

Web Application Development
with Yii 2 and PHP

Fast-track your web application development using
the new generation Yii PHP framework

Mark Safronov

Jeffrey Winesett

BIRMINGHAM - MUMBAI

Web Application Development with Yii 2 and PHP

Copyright © 2014 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either expressed or implied. Neither the authors, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: August 2010

Second edition: November 2012

Third edition: September 2014

Production reference: 1190914

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78398-188-5

www.packtpub.com

Cover Image by Aniket Sawant (aniket_sawant_photography@hotmail.com)

www.packtpub.com

Credits

Authors
Mark Safronov

Jeffrey Winesett

Reviewers
Ajay Balachandran

Maher Elaissi

Md. Rashidul Hasan Masum

Mohammed Hussein Othman

Commissioning Editor
Usha Iyer

Acquisition Editor
Harsha Bharwani

Content Development Editor
Madhuja Chaudhari

Technical Editors
Veronica Fernandes

Pramod Kumavat

Copy Editors
Roshni Banerjee

Sarang Chari

Gladson Monteiro

Adithi Shetty

Project Coordinators
Venitha Cutinho

Akash Poojary

Proofreaders
Simran Bhogal

Stephen Copestake

Maria Gould

Ameesha Green

Paul Hindle

Joel T. Johnson

Jonathan Todd

Indexers
Mariammal Chettiyar

Monica Ajmera Mehta

Tejal Soni

Graphics
Disha Haria

Production Coordinators
Kyle Albuquerque

Melwyn D'sa

Saiprasad Kadam

Cover Work
Melwyn D'sa

About the Authors

Mark Safronov is a professional web application developer from the Russian
Federation, with experience and interest in a wide range of programming languages
and technologies. He has built and participated in building different types of web
applications, from pure computational ones to full-blown e-commerce sites. He is
also a proponent of following the current best practices of test-first development
and clean and maintainable code.

He is currently employed at Clevertech and is working on Yii-based PHP web
applications. He was also a maintainer of the popular YiiBooster open source
extension for some time.

Back in 2008, he translated the book Visual Prolog 7.1 for Tyros, Eduardo Costa,
in Russian with a totally new color layout. In 2013, along with Jacob Mumm,
he co-authored the book Instant Yii Application Development Starter, Packt Publishing.

Jeffrey Winesett is a partner at SeeSaw Labs in Austin, Texas, and has over 10 years
of experience building large-scale, web-based applications. He is a strong proponent
of using open source development frameworks when developing applications,
and a champion of the Yii framework in particular since its initial alpha release.
He frequently presents on, writes about, and develops with Yii as often as possible.

I would like to thank Qiang Xue for creating this amazing
framework, and the entire Yii framework development team who
continually improve and maintain it. I thank all of the technical
reviewers, editors, and staff at Packt Publishing for their fantastic
contributions, suggestions, and improvements. I would also like
to thank my family, who have provided encouragement and
unconditional support, and to my many colleagues over the years
for providing invaluable opportunities for me to explore new
technologies, expand my knowledge, and shape my career.

About the Reviewers

Ajay Balachandran is a hardcore PHP developer and an avid Yii lover from India.
He is a huge advocate of writing modular, reusable, and standards-based code,
which leads to his love for the Yii framework.

He is an expert in federated authentication using OpenID Connect, and now
specializes in providing single sign-on and analytics solutions for the enterprise
customers on behalf of his company, HiFX IT & Media Services.

Having a UI/UX background, Yii and its robust Web 2.0 oriented development
has enabled Ajay to easily write applications ranging from simple shopping carts
to robust APIs.

Maher Elaissi is a web developer based in Canada. He has good knowledge of
object-oriented analysis and designs and specializes in PHP programming. His
first experience with the Yii framework was in 2012, with a startup company Cisha
GmbH based in Germany, to create an online chess game (www.chess24.com).

I would like to thank the Super Mario team (dev team) for all their
support and help in producing this book.

www.chess24.com

Md. Rashidul Hasan Masum is a professional Software Engineer. Over the
last 6 years, he has designed and developed a wide range of desktop and web
applications using the enterprise framework Spring.NET NHibernate and websites
using HTML, DHTML, JavaScript, jQuery, SignalR, Ext JS 4, ASP.NET (C#), PHP
(Yii framework), Spring.NET, NHibernate, Google App Engine (Java), OpenLayer,
Android with MSSQL, MySQL, and Bigtable, including sites for startup companies
and small businesses. His core competency lies in complete end-to-end management
of a new application development.

He also has experience in the following areas: OOP, AOP, DI, ORM, SOA, n-Tire,
highly configurable applications, neural networks, and software design and testing.

He now works at OnnoRokom Software Ltd. as a Software Architect. From the
beginning, they have been using the Yii framework for their large-scale web
application development. S. M. Quamruzzaman Rahmani (www.byronbd.com),
Project Manager, and GM Nazmul Hossain, (www.gmnazmul.com), System Analyst,
have been working with him. The three of them are a super combination for
teamwork according to their personality profiles.

I'd like to thank Venitha Cutinho and Akash Poojary for their
coordination. Also, I'd like to thank my friend Maruf Maniruzzaman
who works at Microsoft. He has taught me a lot about computer
engineering. Thank you to my friend K. M. Masum Habib. I'd also
like to thank Packt Publishing. I have read lots of e-books published
by Packt Publishing.

Mohammed Hussein Othman is a Software Engineer who has graduated from
Damascus University in Syria. He has 4 years of experience in working with the Yii
framework in a variety of small and enterprise projects. Mohammed has also been
working on various modern web technologies, such as PHP, ASP.NET, Ruby on
Rails, Node.js, and many others. Currently, he works as a Senior Web Developer and
Project Manager at Flex Solutions, which specializes in enterprise web applications.

www.byronbd.com
www.gmnazmul.com

www.PacktPub.com

Support files, eBooks, discount offers,
and more
You might want to visit www.PacktPub.com for support files and downloads related to
your book.

