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Preface
Not a single day passes by that we do not hear about Big Data in the news media, 
technical conferences, and even coffee shops. The ever-increasing amount of data 
collected in process monitoring, research, or simple human behavior becomes 
valuable only if you extract knowledge from it. Machine learning is the essential  
tool to mine data for gold (knowledge).

This book covers the "what", "why", and "how" of machine learning:

• What are the objectives and the mathematical foundation of machine learning?
• Why is Scala the ideal programming language to implement machine 

learning algorithms?
• How can you apply machine learning to solve real-world problems?

Throughout this book, machine learning algorithms are described with diagrams, 
mathematical formulation, and documented snippets of Scala code, allowing you  
to understand these key concepts in your own unique way.

What this book covers
Chapter 1, Getting Started, introduces the basic concepts of statistical analysis, 
classification, regression, prediction, clustering, and optimization. This chapter 
covers the Scala languages features and libraries, followed by the implementation  
of a simple application.

Chapter 2, Hello World!, describes a typical workflow for classification, the concept of 
bias/variance trade-off, and validation using the Scala dependency injection applied 
to the technical analysis of financial markets.
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Chapter 3, Data Preprocessing, covers time series analyses and leverages Scala to 
implement data preprocessing and smoothing techniques such as moving averages, 
discrete Fourier transform, and the Kalman recursive filter.

Chapter 4, Unsupervised Learning, focuses on the implementation of some of the most 
widely used clustering techniques, such as K-means, the expectation-maximization, 
and the principal component analysis as a dimension reduction method.

Chapter 5, Naïve Bayes Classifiers, introduces probabilistic graphical models, and then 
describes the implementation of the Naïve Bayes and the multivariate Bernoulli 
classifiers in the context of text mining.

Chapter 6, Regression and Regularization, covers a typical implementation of the linear 
and least squares regression, the ridge regression as a regularization technique, and 
finally, the logistic regression.

Chapter 7, Sequential Data Models, introduces the Markov processes followed by a full 
implementation of the hidden Markov model, and conditional random fields applied 
to pattern recognition in financial market data.

Chapter 8, Kernel Models and Support Vector Machines, covers the concept of kernel 
functions with implementation of support vector machine classification and 
regression, followed by the application of the one-class SVM to anomaly detection.

Chapter 9, Artificial Neural Networks, describes feed-forward neural networks followed 
by a full implementation of the multilayer perceptron classifier.

Chapter 10, Genetic Algorithms, covers the basics of evolutionary computing and the 
implementation of the different components of a multipurpose genetic algorithm.

Chapter 11, Reinforcement Learning, introduces the concept of reinforcement learning 
with an implementation of the Q-learning algorithm followed by a template to build 
a learning classifier system.

Chapter 12, Scalable Frameworks, covers some of the artifacts and frameworks to create 
scalable applications for machine learning such as Scala parallel collections, Akka, 
and the Apache Spark framework.

Appendix A, Basic Concepts, covers the Scala constructs used throughout the book, 
elements of linear algebra, and an introduction to investment and trading strategies.

Appendix B, References, provides a chapter-wise list of references for [source entry]  
in the respective chapters. This appendix is available as an online chapter at 
https://www.packtpub.com/sites/default/files/downloads/8742OS_
AppendixB_References.pdf.

https://www.packtpub.com/sites/default/files/downloads/8742OS_AppendixB_References.pdf
https://www.packtpub.com/sites/default/files/downloads/8742OS_AppendixB_References.pdf
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Short test applications using financial data illustrate the large variety of predictive, 
regression, and classification models.

The interdependencies between chapters are kept to a minimum. You can easily 
delve into any chapter once you complete Chapter 1, Getting Started, and Chapter 2, 
Hello World!.

What you need for this book
A decent command of the Scala programming language is a prerequisite. Reading 
through a mathematical formulation, conveniently defined in an information box,  
is optional. However, some basic knowledge of mathematics and statistics might  
be helpful to understand the inner workings of some algorithms.

