

 RackBaseURI /
<Directory /etc/puppet/rack/>
 Options None
 AllowOverride None
 Order allow,deny
 allow from all
</Directory>
</VirtualHost>

In this VirtualHost we listen on 8140 and configure the SSL certificates in the SSL
lines. The RequestHeader lines are used to pass certificate information to the Puppet
process spawned by passenger. The DocumentRoot and RackBaseURI settings are
used to tell passenger where to find its configuration file config.ru. We create
/etc/puppet/rack and it's subdirectories and then copy the example config.ru
into that directory using the following commands:

mkdir -p /etc/puppet/rack/{public,tmp}

cp /usr/share/puppet/ext/rack/files/config.ru /etc/puppet/rack

chown puppet:puppet /etc/puppet/rack/config.ru

We change the owner of config.ru to puppet:puppet as the passenger process will
run as the owner of config.ru. Our config.ru will contain the following code:

$0 = "master"

if you want debugging:

ARGV << "--debug"

ARGV << "--rack"

ARGV << "--confdir" << "/etc/puppet"

ARGV << "--vardir" << "/var/lib/puppet"

require 'puppet/util/command_line'

run Puppet::Util::CommandLine.new.execute

In this example, we have used the repository rpms supplied by Puppet
and EPEL. In a production installation, you would use reposync to copy
these repositories locally so that your Puppet machines do not need to
access the Internet directly.

Chapter 1

[13]

The config.ru file sets the command-line arguments for Puppet. The ARGV lines
are used to set additional parameters to the puppet process. As noted in the Puppet
master main page, any valid configuration parameter from puppet.conf can be
specified as an argument here. Only the options that affect where Puppet will look
for files should be specified here. Once puppet knows where to find puppet.conf,
adding arguments here could be confusing.

With this configuration in place, we are ready to start Apache as our Puppet master.
Simply start Apache with a service httpd start.

SELinux
Security Enhanced Linux (SELinux) is a system for Linux that provides
support for mandatory access controls (MAC). If your servers are
running with SELinux enabled, great! You will need to make some
policy changes to allow Puppet to work within passenger. The easiest
way to build up your policy is to use audit2allow, which is provided in
policycoreutils-python. Rotate the audit logs to get a clean log file, and
then start a Puppet run. After the Puppet run, get audit2allow to build a
policy module for you and insert it. Then turn SELinux back on. Refer to
https://bugzilla.redhat.com/show_bug.cgi?id=1051461 for
more information.
setenforce 0
service auditd rotate
service httpd restart
(start a puppet run remotely)
audit2allow -i /var/log/audit/audit.log -M puppet_
passenger
semodule -i puppet_passenger.pp
setenforce 1

If necessary, repeat the process until everything runs cleanly. semodule
will sometimes suggest enabling the allow_ypbind Boolean; this is a
very bad idea. The allow_ypbind Boolean allows so many things that it
is almost as bad as turning SELinux off.

Now that Puppet is running, you'll need to open the local firewall (iptables) on
port 8140 to allow your nodes to connect. Then you'll need an example site.pp to
get started. For testing we will create a basic site.pp that defines a default node
with a single class attached to the default node as shown in the following code:

node default {
 include example
}

class example {
 notify {"This is an example": }
}

https://bugzilla.redhat.com/show_bug.cgi?id=1051461

Dealing with Load/Scale

[14]

You can start a practice node or two and run their agent against the Puppet server
either using --server puppet.example.com or editing the agents puppet.conf
file to point at your server. Agents will by default look for an unqualified host called
Puppet. Then search based on your DNS configuration (search in /etc/resolv.
conf), and if you do not control DNS, you may have to edit the local /etc/hosts
file to specify the IP address of your Puppet master. A sample run, for a node
called node1, should look something like the following commands:

[root@node1 ~]# puppet agent -t

Info: Creating a new SSL key for node1

Info: Caching certificate for ca

Info: Creating a new SSL certificate request for node1

Info: Certificate Request fingerprint (SHA256): C4:0D:7A:54:ED:C8:E8:CC:6
8:D0:A6:13:C4:91:28:3D:B1:66:71:48:57:85:D8:99:AF:D0:81:54:B9:64:AB:F2

Exiting; no certificate found and waitforcert is disabled

Sign the certificate on the Puppet master and run again; the run should look like the
following commands:

[root@puppet ~]# puppet cert sign node1

Notice: Signed certificate request for node1

Notice: Removing file Puppet::SSL::CertificateRequest node1 at '/var/lib/
puppet/ssl/ca/requests/node1.pem'

[root@node1 ~]# puppet agent -t

Info: Caching certificate for node1

Info: Caching certificate_revocation_list for ca

Info: Retrieving plugin

Info: Caching catalog for node1

Info: Applying configuration version '1386310193'

Notice: This is an example

Notice: /Stage[main]/Example/Notify[This is an example]/message: defined
'message' as 'This is an example'

Notice: Finished catalog run in 0.03 seconds

You now have a working passenger configuration. This configuration can handle a
much larger load than the default WEBrick server provided with puppet. Puppet
Labs suggests the WEBrick server is appropriate for small installations; in my
experience that number is much less than 100 nodes, maybe even less than 50. You
can tune the passenger configuration and handle a large number of nodes, but to
handle a very large installation (1000s of nodes), you'll need to start splitting up
the workload.

Chapter 1

[15]

Splitting up the workload
Puppet is a web service. But there are several different components supporting that
web service, as shown in the following diagram:

CERTIFICATES
(SSL)

MANIFESTS

MODULES

STORECONFIGS

CATALOGS

FILES

FACTS

REPORTS

Each of the different components in your Puppet infrastructure: SSL CA,
Reporting, Storeconfigs, and Catalog compilation can be split up into their
own server or servers.

Certificate signing
Unless you are having issues with certificate signing consuming too many resources,
it's simpler to keep the signing machine a single instance, possibly with a hot spare.
Having multiple certificate signing machines means that you have to keep certificate
revocation lists synchronized.

Reporting
Reporting should be done on a single instance if possible. Reporting options will be
shown in Chapter 7, Reporting and Orchestration.

Storeconfigs
Storeconfigs should be run on a single server, storeconfigs allows for exported
resources and is optional. The recommended configuration for storeconfigs is
puppetdb, which can handle several thousand nodes in a single installation.