Did you know that Packt offers eBook versions of every book published, with PDF and ePub
files available? You can upgrade to the eBook version at www.PacktPub.com and as a print
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at
service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up for a
range of free newsletters, and receive exclusive discounts and offers on Packt books and eBooks.

TM

http://PacktLib.PacktPub.com

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital book
library. Here, you can access, read, and search across Packt's entire library of books.

Why subscribe?
• Fully searchable across every book published by Packt
• Copy and paste, print, and bookmark content
• On demand and accessible via web browser

Free access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view nine entirely free books. Simply use your login credentials for
immediate access.

www.PacktPub.com
www.PacktPub.com
www.PacktPub.com
http://PacktLib.PacktPub.com
www.PacktPub.com

Table of Contents
Preface 1
Chapter 1: Getting Started 7

A basic application 7
Installation of a basic application template 7
Specifics of the basic application template 9

An advanced application 10
Installation of an advanced application template 11
Specifics of the advanced application template 13

Summary 14
Chapter 2: Making a Custom Application with Yii 2 15

The design stage 16
Task at hand 16
Domain model design 16
Target feature 18

Initial preparations 19
Setting up project management 19
Setting up the testing harness 20
Setting up the deployment pipeline 22

Making a web application entry point visible 26
Introducing the Yii framework into our application 26

First end-to-end test 27
Yii 2 installation to the bare code base 34

Checking the requirements 34
An introduction to Yii conventions 34
Building the wireframe code 36
Adding a controller 37
Handling possible errors 38

Table of Contents

[ii]

Making the data and application layers 39
Defining the customer model at the data layer 40
Setting up the database 41
Object-relation mapping in Yii 45
Decoupling from ORM 47

Creating the user interface 49
The Add New Customer UI 50
Routing 101 51
Layouts 52
Finishing the Add New Customer UI 53
Widgets 55
The List Customers UI 56
Customer Query UI 58

Using the application 58
Summary 60

Chapter 3: Automatically Generating the CRUD Code 63
Definition of the model to work with 63
Using Gii 64

Installing Gii into the application 64
Generating the code for the Model class 66
Generating the CRUD code 69

Finishing touches 72
Creating a new layout to support pages generated by Gii 72

An overview of the generated CRUD UI 74
Pros and cons of generated classes over manually created ones 78
Summary 78

Chapter 4: The Renderer 79
Anatomy of Yii rendering 79
The Yii application components 81
The View component 84

Algorithm to find the view files 84
Algorithm to search the layout file to be used 87
The internal workings of rendering the view file 89

Custom renderers 90
A custom response formatter 95
The asset bundles 100

An asset bundle with files from an arbitrary folder 100
Asset publishing 101
An asset bundle with files from a web-accessible folder 103

Table of Contents

[iii]

Registering CSS and JavaScript files manually 104
Placing JavaScript in different positions in the asset bundles 105
Making a custom asset bundle for our application 106

Themes 107
Making a custom snowy theme 108

Widgets 111
Summary 111

Chapter 5: User Authentication 113
Anatomy of the user login in Yii 114
Password-based login mechanics in general 114
Making the user management interface 116

Acceptance tests for the user management interface 116
Database table to store user records 118
Generating the model and CRUD code by Gii 118
Removing the password field from the autogenerated code 119

Hashing a password upon saving a user record 119
Functional tests for password hashing 120
Password hashing implementation inside the active record 123

Making a user record into an identity 126
Making the login interface 128

Specifications of user authentication 129
Making the authentication indicator 131
The login form functionality 132
The logout functionality and wrapping things up 137

Summary 138
Chapter 6: User Authorization and Access Control 139

Access control using the state of user authentication 140
FEATURE – hook methods of the controller 140
FEATURE – exception handling in Yii 143
FEATURE – controller action filters 147

Role-based access control 151
Protecting the CRM management from CRM users 152

Installing predefined users 153
RBAC managers in Yii 155
The failing test for our role hierarchy 157
Setting up the role hierarchy 159
The failing test for access control in controllers 162
FEATURE – access control filter 165
Applying access control to the site 166

Summary 170

Table of Contents

[iv]

Chapter 7: Modules 173
FEATURE – Yii modules 173

The informal concept of reachability 175
Exploring the intricacies of module configuration through
simple examples 176
The Debug module 180

Building the API module 183
Building a test suite to support testing the API module 184
Defining the requirements for automatic tests of API modules 187
Moving the controller actions to a separate module 191

Retrospective on the modules mentioned in previous chapters 193
Summary 195

Chapter 8: Overall Behavior 197
FEATURE – message log 197

Actually storing the log messages 200
Setting up the e-mailing component so that log messages can be mailed 201

Reading the stored log messages 203
FEATURE – profiling 206
Error handling details 211

FEATURE – error handling controller action 213
List of built-in exceptions 214

Caching 216
FEATURE – cache component 217
FEATURE – database queries caching 220
FEATURE – page fragment caching 221
FEATURE – whole page caching 221
FEATURE – caching the request by HTTP headers 222

Minimizing the assets 223
Summary 232

Chapter 9: Making an Extension 233
Extension idea 233
Creating the extension contents 234

Preparing the boilerplate code for the extension 235
FEATURE – bootstrapping 235
FEATURE – extension registering 237
Making the bootstrap for our extension – hideous attachment
of a controller 238

Making the extension installable as... erm, extension 240
Preparing the correct composer.json manifest 242

Table of Contents

[v]

Configuring the repositories 244
Summary 251

Chapter 10: Events and Behaviors 253
Automatically marking database records with the timestamp
and user ID 253

Test case for customer creation 254
Test case for updating customer updates 257

Preparing the database fields 259
Using the timestamp and blameable behaviors 260

FEATURE – behaviors 263
FEATURE – events 265
Built-in events 270

Events of \yii\base\Application 271
Events of \yii\base\Controller 271
Events of \yii\base\Module 272
Events of \yii\base\View 273
Events of \yii\web\View 274
Events of \yii\base\Model 274
Events of \yii\db\BaseActiveRecord 275
Events of \yii\db\Connection 276
Events of \yii\web\Response 277
Events of \yii\web\User 277
Events of \yii\mail\BaseMailer 278