The book uses the following libraries:

• Scala 2.10.3 or higher
• Java JDK 1.7.0_45 or 1.8.0_25
• SBT 0.13 or higher
• JFreeChart 1.0.1
• Apache Commons Math library 3.3 (Chapter 3, Data Preprocessing, Chapter 4, 

Unsupervised Learning, and Chapter 6, Regression and Regularization)
• Indian Institute of Technology Bombay CRF 0.2 (Chapter 7, Sequential  

Data Models)
• LIBSVM 0.1.6 (Chapter 8, Kernel Models and Support Vector Machines)
• Akka 2.2.4 or higher (or Typesafe activator 1.2.10 or higher) (Chapter 12, 

Scalable Frameworks)
• Apache Spark 1.0.2 or higher (Chapter 12, Scalable Frameworks)

Understanding the mathematical formulation of a 
model is optional.

Who this book is for
This book is for software developers with a background in Scala programming who 
want to learn how to create, validate, and apply machine learning algorithms.

The book is also beneficial to data scientists who want to explore functional 
programming or improve the scalability of their existing applications using Scala.



Preface

[ 4 ]

This book is designed as a tutorial with comparative hands-on exercises using 
technical analysis of financial markets.

Conventions
In this book, you will find a number of text styles that distinguish between different 
kinds of information. Here are some examples of these styles and an explanation of 
their meaning.

Code words in text, database table names, folder names, filenames, file extensions, 
pathnames, dummy URLs, user input, and Twitter handles are shown as follows: 
"Finally, the environment variables JAVA_HOME, PATH, and CLASSPATH have to be 
updated accordingly."

A block of code is set as follows:

[default]
val lsp = builder.model(lrJacobian)
                 .weight(wMatrix) 
                 .target(labels)

When we wish to draw your attention to a particular part of a code block,  
the relevant lines or items are set in bold:

[default]
val lsp = builder.model(lrJacobian)
                 .weight(wMatrix)
                  .target(labels)

The source code block is described using a reference number embedded as a  
code comment:

[default]
val lsp = builder.model(lrJacobian)  //1
                 .weight(wMatrix)
                  .target(labels)

The reference number is used in the chapter as follows: "The model instance is 
initialized with the Jacobian matrix, lrJacobian (line 1)."

Any command-line input or output is written as follows:

sbt/sbt assembly
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New terms and important words are shown in bold. Words that you see on the 
screen, for example, in menus or dialog boxes, appear in the text like this: "The loss 
function is then known as the hinge loss."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Mathematical formulas (optional to read) appear in a 
box like this

For the sake of readability, the elements of the Scala code that are not essential to  
the understanding of an algorithm such as class, variable, and method qualifiers  
and validation of arguments, exceptions, or logging are omitted. The convention  
for code snippets is detailed in the Format of code snippets section in Appendix A,  
Basic Concepts.

You will be provided with in-text citation of papers, conference, books, and 
instructional videos throughout the book. The sources are listed in the the  
Appendix B, References using in the following format:

[In-text citation]

For example, in the chapter, you will find an instance as follows:

This time around RSS increases with λ  before reaching a maximum for λ  > 60. This 
behavior is consistent with other findings [6:12].

The respective [source entry] is mentioned in Appendix B, References, as follows:

[6:12] Model selection and assessment H. Bravo, R. Irizarry, 2010, available at http://
www.cbcb.umd.edu/~hcorrada/PracticalML/pdf/lectures/selection.pdf.

http://www.cbcb.umd.edu/~hcorrada/PracticalML/pdf/lectures/selection.pdf
http://www.cbcb.umd.edu/~hcorrada/PracticalML/pdf/lectures/selection.pdf
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Reader feedback
Feedback from our readers is always welcome. Let us know what you think about 
this book—what you liked or disliked. Reader feedback is important for us as it  
helps us develop titles that you will really get the most out of.

To send us general feedback, simply e-mail feedback@packtpub.com, and mention 
the book's title in the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing 
or contributing to a book, see our author guide at www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to 
help you to get the most from your purchase.

Downloading the example code
You can download the example code files from your account at http://www.
packtpub.com for all the Packt Publishing books you have purchased. If you 
purchased this book elsewhere, you can visit http://www.packtpub.com/support 
and register to have the files e-mailed directly to you.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes 
do happen. If you find a mistake in one of our books—maybe a mistake in the text or 
the code—we would be grateful if you could report this to us. By doing so, you can 
save other readers from frustration and help us improve subsequent versions of this 
book. If you find any errata, please report them by visiting http://www.packtpub.
com/submit-errata, selecting your book, clicking on the Errata Submission Form 
link, and entering the details of your errata. Once your errata are verified, your 
submission will be accepted and the errata will be uploaded to our website or added 
to any list of existing errata under the Errata section of that title.

