

Selenium Design Patterns and
Best Practices

Build a powerful, stable, and automated test suite using
Selenium WebDriver

Dima Kovalenko

BIRMINGHAM - MUMBAI

Selenium Design Patterns and Best Practices

Copyright © 2014 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the author, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: September 2014

Production reference: 1170914

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78398-270-7

www.packtpub.com

Cover image by Jeremy Segal (info@jsegalphoto.com)

www.packtpub.com

Credits

Author
Dima Kovalenko

Reviewers
Anuj Chaudhary

Dave Haeffner

Dave Hunt

Alex Kogon

Commissioning Editor
Usha Iyer

Acquisition Editor
Llewellyn Rozario

Content Development Editor
Priya Singh

Technical Editor
Shiny Poojary

Copy Editors
Roshni Banerjee

Adithi Shetty

Project Coordinators
Judie Jose

Swati Kumari

Proofreaders
Simran Bhogal

Maria Gould

Ameesha Green

Indexers
Monica Ajmera Mehta

Rekha Nair

Priya Sane

Production Coordinator
Kyle Albuquerque

Cover Work
Kyle Albuquerque

Foreword

"But wouldn't we be much more efficient if we could just record our tests and play
them back?" Chris, the QA manager, stood at my desk looking for confirmation.

I recall my mouth actually hanging open for a moment, then stammering something
like, "What the…I don't even…Wait, what?"

I was working for a small company that produced off-the-shelf software for
small- to medium-sized businesses. As part of the product line, it had a client-server
desktop application, which also featured a web portal. I had spent the previous
couple of years working with a small team of colleagues to create a successful
automated testing framework for the desktop application. We built it from the
ground up and automated a significant portion of the testing of the desktop
application with it. We had intentionally left the testing of the web portal to be
done manually, with the intention to automate it later. The company had also
recently purchased another company that provided a web-only product intended
for use by larger enterprise customers. With the purchase of the other company,
automating the tests for the web products was becoming more important.

Additionally, we'd already gone through the process of tool evaluation for the
automated testing of the web products. We knew that as a small company, we didn't
have a huge budget to purchase expensive commercial testing tools. In fact, the
budget was nonexistent; we'd have to make do with tools that were free or nearly so,
and wire them together ourselves. Given that both web products supported multiple
browsers, we had landed on Selenium as our solution, specifically choosing the
newer WebDriver API over the older remote control API.

Mistakenly taking my apparent confusion for his having interrupted me from a
tricky bit of coding, Chris pressed on to explain, "I mean, you've done great on the
desktop application, but as you said, you need to be a programmer to effectively use
those tests. That's great for you and Barbara because you've been working on the
framework and understand how to code. The new guy, Derek, has some skills there
too, and he's been able to use it pretty well. However, that kind of leaves out Cindy,
Josh, and Brian. Wouldn't it be great if we could just use the Selenium IDE to record
those test for the websites? Then, they could get automated tests into the suite too.
We could even get Christian, the business analyst, in on it too!" Just like that, we'd
started down a path; one that you may have started down yourself.

Dima Kovalenko's approach discusses problems that nearly every Selenium user has
encountered at one time or another. His knowledge of the subject is born from years
of experience, and that hard-won knowledge is now available to you in this very
volume. By applying the patterns found here, you can navigate your way to efficient
solutions to those problems. Additionally, Dima's writing style uses consistent
examples throughout, and the language is engaging and easy to follow.

I envy you, dear reader. Douglas Adams, author of The Hitchhiker's Guide to the
Galaxy, once wrote, "Human beings, who are almost unique in having the ability
to learn from the experience of others, are also remarkable for their apparent
disinclination to do so." If we had a book like this in the situation I described earlier,
our Selenium implementation would have been much smoother. Whether you're
reading this because you are looking to acquire more knowledge about Selenium on
your own, or whether you've been told to use Selenium by someone else, you now
have the opportunity to benefit from the experiences of those who have gone before.
Seize that opportunity and enjoy working with Selenium.