Summary 278
Chapter 11: The Grid 279

Dismissing of the domain layer 279
Designing for the customers' index 280

Making address, e-mail, and phone active records 281
Making the common base controller for submodels 285
Making relations from customer to address, e-mail address, and phone 288

FEATURE – widgets 290
Creating the index page for customers 292

Making a base GridView for customers 293
Changing the format of the column content 295
FEATURE – formatter 296
Making the custom GridView column for the customer audit info 299
Compressing submodels related to customers into single columns 307
FEATURE – GridView columns 308
Implementing filtering inside GridView of customers 310

Table of Contents

[vi]

Implementing sorting inside GridView of customers 316
Summary 321

Chapter 12: Route Management 323
Yii 2 routing 102 323
FEATURE – routing using names of modules, controllers, and actions 325

Fundamental rules of URL management in Yii 2 326
FEATURE – creating URLs in Yii 327

Custom routes using a configuration 328
FEATURE – URL rules 328

Custom routes using custom URL rule classes 331
Summary 334

Chapter 13: Collaborative Work 335
Configuration construction 336

Adding local overrides to the configuration 337
Console application 341

Custom console commands 342
Database migrations 345

Making custom templates for database migrations 349
Summary 352

Appendix A: Deployment Setup with Vagrant 353
Planning 354
Initial setup 354
Fine-tuning the virtual machine 356

Preparing the guest OS 356
Preparing the database and web server 357
Preparing the application 358

Using the virtual machine as a local deploy target 359
Appendix B: The Active Form Primer 361

Making the Edit form for customer 361
Active query 362
Customizing the autogenerated form 364
Passing the customer ID to submodels 371
Returning to the Update Customer form after updating the submodel 373
Custom column value for the addresses table 374

Index 377

Preface
This book is a guide that describes the process of incremental, test-first development
of a web application using Yii framework Version 2.

The Yii framework, hosted at http://www.yiiframework.com/, is a PHP-based
application framework built around the Model-View-Controller composite pattern.
It is suitable for building both web and console applications, but its feature set makes
it most useful for web applications. It has several code generation facilities, including
the full create-read-update-delete (CRUD) interface maker. It relies heavily on the
conventions expressed in its default configuration settings.

Overall, if all you need is a fancy interface for the underlying database, there
is probably nothing better for you than the Yii framework. Given the extensive
configuration options, any kind of application can be made from Yii.

Version 2 of the Yii framework is built utilizing the latest improvements in the PHP
infrastructure collected over the years. It uses the Composer utility (see https://
getcomposer.org/) as a primary distribution method, PSR levels 1, 2, and 4 from
the PHP Framework Interop Group guidelines (see http://www.php-fig.org/),
and PHP 5.4+ features, such as short array syntax and closures.

At the time of writing, Yii 2 is at the stage of late beta. Some changes are expected,
but there should not be backward-compatibility-breaking changes anymore. Thus,
the content of this book can be reasonably trusted even if the framework can attain
some additional features after this book is published.

What this book covers
Chapter 1, Getting Started, covers the simplest possible methods to raise a working
web application completely from scratch using the Yii framework.

http://www.yiiframework.com/
https://getcomposer.org/
https://getcomposer.org/
http://www.php-fig.org/

Preface

[2]

Chapter 2, Making a Custom Application with Yii 2, shows how the process of
implementation of a web application with a single, working, tested feature can
be done from scratch using the Yii framework.

Chapter 3, Automatically Generating the CRUD Code, shows how we can implement
a working, tested feature in an existing web application using only the code
generation facilities and not a line of custom code written.

Chapter 4, The Renderer, describes the details of how the framework renders its output
and presents some tricks to introduce customizations to the rendering process.

Chapter 5, User Authentication, discusses the tools to provide authentication to
application visitors.

Chapter 6, User Authorization and Access Control, explains the ways to control access
for application visitors, and, especially, about the role-based access control system.

Chapter 7, Modules, returns from the exact features of the framework to its
fundamentals. Here we will clearly understand the internal structure and logic
of the Yii-based application and how it influences the overall design.

Chapter 8, Overall Behavior, is about the infrastructure of the Yii-based application.
We will learn about several features that affect the application as a whole.

Chapter 9, Making an Extension, tells us how to make the extension to the Yii 2
framework and prepare it so that it is installable in the same way as the extensions
built-in to the basic distribution of the framework itself.

Chapter 10, Events and Behaviors, investigates the intricacies of the system inside
the Yii 2 framework allowing us to attach custom behavior to many of the usual
activities of the application, such as fetching a record from the database or rendering
a view file.

Chapter 11, The Grid, has two purposes. First, it explains the powerful and complex
GridView widget, which allows you to make complicated, table-based interfaces
relatively easily. Second, it presents a different approach in developing applications
using the Yii 2 framework, the one that is customary in its community, so you can
see both the advantages and the disadvantages of both approaches.

Chapter 12, Route Management, explains the top level of the framework, that is, how it
responds to HTTP requests from actual visitors.

Chapter 13, Collaborative Work, concludes the book by presenting the methods that
help to manage the code base of a Yii-based application when there are several
developers working on it.

Preface

[3]

Appendix A, Deployment Setup with Vagrant, shows a simple way to construct a virtual
machine for your local development, which you can use for building the examples
from this book.

Appendix B, The Active Form Primer, contains an extension to Chapter 11, The Grid, in
which we use another powerful user interface widget of Yii 2, the ActiveForm. It
was excluded from the chapter text because it's not directly related to the GridView
widget, but we could not gloss over it completely. Without the ActiveForm, the
feature we were building in Chapter 11, The Grid, is not complete.

Through the course of the book, starting from Chapter 2, Making a Custom Application
with Yii 2, we'll be working with a single code base. Later chapters will build over
the work previously done, so the book is expected to be read sequentially, without
skipping or changing order.