To view the previously submitted errata, go to https://www.packtpub.com/books/
content/support and enter the name of the book in the search field. The required 
information will appear under the Errata section.

www.packtpub.com/authors
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com/support
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
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Piracy
Piracy of copyrighted material on the Internet is an ongoing problem across all 
media. At Packt, we take the protection of our copyright and licenses very seriously. 
If you come across any illegal copies of our works in any form on the Internet, please 
provide us with the location address or website name immediately so that we can 
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected  
pirated material.

We appreciate your help in protecting our authors and our ability to bring you 
valuable content.

Questions
If you have a problem with any aspect of this book, you can contact us at 
questions@packtpub.com, and we will do our best to address the problem.





Getting Started
It is critical for any computer scientist to understand the different classes of machine 
learning algorithms and be able to select the ones that are relevant to the domain of 
their expertise and dataset. However, the application of these algorithms represents 
a small fraction of the overall effort needed to extract an accurate and performing 
model from input data. A common data mining workflow consists of the following 
sequential steps:

1. Loading the data.
2. Preprocessing, analyzing, and filtering the input data.
3. Discovering patterns, affinities, clusters, and classes.
4. Selecting the model features and the appropriate machine learning 

algorithm(s).
5. Refining and validating the model.
6. Improving the computational performance of the implementation.

As we will emphasize throughout this book, each stage of the process is critical to 
build the right model.

This first chapter introduces you to the taxonomy of machine learning algorithms, 
the tools and frameworks used in the book, and a simple application of logistic 
regression to get your feet wet.
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Mathematical notation for the curious
Each chapter contains a small section dedicated to the formulation of the algorithms 
for those interested in the mathematical concepts behind the science and art of 
machine learning. These sections are optional and defined within a tip box. For 
example, the mathematical expression of the mean and the variance of a variable  
X mentioned in a tip box will be as follows:

Mean value of a variable X = {x} is defined as:

The variance of a variable X = {x} is defined as:

Why machine learning?
The explosion in the number of digital devices generates an ever-increasing amount 
of data. The best analogy I can find to describe the need, desire, and urgency to 
extract knowledge from large datasets is the process of extracting a precious metal 
from a mine, and in some cases, extracting blood from a stone.

Knowledge is quite often defined as a model that can be constantly updated or 
tweaked as new data comes into play. Models are obviously domain-specific ranging 
from credit risk assessment, face recognition, maximization of quality of service, 
classification of pathological symptoms of disease, optimization of computer networks, 
and security intrusion detection, to customers' online behavior and purchase history.

Machine learning problems are categorized as classification, prediction, optimization, 
and regression.

Classification
The purpose of classification is to extract knowledge from historical data. For 
instance, a classifier can be built to identify a disease from a set of symptoms. The 
scientist collects information regarding the body temperature (continuous variable), 
congestion (discrete variables HIGH, MEDIUM, and LOW), and the actual diagnostic 
(flu). This dataset is used to create a model such as IF temperature > 102 AND 
congestion = HIGH THEN patient has the flu (probability 0.72), which 
doctors can use in their diagnostic.
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Prediction
Once the model is extracted and validated against the past data, it can be used to 
draw inference from the future data. A doctor collects symptoms from a patient,  
such as body temperature and nasal congestion, and anticipates the state of  
his/her health.

Optimization
Some global optimization problems are intractable using traditional linear and  
non-linear optimization methods. Machine learning techniques improve the chances 
that the optimization method converges toward a solution (intelligent search). You 
can imagine that fighting the spread of a new virus requires optimizing a process 
that may evolve over time as more symptoms and cases are uncovered.

Regression
Regression is a classification technique that is particularly suitable for a continuous 
model. Linear (least square), polynomial, and logistic regressions are among the 
most commonly used techniques to fit a parametric model, or function, y= f (xj), to a 
dataset. Regression is sometimes regarded as a specialized case of classification for 
which the output variables are continuous instead of categorical.

