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Foreword

"But wouldn't we be much more efficient if we could just record our tests and play 
them back?" Chris, the QA manager, stood at my desk looking for confirmation.

I recall my mouth actually hanging open for a moment, then stammering something 
like, "What the…I don't even…Wait, what?"

I was working for a small company that produced off-the-shelf software for  
small- to medium-sized businesses. As part of the product line, it had a client-server 
desktop application, which also featured a web portal. I had spent the previous 
couple of years working with a small team of colleagues to create a successful 
automated testing framework for the desktop application. We built it from the 
ground up and automated a significant portion of the testing of the desktop 
application with it. We had intentionally left the testing of the web portal to be  
done manually, with the intention to automate it later. The company had also 
recently purchased another company that provided a web-only product intended 
for use by larger enterprise customers. With the purchase of the other company, 
automating the tests for the web products was becoming more important.

Additionally, we'd already gone through the process of tool evaluation for the 
automated testing of the web products. We knew that as a small company, we didn't 
have a huge budget to purchase expensive commercial testing tools. In fact, the 
budget was nonexistent; we'd have to make do with tools that were free or nearly so, 
and wire them together ourselves. Given that both web products supported multiple 
browsers, we had landed on Selenium as our solution, specifically choosing the 
newer WebDriver API over the older remote control API.



Mistakenly taking my apparent confusion for his having interrupted me from a 
tricky bit of coding, Chris pressed on to explain, "I mean, you've done great on the 
desktop application, but as you said, you need to be a programmer to effectively use 
those tests. That's great for you and Barbara because you've been working on the 
framework and understand how to code. The new guy, Derek, has some skills there 
too, and he's been able to use it pretty well. However, that kind of leaves out Cindy, 
Josh, and Brian. Wouldn't it be great if we could just use the Selenium IDE to record 
those test for the websites? Then, they could get automated tests into the suite too. 
We could even get Christian, the business analyst, in on it too!" Just like that, we'd 
started down a path; one that you may have started down yourself.

Dima Kovalenko's approach discusses problems that nearly every Selenium user has 
encountered at one time or another. His knowledge of the subject is born from years 
of experience, and that hard-won knowledge is now available to you in this very 
volume. By applying the patterns found here, you can navigate your way to efficient 
solutions to those problems. Additionally, Dima's writing style uses consistent 
examples throughout, and the language is engaging and easy to follow. 

I envy you, dear reader. Douglas Adams, author of The Hitchhiker's Guide to the 
Galaxy, once wrote, "Human beings, who are almost unique in having the ability 
to learn from the experience of others, are also remarkable for their apparent 
disinclination to do so." If we had a book like this in the situation I described earlier, 
our Selenium implementation would have been much smoother. Whether you're 
reading this because you are looking to acquire more knowledge about Selenium on 
your own, or whether you've been told to use Selenium by someone else, you now 
have the opportunity to benefit from the experiences of those who have gone before. 
Seize that opportunity and enjoy working with Selenium.

Jim Evans

Core contributor to the WebDriver project, musician, and devoted husband and father
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Preface
Selenium Design Patterns and Best Practices will help you write better tests!

It does not matter whether you are writing a Selenium WebDriver test to test 
your website or shell scripts to test the HTTP API of the backend services of your 
multibillion dollar enterprise application. This book is not purely theoretical work, 
but comes from years of experience of the author and his colleagues. A lot of the 
practices and ideas written in this book did not appear as soon as we started to test 
the software. Instead, they came from years of mistakes, frustrations, and slow but 
continuous improvement. We do not believe that the examples and topics described 
in this book are definitive and static solutions to every single problem that you may 
encounter in your career. Instead, this book shows you some very generic solutions 
to very common problems that we, an ever-growing community of automated 
software testers, have encountered. We hope that this book will not only provide 
quick fixes to the problem(s) you may encounter, but will also empower you to solve 
more and more complex problems in your career by showing you some very simple 
improvement techniques.

What this book covers
Chapter 1, Writing the First Test, will guide us through the process of writing a simple 
Selenium test and converting it to a programming language.