Who this book is for
The text is targeted at existing, established developers who want to learn quickly
whether the Yii framework can fit their demands and, especially, workflow. It is not
a reference, but rather a guide. More than that, the reader is expected to have a copy
of the source code and an official documentation as supplementary material
while reading.

We will expect some relatively high qualifications from the reader, as several basic
development concepts such as POSIX-compatible command line, version control
system, deployment pipeline, automated testing harness, and an ability to navigate
through the code base by fully qualified names of classes are assumed as obvious
and not requiring any explanation.

What you need for this book
A workstation with the full LAMP stack installed, that is, having Apache web
server, MySQL relational database management system, and PHP runtime installed
over some Linux-based distribution. If the reader is capable enough, then any of
these requirements can be swapped for different vendors, except PHP, which is
quite obvious.

You have to use PHP Version 5.4 and higher, because it's a requirement for Yii 2,
and generally, you don't have any reason to use previous versions anymore.

Even if you don't use a POSIX-compatible OS, such as any Linux-based distribution
or Mac OS X, you should have a Bash-like shell, as all command-line examples in
this book assume the availability of this shell.

Preface

[4]

An Internet connection is required to download many necessary libraries used
throughout this book. Even if you don't update anything, you'll download
approximately 320 MB of libraries, so mobile Internet probably will not cut it.

Conventions
In this book, you will find a number of styles of text that distinguish between
different kinds of information. Here are some examples of these styles, and an
explanation of their meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows:
"Now run the following command to create a subdirectory called basic, and fill it
with the basic application template."

A block of code is set as follows:

require_once(__DIR__ . '/../../vendor/yiisoft/yii2/Yii.php');
new yii\web\Application(
 require(__DIR__ . '/../../config/web.php')
);

When we wish to draw your attention to a particular part of a code block, the
relevant lines or items are set in bold:

require_once(__DIR__ . '/../../vendor/yiisoft/yii2/Yii.php');
new yii\web\Application(
 require(__DIR__ . '/../../config/web.php')
);

Any command-line input or output is written as follows:

$ php composer.phar require --prefer-dist yiisoft/yii2-debug "*"

New terms and important words are shown in bold. Words that you see on the screen,
in menus or dialog boxes for example, appear in the text like this: "You should fill the
available fields as shown in the following table, and hit the Preview button."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Preface

[5]

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or may have disliked. Reader feedback is important for us
to develop titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com,
and mention the book title via the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide on www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things
to help you to get the most from your purchase.

Downloading the example code
You can download the example code files for all Packt books you have purchased
from your account at http://www.packtpub.com. If you purchased this book
elsewhere, you can visit http://www.packtpub.com/support and register to
have the files e-mailed directly to you.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in the text or
the code—we would be grateful if you would report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
book. If you find any errata, please report them by visiting http://www.packtpub.
com/submit-errata, selecting your book, clicking on the errata submission form link,
and entering the details of your errata. Once your errata are verified, your submission
will be accepted and the errata will be uploaded on our website, or added to any list of
existing errata, under the Errata section of that title. Any existing errata can be viewed
by selecting your title from http://www.packtpub.com/support.

www.packtpub.com/authors
http://www.packtpub.com
http://www.packtpub.com/support
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/support

Preface

[6]

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media.
At Packt, we take the protection of our copyright and licenses very seriously. If you
come across any illegal copies of our works, in any form, on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors, and our ability to bring you
valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem
with any aspect of the book, and we will do our best to address it.

Getting Started
Let's see how we can set up a website with Yii 2 from scratch and with a minimum
amount of effort. The goal is to learn about the installation procedure of the Yii
application boilerplates offered by developers and the starting set of features
provided in them.

A basic application
The most basic and straightforward way to get started with Yii 2 is to use the
application boilerplate published by the Yii 2 team on their GitHub repository
(https://github.com/yiisoft/yii2) and available through the Composer tool.
In the prior versions of Yii, you had to manually download and extract the archive
with the framework contents. While you can still do the same in Yii 2, this version is
carefully crafted so that it's especially simple to install it using the Composer tool.

Installation of a basic application template
Find a suitable directory in your hard drive and fetch the Composer PHP
archive (PHAR) into it in any way suitable for you, for example, using the
following command:

$ curl -sS https://getcomposer.org/installer | php

Now run the following command to create a subdirectory called basic, and fill it
with the basic application template:

$ php composer.phar create-project --prefer-dist --stability=dev \

yiisoft/yii2-app-basic basic

https://github.com/yiisoft/yii2

Getting Started

[8]

Please note that Yii 2 specifies several system-wide dependencies
for itself. You probably will need to consult the composer.json
file inside their GitHub repository to learn about them beforehand
(https://github.com/yiisoft/yii2). But in any case,
Composer will tell you what you need to install to make Yii 2
workable. Yii 2 gets new updates quite often and its requirements
are a moving target.

It's a line split into two lines for readability, with a slash denoting the overflow of the
command line to the next line of text. Shell interpreters on Unix-like systems should
understand this convention, so you can probably just copy and paste the code verbatim
and it'll be executed correctly. You better check the documentation of Composer for
the meaning of the beginning of the preceding command, but the part relevant to us is
yiisoft/yii2-app-basic basic, which means "copy contents of the repo published
at https://github.com/yiisoft/yii2-app-basic to our local folder named
basic." The command will install the project skeleton in the form of a set of predefined
folders, and among them the vendor subdirectory, which contains quite a lot of other
Composer packages. Inside the basic folder will be your application root.

After Composer finishes installing the required packages, you can just issue the
following command:

$ php -S localhost:8000 –t basic/web

Here, 8000 is the port number, which you can change to anything you want.
This will launch the web server built into PHP.

This is not the preferred setup for PHP-based web applications, of
course. The built-in web server was used only as a "smoke test" to
verify that everything in general works. It is suitable only for local
development without a heavy load. The next chapter will deal with
the real-world deployment of a Yii-based web application.