Why Scala?
Like most functional languages, Scala provides developers and scientists with a 
toolbox to implement iterative computations that can be easily woven dynamically 
into a coherent dataflow. To some extent, Scala can be regarded as an extension of 
the popular MapReduce model for distributed computation of large amounts of data. 
Among the capabilities of the language, the following features are deemed essential 
to machine learning and statistical analysis.

Abstraction
Monoids and monads are important concepts in functional programming.  
Monads are derived from the category and group theory allowing developers to 
create a high-level abstraction as illustrated in Twitter's Algebird (https://github.
com/twitter/algebird) or Google's Breeze Scala (https://github.com/dlwh/
breeze) libraries.

A monoid defines a binary operation op on a dataset T with the property of closure, 
identity operation, and associativity.

https://github.com/twitter/algebird
https://github.com/twitter/algebird
https://github.com/dlwh/breeze
https://github.com/dlwh/breeze
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Let's consider the + operation is defined for a set T using the following  
monoidal representation:

trait Monoid[T] {
  def zero: T 
  def op(a: T, b: T): c 
}

Monoids are associative operations. For instance, if ts1, ts2, and ts3 are three 
time series, then the property ts1 + (ts2 + ts3) = (ts1 + ts2) + ts2 is true. 
The associativity of a monoid operator is critical in regards to parallelization of 
computational workflows.

Monads are structures that can be seen either as containers by programmers or as  
a generalization of Monoids. The collections bundled with the Scala standard library 
(list, map, and so on) are constructed as monads [1:1]. Monads provide the ability  
for those collections to perform the following functions:

1. Create the collection.
2. Transform the elements of the collection.
3. Flatten nested collections.

A common categorical representation of a monad in Scala is a trait, Monad, 
parameterized with a container type M:

trait Monad[M[_]] {
  def apply[T])(a: T): M[T] 
  def flatMap[T, U](m: M[T])(f: T=>M[U]): M[U] 
}

Monads allow those collections or containers to be chained to generate a workflow. 
This property is applicable to any scientific computation [1:2].

Scalability
As seen previously, monoids and monads enable parallelization and chaining of 
data processing functions by leveraging the Scala higher-order methods. In terms 
of implementation, Actors are the core elements that make Scala scalable. Actors act 
as coroutines, managing the underlying threads pool. Actors communicate through 
passing asynchronous messages. A distributed computing Scala framework such 
as Akka and Spark extends the capabilities of the Scala standard library to support 
computation on very large datasets. Akka and Spark are described in detail in the 
last chapter of this book [1:3].
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In a nutshell, a workflow is implemented as a sequence of activities or computational 
tasks. Those tasks consist of high-order Scala methods such as flatMap, map, fold, 
reduce, collect, join, or filter applied to a large collection of observations. Scala 
allows these observations to be partitioned by executing those tasks through a cluster 
of actors. Scala also supports message dispatching and routing of messages between 
local and remote actors. The engineers can decide to execute a workflow either locally 
or distributed across CPU cores and servers with no code or very little code changes.

Deployment of a workflow as a distributed computation

In this diagram, a controller, that is, the master node, manages the sequence of 
tasks 1 to 4 similar to a scheduler. These tasks are actually executed over multiple 
worker nodes that are implemented by the Scala actors. The master node exchanges 
messages with the workers to manage the state of the execution of the workflow 
as well as its reliability. High availability of these tasks is implemented through a 
hierarchy of supervising actors.

Configurability
Scala supports dependency injection using a combination of abstract variables, 
self-referenced composition, and stackable traits. One of the most commonly used 
dependency injection patterns, the cake pattern, is used throughout this book to 
create dynamic computation workflows and plots.
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Maintainability
Scala embeds Domain Specific Languages (DSL) natively. DSLs are syntactic layers 
built on top of Scala native libraries. DSLs allow software developers to abstract 
computation in terms that are easily understood by scientists. The most notorious 
application of DSLs is the definition of the emulation of the syntax used in the 
MATLAB program, which data scientists are familiar with.

Computation on demand
Lazy methods and values allow developers to execute functions and allocate 
computing resources on demand. The Spark framework relies on lazy variables  
and methods to chain Resilient Distributed Datasets (RDD).

Model categorization
A model can be predictive, descriptive, or adaptive.

Predictive models discover patterns in historical data and extract fundamental 
trends and relationships between factors. They are used to predict and classify  
future events or observations. Predictive analytics is used in a variety of fields  
such as marketing, insurance, and pharmaceuticals. Predictive models are created 
through supervised learning using a preselected training set.