Jim Evans

Core contributor to the WebDriver project, musician, and devoted husband and father

About the Author

Dima Kovalenko started his career in 2003 as a quality assurance intern during
his summer internship at Rosetta Stone. Since then, he has spent many years testing
software in both a manual and automated fashion in companies such as
ThoughtWorks, Groupon, and many others. He has participated in many different
types of projects, including language-learning software, web e-commerce stores, and
legacy maintenance for telecommunication and airline companies. His experience
includes support to Ruby, Java, iOS, Android, and PHP projects as an automated
tester and software developer.

His first real experience with computers was at the age of 14, shortly after moving
to the United States of America from Russia; this encounter has sparked a lifelong
passion for technology.

Acknowledgments

This book would not exist without the help and support of the people in my life,
who supported and encouraged this passion to grow and develop further. I'd like
to thank my wife, Lena Kovalenko, for tolerating and putting up with my neediness
and endless torrent of useless trivia. Without her support, and my constant desire to
impress her, I would not have taken any rewarding risks in my career. I would also
like to thank my parents Nikolay and Svetlana Kovalenko for letting my brother,
Vadim, and me learn from our own mistakes and have ample computer time,
that is, after the dishes were washed, naturally.

I'd like to thank my family and friends who were supportive in this project and
helped me: Lil Kovalenko, Vadim Kovalenko, David Tolley, Steve Fournier II
(Steve-o, formally known as "Scuba Steve"), Josiah Weaver, and Alfredo Velasquez.

This book would not be accurate without the help of Alex Kogon, Dave Haeffner,
Dave Hunt, and Anuj Chaudhary. Thank you all for considering all of my insane
ideas and theories and giving me good feedback.

I'd like to thank Seth Lochen, Andy Duncan, Shinji Kuwayama, and Virgil Bistriceanu
for being incredible managers who encouraged me to learn new skills and grow to be
a better person.

Finally, I'd like to also thank my coworkers, from whom I've learned more
programming skills than any book could have ever taught me: Scott Muc, Isa Goksu,
Jack Calzaretta, Surya Gaddipati, Michael Standley, Valdis Vitayaudom, Gregory
Blike, Jason Lantz, and Greg Smith.

About the Reviewers

Anuj Chaudhary is a software engineer who enjoys working on software testing
and automation. He has vast experience in different testing methodologies such as
manual testing, automated testing, performance testing, and security testing. He has
worked as an individual contributor and technical lead on various software projects
dealing with all stages of the application development life cycle.

He has been awarded Microsoft MVP two times in a row. He also blogs
at www.anujchaudhary.com.

He has also reviewed the book Selenium WebDriver Practical Guide, Satya Avasarala,
Packt Publishing.

I would like to thank my wife, Renu, for always supporting me. I
wouldn't have been able to spend extra hours on reviewing this book
without her support.

Dave Haeffner is the writer of Elemental Selenium (http://elementalselenium.
com)—a free, once-a-week Selenium tip newsletter that's read by thousands of testing
professionals. He's also the creator and maintainer of ChemistryKit (https://
github.com/chemistrykit), an open source Selenium framework, and the author of
The Selenium Guidebook (http://seleniumguidebook.com). He's helped numerous
companies successfully implement automated acceptance testing, including The
Motley Fool, ManTech International, Sittercity, and Animoto. He's also the founder/
co-organizer of Selenium Hangout and has spoken at numerous conferences and
meetings about automated acceptance testing.

www.anujchaudhary.com
http://elementalselenium.com
http://elementalselenium.com
https://github.com/chemistrykit
https://github.com/chemistrykit
http://seleniumguidebook.com

Dave Hunt lives in Kent, UK, with his wife and two sons. He has always had a
passion for turning mundane tasks into one-click solutions, and when he discovered
Selenium back in 2005, his career in software testing and automation development
was sealed. He works from home for Mozilla, where he assists teams to create
automated tests for their projects—ranging from Mozilla's web properties to the
Firefox web browser and the Firefox OS mobile operating system.

Alex Kogon started programming in 1979 and has been working as an IT
professional since 1985, helping small and large companies define and implement
business software solutions. He has worked as everything from a Unix Systems
Administrator and software tester to Internet start-up company CTO and has been
a part of the senior management in a major global Investment Bank.

Since the late 1990s, Alex has been a major proponent of methodologies to improve
the design and development of software, leveraging RAD techniques and developing
his own pre-Agile methodologies to deliver projects to major global financial
institutions in a fraction of the regular time. He now works as a Management
Consultant helping organizations leverage Agile methodologies to be more efficient
and effective through communication, collaboration, tools, automated testing,
continuous integration, coding standards, and pair programming.