Chapter 2, The Spaghetti Pattern, will help us write our second test that will completely 
depend on the test we wrote in the first chapter. We will understand why having 
tests that completely depend on each other is a bad practice.

Chapter 3, Refactoring Tests, will fix some of the pitfalls and common mistakes we 
encountered so far. This chapter will concentrate on the introduction of good 
computer programming practices such as code reuse.
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Chapter 4, Data-driven Testing, will guide us through making some initial improvements 
to your test suite, and it will eventually prepare us to examine one of the most difficult 
problems in software testing: test data.

Chapter 5, Stabilizing the Tests, will help us understand that writing tests alone is not 
enough. We will dedicate this chapter to making our test bug free and resistant to 
random instabilities in the test environment.

Chapter 6, Testing the Behavior, will help you discover why testing the application in 
its current iteration becomes unmaintainable in the long run. Instead, we will start 
testing the desired behavior of the application, not the implementation.

Chapter 7, The Page Objects Pattern, covers one of the most undervalued and 
misunderstood topics when it comes to User Interface testing, that is, Page Objects. 
In this chapter, we will create a working Page Object testing framework and 
demonstrate how the tests can keep up with the new feature development cycle.

Chapter 8, Growing the Test Suite, will conclude this book with some basic tips on 
how to prioritize the growth of the test suite. Along the way, we will discuss how to 
keep our test stable and relevant to the whole team, no matter how often or big the 
changes are to the application being tested.

Appendix, Getting Started with Selenium, covers the initial setup of the user's computer. 
We will learn how to use the Command Line Interface terminal on Windows,  
Mac OSX, and Linux. We will install the Ruby programming language and Selenium 
WebDriver Ruby gem, followed by installation of the Firefox web browser. It 
concludes by explaining the test file and class nomenclature so that individuals  
new to the Ruby programming language can easily follow along with the tests.

What you need for this book
To get started with this book, you will need a basic understanding of what Selenium 
is, what it does, and basic programming skills. If you are able to create a simple 
click command in Selenium WebDriver and write a simple loop program in any 
programming language, you should be able to keep up with every example in this 
book. We will take the time to explain every line of code written in this book so that 
you are able to create the desired outcome in any situation you may find yourself 
in. There are some very small and simple software prerequisites that are needed. 
We will need to have access to the Command Line Interface terminal, Ruby runtime 
environment, and Firefox web browser. You can find the simple step-by-step setup 
instructions for all of these prerequisites in the Appendix, Getting Started with Selenium.
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Who this book is for
This book is for anyone who wishes to write better automated tests. Whether you 
are writing your first Selenium test or have written hundreds of them, you will find 
this book useful to create a good test suite. However, this book is not only meant for 
writing better Selenium tests. A lot of the examples and techniques discussed in this 
book apply not only to Selenium WebDriver, but also to any automated tests written 
in any programming language.

Conventions
In this book, you will find a number of styles of text that distinguish between 
different kinds of information. Here are some examples of these styles, and an 
explanation of their meaning.

Code words in text, database table names, folder names, filenames, file extensions, 
pathnames, dummy URLs, user input, and Twitter handles are shown as follows: 
"You can even open the search_test.html file in your web browser and see how  
it looks!"

A block of code is set as follows:

more_info_buttons = special_items.collect do |special_item|
  special_item.find_element(:class, "more-info")
end

When we wish to draw your attention to a particular part of a code block, the 
relevant lines or items are set in bold:

require 'rubygems'
require 'selenium-webdriver'

selenium = Selenium::WebDriver.for(:firefox)
selenium.get("http://awful-valentine.com/")
selenium.find_element(:id, "searchinput").clear
selenium.find_element(:id, "searchinput").send_keys("cheese")
selenium.find_element(:id, "searchsubmit").click
selenium.quit
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Any command-line input or output is written as follows:

ruby run_tests.rb

New terms and important words are shown in bold. Words that you see on the 
screen, in menus or dialog boxes for example, appear in the text like this: "Click on 
Install Now when it becomes clickable after several seconds."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about 
this book—what you liked or may have disliked. Reader feedback is important for  
us to develop titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com, 
and mention the book title via the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing 
or contributing to a book, see our author guide on www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to 
help you to get the most from your purchase.