Descriptive models attempt to find unusual patterns or affinities in data by grouping 
observations into clusters with similar properties. These models define the first level 
in knowledge discovery. They are generated through unsupervised learning.

A third category of models, known as adaptive modeling, is generated through 
reinforcement learning. Reinforcement learning consists of one or several  
decision-making agents that recommend and possibly execute actions in  
the attempt of solving a problem, optimizing an objective function, or  
resolving constraints.
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Taxonomy of machine learning 
algorithms
The purpose of machine learning is to teach computers to execute tasks without 
human intervention. An increasing number of applications such as genomics, social 
networking, advertising, or risk analysis generate a very large amount of data that 
can be analyzed or mined to extract knowledge or provide insight into a process, 
a customer, or an organization. Ultimately, machine learning algorithms consist 
of identifying and validating models to optimize a performance criterion using 
historical, present, and future data [1:4].

Data mining is the process of extracting or identifying patterns in a dataset.

Unsupervised learning
The goal of unsupervised learning is to discover patterns of regularities and 
irregularities in a set of observations. The process known as density estimation 
in statistics is broken down into two categories: discovery of data clusters and 
discovery of latent factors. The methodology consists of processing input data to 
understand patterns similar to the natural learning process in infants or animals. 
Unsupervised learning does not require labeled data, and therefore, is easy to 
implement and execute because no expertise is needed to validate an output. 
However, it is possible to label the output of a clustering algorithm and use it for 
future classification.

Clustering
The purpose of data clustering is to partition a collection of data into a number of 
clusters or data segments. Practically, a clustering algorithm is used to organize 
observations into clusters by minimizing the observations within a cluster and 
maximizing the observations between clusters. A clustering algorithm consists  
of the following steps:

1. Creating a model by making an assumption on the input data.
2. Selecting the objective function or goal of the clustering.
3. Evaluating one or more algorithms to optimize the objective function.

Data clustering is also known as data segmentation or data partitioning.
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Dimension reduction
Dimension reduction techniques aim at finding the smallest but most relevant set 
of features that models dataset reliability. There are many reasons for reducing the 
number of features or parameters in a model, from avoiding overfitting to reducing 
computation costs.

There are many ways to classify the different techniques used to extract knowledge 
from data using unsupervised learning. The following taxonomy breaks down these 
techniques according to their purpose, although the list is far for being exhaustive, as 
shown in the following diagram:

Supervised learning
The best analogy for supervised learning is function approximation or curve fitting. 
In its simplest form, supervised learning attempts to extract a relation or function f 
x → y from a training set {x, y}. Supervised learning is far more accurate and reliable 
than any other learning strategy. However, a domain expert may be required to label 
(tag) data as a training set for certain types of problems.

Supervised machine learning algorithms can be broken into two categories:

• Generative models
• Discriminative models

Generative models
In order to simplify the description of statistics formulas, we adopt the following 
simplification: the probability of an event X is the same as the probability of the 
discrete random variable X to have a value x, p(X) = p(X=x). The notation of joint 
probability (resp. conditional probability) becomes p(X, Y) = p(X=x, Y=y) (resp. 
p(X|Y)=p(X=x | Y=y).
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Generative models attempt to fit a joint probability distribution, p(X,Y), of two events 
(or random variables), X and Y, representing two sets of observed and hidden (latent) 
variables x and y. Discriminative models learn the conditional probability p(Y|X) of an 
event or random variable Y of hidden variables y, given an event or random variable 
X of observed variables x. Generative models are commonly introduced through the 
Bayes' rule. The conditional probability of an event Y, given an event X, is computed 
as the product of the conditional probability of the event X, given the event Y, and the 
probability of the event X normalized by the probability of event Y [1:5].

Join probability (if X and Y are independent):

Conditional probability:

The Bayes' rule:

The Bayes' rule is the foundation of the Naïve Bayes classifier, which is the topic of 
Chapter 5, Naïve Bayes Classifiers.

Discriminative models
Contrary to generative models, discriminative models compute the conditional 
probability p(Y|X) directly, using the same algorithm for training and classification.