His ideas have been published in the Financial Times and Wall Street Journal and his
seminal research on Additive Synthesis of Digital Signals is published and referred
to frequently in research documents. Alex is currently working on a book on how to
save money and improve results in corporate IT with Agile Methodologies.

I'd like to thank Ben and Tilda for providing a counterpoint in my life.

www.PacktPub.com

Support files, eBooks, discount offers, and more
You might want to visit www.PacktPub.com for support files and downloads related
to your book.

Did you know that Packt offers eBook versions of every book published, with PDF
and ePub files available? You can upgrade to the eBook version at www.PacktPub.com
and as a print book customer, you are entitled to a discount on the eBook copy. Get in
touch with us at service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles,
sign up for a range of free newsletters and receive exclusive discounts and offers
on Packt books and eBooks.

TM

http://PacktLib.PacktPub.com

Do you need instant solutions to your IT questions? PacktLib is Packt's online
digital book library. Here, you can access, read and search across Packt's entire
library of books.

Why subscribe?
• Fully searchable across every book published by Packt
• Copy and paste, print and bookmark content
• On demand and accessible via web browser

Free access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view nine entirely free books. Simply use your login credentials
for immediate access.

www.PacktPub.com
www.PacktPub.com
www.PacktPub.com
http://PacktLib.PacktPub.com
www.PacktPub.com

Table of Contents
Preface 1
Chapter 1: Writing the First Test 7

Choosing Selenium over other tools 8
Right tool for the right job 8
Price 8
Open source 9
Flexibility 9

The Record and Playback pattern 9
Advantages of the Record and Playback pattern 9
Disadvantages of the Record and Playback pattern 10

Getting started with the Selenium IDE 10
Installing the Selenium IDE 11
Recording our first test 15
Saving the test 18

Understanding Selenium commands 19
Reading Selenese 20

Comparing Ruby to Selenese 21
Comparing Selenium commands in multiple languages 24
Writing a Selenium test in Ruby 25

Introducing Test::Unit 26
Introducing asserts 28
Interactive test debugging 31

Summary 33
Chapter 2: The Spaghetti Pattern 35

Introducing the Spaghetti pattern 36
Advantages of the Spaghetti pattern 36
Disadvantages of the Spaghetti pattern 37

Table of Contents

[ii]

Testing the product review functionality 38
Starting a product review test 39
Locating elements on the page 42

Using a browser's element inspector 44
Introducing locator strategies 46

Using advanced locator strategies 48
Writing locator strategy code 53

Using chained selector strategy methods 53
Using the CSS selector 54
Using XPath 55

Implementing clicks and assertions 55
Duplicating the product review test 59

Reasons for failures 59
The Chain Linked pattern 61
The Big Ball of Mud pattern 61
Summary 62

Chapter 3: Refactoring Tests 63
Refactoring tests 64
The DRY testing pattern 64

Advantages of the DRY testing pattern 65
Disadvantages of the DRY testing pattern 65

Moving code into a setup and teardown 66
Removing duplication with methods 68
Removing external test goals 69
Using a method to fill out the review form 70
Reviewing the refactored code 70

The Hermetic test pattern 72
Advantages of the Hermetic test pattern 72
Disadvantages of the Hermetic test pattern 73
Removing test-on-test dependence 74

Using timestamps as test data 74
Extracting the remaining common actions to methods 76
Reviewing the test-on-test dependency refactoring 79

Creating generic DRY methods 80
Refactoring with generic methods 81

The random run order principle 82
Advantages of the random run order principle 82
Disadvantages of the random run order principle 83

Summary 84

Table of Contents

[iii]

Chapter 4: Data-driven Testing 85
Data relevance versus data accessibility 86
Hardcoding input data 87

Hiding test data from tests 87
Choosing the test environment 90

Introducing test fixtures 92
Parsing fixture data 92
Using fixture data in the tests 93

Using fixtures to validate products 95
Testing the remaining products 97

Using an API as a source of fixture data 102
Using data stubs 104
The default values pattern 105