Point your web browser at the http://localhost:8000/ URL. You should see
the welcome page for the Yii 2 application, which means that you're done setting
things up.

https://github.com/yiisoft/yii2
https://github.com/yiisoft/yii2-app-basic
http://localhost:8000/

Chapter 1

[9]

Specifics of the basic application template
You can get a comprehensive overview of the various folders inside the basic
template by reading the README file provided with the template (https://
github.com/yiisoft/yii2/blob/master/apps/basic/README.md), or by reading
the global Yii 2 documentation page describing basic applications (http://www.
yiiframework.com/doc-2.0/guide-start-installation.html).

The most important thing you should understand is that the publicly available web
root directory is just one folder in the overall code base. It's the web directory for our
basic application. Every other folder is outside the web root directory, that is, out of
reach for the web server.

As you have already seen in the installation description, given that you have PHP
and, optionally, curl, this code base is ready to use right from the start; no specific
environment is needed to be set up. All the dependencies are managed through the
Composer tool.

https://github.com/yiisoft/yii2/blob/master/apps/basic/README.md
https://github.com/yiisoft/yii2/blob/master/apps/basic/README.md
http://www.yiiframework.com/doc-2.0/guide-start-installation.html
http://www.yiiframework.com/doc-2.0/guide-start-installation.html

Getting Started

[10]

A three-tier automatic testing harness is already set up in the basic template. It contains
acceptance, functional, and unit tests covering most of the functionalities. The tests
already included in the template are useful as examples that show how to utilize the
testing framework used, which is Codeception (http://codeception.com/).

The template can be really useful to you if all you need is something like a news feed
feature or a web tool spanning a couple of pages. However, the absence of separation
by subsystems, such as the administrative backend and public frontend, will start to
hinder you on a larger web application; probably, an application with more than just
10 unique routes.

Note that by reading the project dependencies in the composer.json file, Yii 2 has
several important parts separated out as pluggable packages, and they are already
included in your code base by Composer. These packages are listed as follows:

• Gii, the code generator, which we will discuss in detail in Chapter 3,
Automatically Generating the CRUD Code

• The debug console that is already enabled on the basic application template
• A wrapper around the Codeception testing framework
• A wrapper around the SwiftMailer library (http://swiftmailer.org/),

which can be found at https://github.com/yiisoft/yii2-swiftmailer
• The Twitter Bootstrap UI library packaged as a Yii 2 asset bundle

(it's practically ubiquitous nowadays, but here's the link anyway:
http://getbootstrap.com/)

The first three are set up so that you get them only when you are developing the
application, since they are useless and even harmful in the production environment.
Most probably, you'll need all of these on any serious project though.

A short overview of the basic application installation:
$ curl -sS https://getcomposer.org/installer | php
$ php composer.phar create-project --prefer-dist \
--stability=dev yiisoft/yii2-app-basic basic
$ php -S localhost:8000 -t basic/web

An advanced application
Apart from the basic application template, Yii 2 has an advanced application
template. It's geared more towards medium-sized applications (such as applications
that are really useful to businesses), and its main feature is two separate web
interfaces: one dedicated to content management and the other to presenting this
content to visitors. So, you get an almost complete CMS skeleton with this template.

http://codeception.com/
http://swiftmailer.org/
https://github.com/yiisoft/yii2-swiftmailer
http://getbootstrap.com/

Chapter 1

[11]

Installation of an advanced application
template
The first steps are the same as for a basic template. You need to fetch the Composer
executable and set up a new project using it:

$ curl -sS https://getcomposer.org/installer | php

$ php composer.phar create-project --prefer-dist --stability=dev \

yiisoft/yii2-app-advanced advanced

You can see that the difference is just that instead of the word "basic", we use the
word "advanced".

Now, let's make further changes. First, go to the newly created directory named
advanced. After this, you need to generate the required local configuration by
running the following command:

$./init

Yes, it's just the init script from the root of the code base. It'll ask you whether
you want a development mode or a production mode and create all the necessary
auxiliary configuration snippets and entry scripts. To be precise, it just copies the
contents of the dev or prod folders from the environments subdirectory depending
on whether you selected the development environment or the production one. Just
open the environments subdirectory and you'll understand how it works.

Next, you need to create the database to be used by this application. By default, for
configuration of a development environment, you have to set up a MySQL database
named yii2advanced accessible from the localhost at the default MySQL port for
user root without any password. You can see the details in the common/config/
main-local.php file.

Given that you have the database set up, you need to run migrations. We'll talk
about migration scripts in the next chapter (and we will even write several scripts
ourselves), but if the very concept of database migrations is foreign to you, you can
read about it in the official documentation at the Yii 2 website (at the time of writing
this, there is no official documentation, but the framework has the docs included
in the GitHub repository at https://github.com/yiisoft/yii2/blob/master/
docs/guide/db-migrations.md).

Just run the following command anyway:

$./yii migrate

https://github.com/yiisoft/yii2/blob/master/docs/guide/db-migrations.md
https://github.com/yiisoft/yii2/blob/master/docs/guide/db-migrations.md

Getting Started

[12]

It'll present you with a list of exactly one migration and ask you for confirmation
before doing its job.

Now, you are ready. Make both the sides of the application accessible for you by
executing the following commands:

$ php -S localhost:8080 -t frontend/web

$ php -S localhost:8081 -t backend/web

As with the basic application template, we are using the built-in PHP web server just
because it's a lot simpler to be demonstrated in the book than explain how to set up
Apache or some other web server to serve from these folders.

Now you'll have the backend side of the application intended to be used by content
managers and the frontend side of the application intended to be the website your
visitors will see. Also, note that you have a completely controllable console runner
launched by the yii script you used when doing migrations.

Advanced application has exactly the same frontend as basic application. Here is
how its backend looks like:

Chapter 1

[13]

The advanced template backend is locked down initially. After logging in, you get
the same page as the one from the basic template or the advanced template frontend,
but with only the login feature in the menu.

Specifics of the advanced application
template
The most important thing about the advanced application template is that it is three
basic application templates wired together as one:

• Inside the frontend folder is the application structure for the public-facing
side of your website. Real functionalities and the content of your website or
web application is expected to be placed here.