Generative and discriminative models have their respective advantages and 
drawbacks. Novice data scientists learn to match the appropriate algorithm to each 
problem through experimentation. Here is a brief guideline describing which type of 
models makes sense according to the objective or criteria of the project:

Objective Generative models Discriminative models
Accuracy Highly dependent on the 

training set.
Probability estimates tend to be 
more accurate.

Modeling 
requirements

There is a need to model both 
observed and hidden variables, 
which requires a significant 
amount of training.

The quality of the training set 
does not have to be as rigorous 
as for generative models.
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Objective Generative models Discriminative models
Computation cost This is usually low. For 

example, any graphical method 
derived from the Bayes' rule 
has low overhead.

Most algorithms rely on 
optimization of a convex 
that introduces significant 
performance overhead.

Constraints These models assume some 
degree of independence among 
the model features.

Most discriminative algorithms 
accommodate dependencies 
between features.

We can further refine the taxonomy of supervised learning algorithms by segregating 
between sequential and random variables for generative models and breaking down 
discriminative methods as applied to continuous processes (regression) and discrete 
processes (classification):

Reinforcement learning
Reinforcement learning is not as well understood as supervised and unsupervised 
learning outside the realms of robotics or game strategy. However, since the 90s, 
genetic-algorithms-based classifiers have become increasingly popular to solve 
problems that require collaboration with a domain expert. For some types of 
applications, reinforcement learning algorithms output a set of recommended 
actions for the adaptive system to execute. In its simplest form, these algorithms 
compute or estimate the best course of action. Most complex systems based on 
reinforcement learning establish and update policies that can be vetoed by an expert. 
The foremost challenge developers of reinforcement learning systems face is that the 
recommended action or policy may depend on partially observable states and how to 
deal with uncertainty.
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Genetic algorithms are not usually considered part of the reinforcement learning 
toolbox. However, advanced models such as learning classifier systems use genetic 
algorithms to classify and reward the rules and policies.

As with the two previous learning strategies, reinforcement learning models can be 
categorized as Markovian or evolutionary:

This is a brief overview of machine learning algorithms with a suggested taxonomy. 
There are almost as many ways to introduce machine learning as there are data and 
computer scientists. We encourage you to browse through the list of references at the 
end of the book and find the documentation appropriate to your level of interest and 
understanding.

Tools and frameworks
Before getting your hands dirty, you need to download and deploy a minimum set 
of tools and libraries so as not to reinvent the wheel. A few key components have to 
be installed in order to compile and run the source code described throughout the 
book. We focus on open source and commonly available libraries, although you are 
invited to experiment with equivalent tools of your choice. The learning curve for the 
frameworks described here is minimal.

Java
The code described in the book has been tested with JDK 1.7.0_45 and JDK 1.8.0_25 
on Windows x64 and MacOS X x64 . You need to install the Java Development Kit if 
you have not already done so. Finally, the environment variables JAVA_HOME, PATH, 
and CLASSPATH have to be updated accordingly.
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Scala
The code has been tested with Scala 2.10.4. We recommend using Scala version 
2.10.3 or higher and SBT 0.13 or higher. Let's assume that Scala runtime (REPL) 
and libraries have been properly installed and environment variables SCALA_HOME 
and PATH have been updated. The description and installation instructions of the 
Scala plugin for Eclipse are available at http://scala-ide.org/docs/user/
gettingstarted.html.

You can also download the Scala plugin for Intellij IDEA from the JetBrains website 
at http://confluence.jetbrains.com/display/SCA/.

The ubiquitous simple build tool (sbt) will be our primary building engine.  
The syntax of the build file sbt/build.sbt conforms to version 0.13, and is  
used to compile and assemble the source code presented throughout this book.

Apache Commons Math
Apache Commons Math is a Java library for numerical processing, algebra, statistics, 
and optimization [1:6].

Description
This is a lightweight library that provides developers with a foundation of small, 
ready-to-use Java classes that can be easily weaved into a machine learning problem. 
The examples used throughout the book require version 3.3 or higher.

The main components of Apache Commons Math are:

• Functions, differentiation, and integral and ordinary differential equations
• Statistics distribution
• Linear and nonlinear optimization
• Dense and Sparse vectors and matrices
• Curve fitting, correlation, and regression

For more information, visit http://commons.apache.org/proper/commons-math.