Downloading the example code
You can download the example code files for all Packt books you have purchased 
from your account at http://www.packtpub.com. If you purchased this book 
elsewhere, you can visit http://www.packtpub.com/support and register to  
have the files e-mailed directly to you.

www.packtpub.com/authors
http://www.packtpub.com
http://www.packtpub.com/support
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Errata
Although we have taken every care to ensure the accuracy of our content, mistakes 
do happen. If you find a mistake in one of our books—maybe a mistake in the text or 
the code—we would be grateful if you would report this to us. By doing so, you can 
save other readers from frustration and help us improve subsequent versions of this 
book. If you find any errata, please report them by visiting http://www.packtpub.
com/submit-errata, selecting your book, clicking on the errata submission form link, 
and entering the details of your errata. Once your errata are verified, your submission 
will be accepted and the errata will be uploaded on our website, or added to any list of 
existing errata, under the Errata section of that title. Any existing errata can be viewed 
by selecting your title from http://www.packtpub.com/support.

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media. 
At Packt, we take the protection of our copyright and licenses very seriously. If you 
come across any illegal copies of our works, in any form, on the Internet, please 
provide us with the location address or website name immediately so that we can 
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected  
pirated material.

We appreciate your help in protecting our authors, and our ability to bring you 
valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with 
any aspect of the book, and we will do our best to address it.

http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/support




Writing the First Test
"Self-education is, I firmly believe, the only kind of education there is."

-Isaac Asimov

In this book, we will simulate my personal experience of testing e-commerce 
systems. We will start by writing a very simple and crude test case, and we will 
refactor it and grow it into a stable and reliable test suite. A web store example  
might not apply to everyone's job, but the examples provided should be general 
enough to apply to any situation.

Today is our first day on the job; you and I are the sole members of the newly  
formed Quality Assurance team for the little start-up that sells Valentine's Day  
cards. It's a small company and the pay is not the greatest; however, just like any 
small start up, we get some company stock. This means that we can be very rich  
and famous if the website becomes popular. The website needs to stay operational 
and bug free, or our customers will never return and I will not be able to purchase 
that yacht I always wanted.

We know that we are short-staffed and need some automated tests to keep the 
quality high. However, first we need to convince the owner of the company that  
test automation is the right direction, instead of just testing everything by hand.  
We need to provide a cost-effective way to test the website and get quick results!

In this chapter, we will make an argument for using Selenium as our automation tool 
of choice and write a simple test to show how fast we can start building new tests. 
We will discuss the following topics along the way:

• Why you should use Selenium over other tools
• The Record and Playback pattern
• The Selenium IDE
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• Recording a test with the Selenium IDE
• Selenium WebDriver
• Writing a test with Ruby
• The Test::Unit testing framework
• Interactive test debugging

Choosing Selenium over other tools
There are several reasons to use Selenium over other test automation tools out there:

• It is the right tool for the right job
• It is free of cost
• It is open source
• It is highly flexible

Right tool for the right job
Selenium is a great tool for testing web applications and interacting with the 
application like a real user would. It uses a real browser to click, type, and fill out 
forms. It is as close to a human user as you can get. It's the perfect tool for testing  
the flow of the web application from start to finish.

Price
Nothing can beat the free price tag! While there are other commercial products that 
have more advanced features available for purchase, they tend to run into tens of 
thousands of dollars per license. Selenium is so cheap that you will be able to finish 
this book and build a whole test suite without spending another dollar.

As old anti-proverb states: there is no free lunch, but there is always more 
cheese in the mousetrap. A free tool does not mean that the tests will write 
themselves for free; there will always be expenditure on someone's 
time. By following good practices, we will not be able to eliminate this 
cost but will try to reduce it as much as possible in the long run.