Advantages of the default values pattern 105
Disadvantages of the default values pattern 106
Merging the default values pattern and the faker library 106

Implementing faker methods 106
Updating the comment test to use default values 108

Summary 111
Chapter 5: Stabilizing the Tests 113

Engineering the culture of stability 114
Running fast and failing fast 114
Running as often as possible 115
Keeping a clean and consistent environment 115
Discarding bad code changes 116
Maintaining a stable test suite 116

Waiting for AJAX 116
Testing without AJAX delays 118
Using explicit delays to test AJAX forms 121
Implementing intelligent delays 123

Waiting for JavaScript animations 125
The Action Wrapper pattern 128

Advantages of the Action Wrapper pattern 128
Disadvantages of the Action Wrapper pattern 129
Implementing the Action Wrapper pattern 129

The Black Hole Proxy pattern 134
Advantages of the Black Hole Proxy pattern 135
Disadvantages of the Black Hole Proxy pattern 135
Implementing the Black Hole Proxy pattern 136

Test your tests! 139
Summary 139

Table of Contents

[iv]

Chapter 6: Testing the Behavior 141
Behavior-driven Development 141

Advantages of BDD 142
Disadvantages of BDD 142

Testing the shopping cart behavior 143
Describing shopping cart behavior 146
Writing step definitions 147
Is BDD right for my project? 149

Introducing Cucumber 149
Feature files 150
Step definition files 151
The configuration directory 152

Cucumber.yml 152
env.rb 154

Running the Cucumber suite 154
The write once, test everywhere pattern 155

Advantages of the write once, test everywhere pattern 156
Disadvantages of the write once, test everywhere pattern 156

Testing a mobile site 156
Updating the Selenium wrapper 157
Moving step definition files 157
Updating the Cucumber profile and tagging tests 159
Running and fixing incompatible steps 160

Testing the purchase API 163
Summary 167

Chapter 7: The Page Objects Pattern 169
Understanding objects 170

Describing a literal object 170
Object properties 170
Object actions 171
Objects within objects 171

Describing a programming object 171
Describing a web page with objects 172

The Page Objects pattern 174
Advantages of the Page Objects pattern 174
Disadvantages of the Page Objects pattern 176

Creating a Page Objects framework 176
Creating a page super class 177
Implementing sidebar objects 179

Implementing the SidebarCart class 180

Table of Contents

[v]

Adding Self Verification to pages 182
Implementing individual page classes 183
Increasing the number of sidebar objects as the website grows 188

Running tests with the Page Objects framework 189
Using Page Objects in the Test::Unit framework 189
Using Page Objects in different testing frameworks 191

Looking at the Cucumber implementation 191
Looking at the RSpec implementation 193

The test tool independence pattern 194
Advantages of the test tool independence 195
Disadvantages of the test tool independence 195

The right way to implement Page Objects 195
Making pages smarter than tests 196
Making tests smarter than pages 197
Using modules instead of inheritance 198
Placing logic in Page Objects 198

Summary 199
Chapter 8: Growing the Test Suite 201

Strategies for writing test suites 202
Different types of tests 202
The smoke test suite 203
The money path suite 204
New feature growth strategy 205
Bug-driven growth strategy 206
The regression suite 206
The 99 percent coverage suite 206

Continuous Integration 207
Managing the test environments and nodes 208

Deploying new builds 209
CI environment management 209

Selenium Grid 211
Understanding standalone and grid modes 212
Installing Selenium Grid 214

Choosing the CI tool 216
Decoupling tests from tools 217

Frequently Asked Questions 219
How to test on multiple browsers? 219

Problem 219
Possible solutions 219

Which programming language to write tests in? 220

Table of Contents

[vi]

Should we use Selenium to test the JS functionality? 221
Problem 221
Possible solution 222

Why should I use a headless browser? 222
Possible solution 222

Which BDD tool should I use on my team? 223
Problem 223
Possible solutions 224

Can I use Selenium for performance testing? 224
Problem 225
Possible solutions 226

Summary 226
Appendix: Getting Started with Selenium 227

Setting up the computer 227
Using Command Line Interface 228

Using the terminal on Windows 228
Using the terminal on Mac OS X 232
Using the terminal on Linux 233

Configuring the Ruby runtime environment 233
Installing Ruby 234
Installing the selenium-webdriver gem 234

Installing Firefox 234
Understanding test class naming 234

Naming files 235
Naming classes 235
Understanding the namespace 237
Showing object inheritance 237

Summary 238
Index 239

Preface
Selenium Design Patterns and Best Practices will help you write better tests!