• The folder named backend is for your CMS, protected from unauthorized
access. You are expected to place all of your admin-accessible CRUD here.

• The console folder is mainly for your custom console commands, in hope
you'll have any, and a lot more likely, for your migration scripts.

• The common folder contains code that will be used by all the entry points,
since it's a single application after all.

Of course, nobody forces you to use the frontend and backend sides as described.
You just have two web frontends sharing the same code base, so you are free to use
them as you wish. However, the UI already prepared for the advanced template that
has a password-protected backend right from the start.

You should know about the login feature for the freshly installed advanced
application template. Initially, it had no users defined, and you had to create one by
utilizing the signup feature at the frontend. After that, you'll be able to login to both
backend and frontend using the created credentials. The frontend is identical to the
basic application, and the backend is stripped of everything except the login feature
and front page, so everything is up to you.

A short overview of the installation of the advanced application:
$ curl -sS https://getcomposer.org/installer | php
$ php composer.phar create-project --prefer-dist \
--stability=dev yiisoft/yii2-app-advanced advanced
$ cd advanced
$./init
$ mysql -u root -e 'create database yii2advanced'
$./yii migrate
$ php -S localhost:8080 -t frontend/web
$ php -S localhost:8081 -t backend/web

Getting Started

[14]

Summary
Yii 2 allows you to configure almost all paths used by the framework, and hence you
can create any directory tree you wish. By utilizing the PHP 5.3 namespaces wisely,
you can even have a physical structure of your project different from the logical one,
that is, your files will lie in folders differently from how your classes are structured
by namespaces. This will surely be quite tedious to do though.

In the next chapter, we'll look at how we can utilize Yii in a (albeit small) real-world
project, built completely from scratch, and without using the templates we saw in
this chapter.

Making a Custom Application
with Yii 2

In this chapter, we'll see how Yii can help us build web applications. The example
will be reasonably small, but it will be done using proper software engineering
disciplines. We'll go through all the steps of application development, each step
backed by the bleeding-edge best practice described in the definitive books on
this topic:

• Building the domain model: This is explained in Domain-Driven Design:
Tackling Complexity in the Heart of Software, Eric Evans, Addison-Wesley
Professional

• Setting up the testing harness: We'll follow the acceptance test-driven
development practice described in Growing Object-oriented Software, Guided by
Tests, Steve Freeman and Nat Pryce, Addison-Wesley Professional

• Setting up the deployment pipeline: This is explained in the
following books:

 ° Continuous Delivery: Reliable Software Releases through Build, Test, and
Deployment Automation, Jez Humble and David Farley, Addison-Wesley
Professional

 ° Continuous Integration: Improving Software Quality and Reducing Risk,
Paul M. Duvall, Steve Matyas, and Andrew Glover, Addison-Wesley
Professional

Making a Custom Application with Yii 2

[16]

• The Red-Green-Refactor development cycle: This is explained in depth in
the following books:

 ° Clean Code: A Handbook of Agile Software Craftsmanship, Robert Martin,
Prentice Hall

 ° Test-Driven Development by Example, Kent Beck, Addison-Wesley
Professional

• Deployment and manual tests: This fits into the Continuous Delivery
paradigm too, but these steps are inevitable anyway

Stay focused.

The design stage
Pay attention to the fact that we will be using this example application through
the whole book. In this section we'll define the landscape for the whole adventure
before us.

Task at hand
Let's pretend we are a small business providing some services. We have a particular
number of clients we have connections with, and the amount is so large that managing
it on paper and business cards is too unwieldy. So, we need some sort of automated
way of finding the full profile about a given client.

For starters, we need some sort of create-read-update-delete (CRUD) user interface
for simple records describing the most essential attributes of our clients.

It's obvious that as we as a business will grow and evolve, the same will happen with
our client management, and so our application will grow and evolve too. We should
account for changes right from the start.

As we will be eating our own dog food, this software better be of the highest
possible quality.

Domain model design
Obviously, we will be dealing with customer models in our application. Between
the "customer" and "client" terms, we choose "customer" for accuracy.

A customer is a person who has a name, address, e-mail, and phone number at the
minimum. We provide services for customers, which are counted in hours, and we
are being paid fees for these hours according to the contract. That's what we will
include in the first iteration of designing.

Chapter 2

[17]

Our primary assumption is that each customer is a single person, so we don't
deal with companies that can have multiple people as contacts. The name is an
incredibly complex construct; if we are to delve into the details of its structure, such
as honorifics, titles, nicknames, middle names, patronymics, and so on. But we
aren't really interested in the structure of the customer's name, we need it only for
identification purposes. So, we will represent it as a line of text, allowing us to write
a name in free format. The address is a construct of the same complexity, but this
time we have to retain the structure instead of using plain strings again, because we
will need to do two things with addresses:

• Calculate some statistics, such as how many customers we have in
a particular city

• Properly generate the address lines according to the postal rules in
different cultures

So, we decide on the structure as follows:

• Purpose (for example, billing address, shipping address, home address,
or work address)

• Country
• State, for countries partitioned into several regions, such as the USA
• City
• Street
• Building
• Apartment/office
• Receiver name
• Postal code

We should note that an address can be for an apartment, postal box, office in an
office building, employee in an organization, or for a whole building. Also, a
customer can have many addresses.

The phone entity has the following attributes:

• Purpose (personal or work)
• Number

A customer can have several phone numbers, hence the "purpose" field.

Making a Custom Application with Yii 2

[18]

Apart from names, addresses, and phone entities, our staff will surely need a way to
assign a free-form textual description of a customer, which we'll simply name notes.
Also, taking note of a birthday would be cool too. And e-mail, of course. By the way,
a single customer can have several e-mails.

Let's stop here.

We can now figure out the complete aggregate for the customer model, which is
depicted in the following diagram:

Customer

Notes

Name

Email Phone

Address

Birthday

**

*

According to the Eric Evans book Domain-Driven Design, the customer is an entity,
that is, an object whose state will surely change over time, and we care about
its identity across the system. Everything else is a value object, that is, an object
whose state will not change after initial creation, and thus they are completely
interchangeable.