It does not matter whether you are writing a Selenium WebDriver test to test
your website or shell scripts to test the HTTP API of the backend services of your
multibillion dollar enterprise application. This book is not purely theoretical work,
but comes from years of experience of the author and his colleagues. A lot of the
practices and ideas written in this book did not appear as soon as we started to test
the software. Instead, they came from years of mistakes, frustrations, and slow but
continuous improvement. We do not believe that the examples and topics described
in this book are definitive and static solutions to every single problem that you may
encounter in your career. Instead, this book shows you some very generic solutions
to very common problems that we, an ever-growing community of automated
software testers, have encountered. We hope that this book will not only provide
quick fixes to the problem(s) you may encounter, but will also empower you to solve
more and more complex problems in your career by showing you some very simple
improvement techniques.

What this book covers
Chapter 1, Writing the First Test, will guide us through the process of writing a simple
Selenium test and converting it to a programming language.

Chapter 2, The Spaghetti Pattern, will help us write our second test that will completely
depend on the test we wrote in the first chapter. We will understand why having
tests that completely depend on each other is a bad practice.

Chapter 3, Refactoring Tests, will fix some of the pitfalls and common mistakes we
encountered so far. This chapter will concentrate on the introduction of good
computer programming practices such as code reuse.

Preface

[2]

Chapter 4, Data-driven Testing, will guide us through making some initial improvements
to your test suite, and it will eventually prepare us to examine one of the most difficult
problems in software testing: test data.

Chapter 5, Stabilizing the Tests, will help us understand that writing tests alone is not
enough. We will dedicate this chapter to making our test bug free and resistant to
random instabilities in the test environment.

Chapter 6, Testing the Behavior, will help you discover why testing the application in
its current iteration becomes unmaintainable in the long run. Instead, we will start
testing the desired behavior of the application, not the implementation.

Chapter 7, The Page Objects Pattern, covers one of the most undervalued and
misunderstood topics when it comes to User Interface testing, that is, Page Objects.
In this chapter, we will create a working Page Object testing framework and
demonstrate how the tests can keep up with the new feature development cycle.

Chapter 8, Growing the Test Suite, will conclude this book with some basic tips on
how to prioritize the growth of the test suite. Along the way, we will discuss how to
keep our test stable and relevant to the whole team, no matter how often or big the
changes are to the application being tested.

Appendix, Getting Started with Selenium, covers the initial setup of the user's computer.
We will learn how to use the Command Line Interface terminal on Windows,
Mac OSX, and Linux. We will install the Ruby programming language and Selenium
WebDriver Ruby gem, followed by installation of the Firefox web browser. It
concludes by explaining the test file and class nomenclature so that individuals
new to the Ruby programming language can easily follow along with the tests.

What you need for this book
To get started with this book, you will need a basic understanding of what Selenium
is, what it does, and basic programming skills. If you are able to create a simple
click command in Selenium WebDriver and write a simple loop program in any
programming language, you should be able to keep up with every example in this
book. We will take the time to explain every line of code written in this book so that
you are able to create the desired outcome in any situation you may find yourself
in. There are some very small and simple software prerequisites that are needed.
We will need to have access to the Command Line Interface terminal, Ruby runtime
environment, and Firefox web browser. You can find the simple step-by-step setup
instructions for all of these prerequisites in the Appendix, Getting Started with Selenium.

Preface

[3]

Who this book is for
This book is for anyone who wishes to write better automated tests. Whether you
are writing your first Selenium test or have written hundreds of them, you will find
this book useful to create a good test suite. However, this book is not only meant for
writing better Selenium tests. A lot of the examples and techniques discussed in this
book apply not only to Selenium WebDriver, but also to any automated tests written
in any programming language.

Conventions
In this book, you will find a number of styles of text that distinguish between
different kinds of information. Here are some examples of these styles, and an
explanation of their meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows:
"You can even open the search_test.html file in your web browser and see how
it looks!"

A block of code is set as follows:

more_info_buttons = special_items.collect do |special_item|
 special_item.find_element(:class, "more-info")
end

When we wish to draw your attention to a particular part of a code block, the
relevant lines or items are set in bold:

require 'rubygems'
require 'selenium-webdriver'

selenium = Selenium::WebDriver.for(:firefox)
selenium.get("http://awful-valentine.com/")
selenium.find_element(:id, "searchinput").clear
selenium.find_element(:id, "searchinput").send_keys("cheese")
selenium.find_element(:id, "searchsubmit").click
selenium.quit

Preface

[4]

Any command-line input or output is written as follows:

ruby run_tests.rb

New terms and important words are shown in bold. Words that you see on the
screen, in menus or dialog boxes for example, appear in the text like this: "Click on
Install Now when it becomes clickable after several seconds."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or may have disliked. Reader feedback is important for
us to develop titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com,
and mention the book title via the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide on www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Downloading the example code
You can download the example code files for all Packt books you have purchased
from your account at http://www.packtpub.com. If you purchased this book
elsewhere, you can visit http://www.packtpub.com/support and register to
have the files e-mailed directly to you.

www.packtpub.com/authors
http://www.packtpub.com
http://www.packtpub.com/support

Preface

[5]

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in the text or
the code—we would be grateful if you would report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
book. If you find any errata, please report them by visiting http://www.packtpub.
com/submit-errata, selecting your book, clicking on the errata submission form link,
and entering the details of your errata. Once your errata are verified, your submission
will be accepted and the errata will be uploaded on our website, or added to any list of
existing errata, under the Errata section of that title. Any existing errata can be viewed
by selecting your title from http://www.packtpub.com/support.

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media.
At Packt, we take the protection of our copyright and licenses very seriously. If you
come across any illegal copies of our works, in any form, on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors, and our ability to bring you
valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with
any aspect of the book, and we will do our best to address it.

http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/support

Writing the First Test
"Self-education is, I firmly believe, the only kind of education there is."

-Isaac Asimov

In this book, we will simulate my personal experience of testing e-commerce
systems. We will start by writing a very simple and crude test case, and we will
refactor it and grow it into a stable and reliable test suite. A web store example
might not apply to everyone's job, but the examples provided should be general
enough to apply to any situation.

Today is our first day on the job; you and I are the sole members of the newly
formed Quality Assurance team for the little start-up that sells Valentine's Day
cards. It's a small company and the pay is not the greatest; however, just like any
small start up, we get some company stock. This means that we can be very rich
and famous if the website becomes popular. The website needs to stay operational
and bug free, or our customers will never return and I will not be able to purchase
that yacht I always wanted.

We know that we are short-staffed and need some automated tests to keep the
quality high. However, first we need to convince the owner of the company that
test automation is the right direction, instead of just testing everything by hand.
We need to provide a cost-effective way to test the website and get quick results!

In this chapter, we will make an argument for using Selenium as our automation tool
of choice and write a simple test to show how fast we can start building new tests.
We will discuss the following topics along the way:

• Why you should use Selenium over other tools
• The Record and Playback pattern
• The Selenium IDE

Writing the First Test

[8]

• Recording a test with the Selenium IDE
• Selenium WebDriver
• Writing a test with Ruby
• The Test::Unit testing framework
• Interactive test debugging

Choosing Selenium over other tools
There are several reasons to use Selenium over other test automation tools out there:

• It is the right tool for the right job
• It is free of cost
• It is open source
• It is highly flexible

Right tool for the right job
Selenium is a great tool for testing web applications and interacting with the
application like a real user would. It uses a real browser to click, type, and fill out
forms. It is as close to a human user as you can get. It's the perfect tool for testing
the flow of the web application from start to finish.

Price
Nothing can beat the free price tag! While there are other commercial products that
have more advanced features available for purchase, they tend to run into tens of
thousands of dollars per license. Selenium is so cheap that you will be able to finish
this book and build a whole test suite without spending another dollar.

As old anti-proverb states: there is no free lunch, but there is always more
cheese in the mousetrap. A free tool does not mean that the tests will write
themselves for free; there will always be expenditure on someone's
time. By following good practices, we will not be able to eliminate this
cost but will try to reduce it as much as possible in the long run.