For the sake of simplicity, we will not detail how business is done with the
customer, because we will just not be able to cover it all across this book. However,
let's mention that we have some sort of services we provide to our customers,
and it'll be useful to maintain records of them too. This model will be used in the
following chapter.

Target feature
Let's fulfill one specific task. Given that someone called us by phone (assuming we
have identified the number), we want to get all the details we have gathered so far
about the person who's calling. If we don't have such a number associated with
someone registered in our application, then we know he or she is not our customer
(yet). If we do have the number registered, then we can at least greet this person by
his or her name, which is superb customer service.

Chapter 2

[19]

We should understand that to make queries to the database, we need a way to at
least insert data into it and potentially a way to edit and delete it. Thus, our feature
set for the first iteration of development will be as follows:

• To record info about a customer into the database
• To edit info about a customer in the database
• To delete info about a customer from the database
• To query info about a customer by his or her phone number from

the database

Building the way to make generic queries to a database is not the goal. We will only
deal with the queries containing a phone number.

Let's begin then.

Initial preparations
We will be working on the same application in all of the following chapters until the
end of the book, so the preparations are to be done only once.

Downloading the example code
You can download the example code files for all Packt books you
have purchased from your account at http://www.packtpub.com.
If you purchased this book elsewhere, you can visit http://www.
packtpub.com/support and register to have the files e-mailed
directly to you.

Setting up project management
Our example application is essentially a Customer Relation Management one,
that is, a CRM application. Thus, we will start with a folder named crmapp.

Please note that all examples of command-line invocations
through the whole book assume that your current working
directory is the crmapp folder and not anywhere deeper or
higher in the filesystem hierarchy.

Version 2 of Yii has the Composer package manager as the preferred method of
installation, so we will use this tool too. While you can read the details in Composer's
full documentation, here's a crash course of it:

http://www.packtpub.com
http://www.packtpub.com/support
http://www.packtpub.com/support

Making a Custom Application with Yii 2

[20]

• All packages installed by Composer are kept inside a special subdirectory
under your project's root called vendor.

• All dependencies and other information about your data relevant to
Composer are kept in the manifest file called composer.json under your
project's root. As long as you have the dependencies declared there, you can
safely purge the vendor folder at any time as it'll be repopulated by the next
call to php composer.phar install or php composer.phar update.

The documentation for Composer presents a nice one-line command that will get the
Composer executable to you:

$ curl -sS https://getcomposer.org/installer | php

Of course, if you don't have CURL lying somewhere in your PATH, you can just go
to the official site of Composer at https://getcomposer.org/ and grab the PHAR
archive from there.

After that, Composer will be invoked whenever composer.phar is called:

$ php composer.phar <command>

It is assumed that you use some version control system for your code base. The code
bundle for this book uses Git (http://git-scm.com/).

Preparations in essence
$ mkdir crmapp

$ cd crmapp

$ curl -sS https://getcomposer.org/installer | php

$ git init

Setting up the testing harness
As we declared in the opening paragraph of this chapter, we will follow the test-first
development practice based on acceptance tests. The reasons behind this decision are
as follows:

• We will have a way to check whether the application works as intended
without resorting to tedious manual testing

• We do not have a real need for deep unit testing because most of our work
will involve wiring together already-existing components with rudimentary
logic in between, so end-to-end acceptance tests through the UI is the most
simple and viable solution

https://getcomposer.org/
http://git-scm.com/

Chapter 2

[21]

We need some form of acceptance tests in the system anyway if we care about user
feature requests at all.

Yii 2 has support for the Codeception testing framework built-in, with http://
codeception.com/ being the official website for it. We will never use it in this book,
but the extension named yii2-codeception (see https://github.com/yiisoft/
yii2-codeception) provides a set of helper classes to integrate your tests more
deeply with the Yii framework.

Let's declare that we want Codeception available in our project. Run the
following command:

$ php composer.phar require "codeception/codeception:*"

Wait a bit until Composer finishes.

Here are the contents of your composer.json at this point:
{
 "require": {
 "codeception/codeception": "*",
 }
}

The php composer.phar require <packagename:version>
command is just a helper method to insert lines inside the require
block of the manifest and call the update routine.

Of course, we'll need to add Yii 2 as a dependency at some point, but for now, let's
do one thing at a time.

Now, we have the Codeception executable available at ./vendor/
bin/codecept. This location is a bit long to type, so a POSIX-
compatible shell like bash allows you to reduce it as follows:
$ alias cept="./vendor/bin/codecept"

It's better now. In all of the following command-line examples in this
chapter, we assume you have done this substitution.

Codeception is a complex system, so we'll need to rely on its self-building system
for now. To not delve unnecessarily into the inner workings of Codeception, let's
just stick to defaults. Call the following command:

$ cept bootstrap

This will generate a tests directory and configuration tree for Codeception.

http://codeception.com/
http://codeception.com/
https://github.com/yiisoft/yii2-codeception
https://github.com/yiisoft/yii2-codeception

Making a Custom Application with Yii 2

[22]

Now, let's create the first dummy acceptance test to check the top level of our
test harness:

$ cept generate:cept acceptance SmokeTest

This command will generate SmokeTestCept.php in the tests/acceptance
directory. When you open it, you'll see something like the following, depending
on the version of Codeception:

$I = new AcceptanceTester($scenario);
$I->wantTo('perform actions and see result');

AcceptanceTester is the class of objects holding all the methods we can use to
test our application imitating a real user behind the browser. Codeception also has
CodeGuy for unit tests and TestGuy for functional tests, but that's for later.

When we say AcceptanceTester.wantTo("do something"), we just create a title
(enclosed in double quotes) for the test actions following this invocation.

Let's change the dummy test to a simple smoke test that our landing page is up for:

$I = new AcceptanceTester($scenario);
$I->wantTo('See that landing page is up');
$I->amOnPage('/');
$I->see('Our CRM');

So, we expect to see the line Our CRM when we access the landing page of our
future application. Let's pretend that we'll have such a title somewhere in there.

Now we run the test:

$ cept run

We see it fail because we don't have the web server serving anything on
the / request. Thus, we arrive at the point where we need to write production
code to satisfy our tests. However, right now, it's not the production code we need,
but the infrastructure to serve it. We need a machine to deploy to.

Setting up the deployment pipeline
The problem is described here. The web acceptance tests that we will be writing
imitate a real user who opens the web application in the browser and interacts
with it using the visible UI. So, for them to work, we need an application that is
fully deployed to somewhere accessible from the machine on which we will run
acceptance tests.

Chapter 2

[23]

In most cases, you'll decide to just run the application on the same
machine on which you'll do the source code editing. Wrong! Don't
do it.

Most probably your own workstation is not the same as the machine your web
application will ultimately run on. This has been an ongoing problem in the industry
for decades now, and you can be sure that when your application's lifetime is
measured in years, you will get the same integration problems if you test your
application on the machine with a different environment than the production server.
Of course, this doesn't apply to the prepackaged software that you sell to various
users and when you require portability. In our case, we assume a stationary web
application for a single deploy point, so portability is not an issue, but reproducible
tests are an issue.

Ultimately, your acceptance testing will consist of the following steps:

1. Deploy the application to the test server.
2. Run acceptance tests on your machine.

Of course, you can run acceptance tests on the test server. To do so, you just need to
configure tests to use the usual loopback network interface, localhost. However,
it will require you to install additional software for your test server irrelevant to the
application itself. For example, if you decide to run full-stack, in-browser tests using
Selenium, you'll probably need to install a web browser, Java runtime, and virtual
framebuffer software on the test server, and this will lead to installation of a significant
amount of system-related libraries, which probably is just a waste. It's a lot more
efficient to use your own desktop environment to run the web acceptance tests.

This cannot be said about unit and functional tests, of course. Unit tests, due
to their nature, are run on the raw code base, without the need to deploy at
all. Functional tests should be run on the deployed application because they
are required to test the validity of interactions between the configured and
working parts of the final application.

In any case, ideally you should end with a simple command, named something like
deploy, which will do the following:

1. Access and launch the target machine (especially if it's a virtual
machine instance).

2. Ensure that there is a valid environment expected by the application.
3. Copy the current state of the code base to the target machine.

Making a Custom Application with Yii 2

[24]

4. Configure the copied code base for the environment on the target machine.
5. Launch the application.

You should be able to do all of the preceding steps by typing deploy in the
command line and hitting Enter. As Martin Fowler said in his definitive article
Continuous Integration (seen last time at http://martinfowler.com/articles/
continuousIntegration.html), this should become a non-event for you.
Ideally, deployment should happen automatically when you launch the
acceptance test harness.

In this book, we'll concern ourselves with only the last two steps of the procedure.
As we're working with a PHP application, the "launch the application" step typically
will be completed as soon as we have a web server running on a target machine.

This is a book about web application development and not about system
maintenance, and it's targeted at web developers and not operation engineers.
However, in Appendix A, Deployment Setup with Vagrant, we prepared the description
of one setup based on the usage of a virtual machine, which you can easily repeat
on just any desktop workstation. You will not need a separate physical machine,
and you will still be able to imitate a real-world deploy procedure. If you don't have
other options, you are strongly encouraged to read it. In fact, all of the code in this
book was prepared using the setup described there. Let's pretend that you have an
environment prepared with a deploy command, and for simplicity, we assume it'll
be run before each run of the acceptance testing suite. The result of your deploy
should be the single URL accessible from your machine, which the acceptance
testing harness will use as the entry point to your application.

Now, let's go to the section of Codeception configuration that is relevant for the
acceptance test suite within the file tests/acceptance.suite.yml, and add that
URL in the modules.config.PhpBrowser.url token. The file, assuming you did
not modify anything else and nothing has changed in the default Codeception
installation since this chapter was written, should look like the following:

class_name: AcceptanceTester
modules:
 enabled:
 - PhpBrowser
 - WebHelper
 config:
 PhpBrowser:
 url: 'http://YOUR.APPLICATION.URL'

http://martinfowler.com/articles/continuousIntegration.html
http://martinfowler.com/articles/continuousIntegration.html

Chapter 2

[25]

For example, if you configure the target machine with the Apache web server using
the IP-based virtual host technique (as described at https://httpd.apache.org/
docs/2.2/vhosts/ip-based.html), the modules.config.PhpBrowser.url value
can look like http://127.0.0.1:8000.

As we change the configuration, we should rebuild the Codeception harness. Here is
the command to do it:

$ cept build

Do not forget that cept is an alias we created ourselves. The real executable is in the
./vendor/bin/codecept file.

If you run the tests now:

$ cept run

You will see an output as shown in the following screenshot:

You'll see that Codeception now shows something on the / route but not what
we expected it to. It'll either be a 404 error or 403 error, depending on the version
of Apache used, or maybe something else if you are using a different web server.
Anyway, the root of the problem is simple, that is, we need an index.php file inside
the web-accessible directory.

https://httpd.apache.org/docs/2.2/vhosts/ip-based.html
https://httpd.apache.org/docs/2.2/vhosts/ip-based.html

Making a Custom Application with Yii 2

[26]

Making a web application entry point visible
Let's decide on the convention here: the only folder that will be accessible from
the Web will be called web, placed at the root of the code base. For example, if
your web server is Apache, it'll be the web folder's path that you put into the
DocumentRoot directory.

Given that, just put the following content as the index.php file in the
web subdirectory:

Our CRM

Yes, just a seven-character text file. After all, that's everything our acceptance test
expected, right?

Then we run the tests:

$ cept run

We get the following output:

Now we need to allow ourselves to use Yii 2 in our project. An easy way to do this is
just to write the full, end-to-end test, which describes our desired functionality.

Introducing the Yii framework into our
application
Now that we have the entire supporting infrastructure we need to begin working
with, let's return to our first feature we defined at the design stage and define the
acceptance test for it.