Licensing
We need Apache Public License 2.0; the terms are available at http://www.apache.
org/licenses/LICENSE-2.0.

http://scala-ide.org/docs/user/gettingstarted.html
http://scala-ide.org/docs/user/gettingstarted.html
http://confluence.jetbrains.com/display/SCA/
http://commons.apache.org/proper/commons-math
http://www.apache.org/licenses/LICENSE-2.0
http://www.apache.org/licenses/LICENSE-2.0
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Installation
The installation and deployment of the Commons Math library are quite simple:

1. Go to the download page, http://commons.apache.org/proper/commons-
math/download_math.cgi.

2. Download the latest .jar files in the Binaries section, commons-math3-3.3-
bin.zip (for version 3.3, for instance).

3. Unzip and install the .jar files.
4. Add commons-math3-3.3.jar to classpath as follows:

 ° For Mac OS X, use the command export CLASSPATH=$CLASSPATH:/
Commons_Math_path/commons-math3-3.3.jar

 ° For Windows, navigate to System property | Advanced system 
settings | Advanced | Environment variables…, then edit the  
entry of the CLASSPATH variable

5. Add the commons-math3-3.3.jar file to your IDE environment if needed 
(that is, for Eclipse, navigate to Project | Properties | Java Build Path | 
Libraries | Add External JARs).

You can also download commons-math3-3.3-src.zip from the Source section.

JFreeChart
JFreeChart is an open source chart and plotting Java library, widely used in the Java 
programmer community. It was originally created by David Gilbert [1:7].

Description
The library supports a variety of configurable plots and charts (scatter, dial, pie, area, 
bar, box and whisker, stacked, and 3D). We use JFreeChart to display the output 
of data processing and algorithms throughout the book, but you are encouraged to 
explore this great library on your own, as time permits.

Licensing
It is distributed under the terms of the GNU Lesser General Public License (LGPL), 
which permits its use in proprietary applications.

http://commons.apache.org/proper/commons-math/download_math.cgi
http://commons.apache.org/proper/commons-math/download_math.cgi
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Installation
To install and deploy JFreeChart, perform the following steps:

1. Visit http://www.jfree.org/jfreechart.
2. Download the latest version from Source Forge at http://sourceforge.

net/projects/jfreechart/files.
3. Unzip and install the .jar file.
4. Add jfreechart-1.0.17.jar (for version 1.0.17) to classpath as follows:

 ° For Mac OS, update the classpath by using export 
CLASSPATH=$CLASSPATH:/JFreeChart_path/ jfreechart-1.0.17.
jar

 ° For Windows, go to System property | Advanced system settings | 
Advanced | Environment variables… and then edit the entry of the 
CLASSPATH variable

5. Add the jfreechart-1.0.17.jar file to your IDE environment, if needed.

Other libraries and frameworks
Libraries and tools that are specific to a single chapter are introduced along with 
the topic. Scalable frameworks are presented in the last chapter along with the 
instructions to download them. Libraries related to the conditional random fields 
and support vector machines are described in the respective chapters.

Why not use Scala algebra and numerical libraries
Libraries such as Breeze, ScalaNLP, and Algebird are great Scala 
frameworks for linear algebra, numerical analysis, and machine 
learning. They provide even the most seasoned Scala programmer 
with a high-quality layer of abstraction. However, this book is 
designed as a tutorial that allows developers to write algorithms 
from the ground up using simple common Java libraries [1:8].

Source code
The Scala programming language is used to implement and evaluate the machine 
learning techniques presented in this book. Only a subset of the source code used 
to implement the techniques are presented in the book. The formal implementation 
of these algorithms is available on the website of Packt Publishing (http://www.
packtpub.com).

http://www.jfree.org/jfreechart
http://sourceforge.net/projects/jfreechart/files
http://sourceforge.net/projects/jfreechart/files
http://www.packtpub.com
http://www.packtpub.com
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Downloading the example code
You can download the example code files for all Packt books you 
have purchased from your account at http://www.packtpub.com. 
If you purchased this book elsewhere, you can visit http://www.
packtpub.com/support and register to have the files e-mailed 
directly to you.

Context versus view bounds
Most Scala classes discussed in the book are parameterized with the type  
associated to the discrete/categorical value (Int) or continuous value (Double). 
Context bounds would require that any type used by the client code has Int or 
Double as upper bounds:

class MyClassInt[T <: Int]
class MyClassFloat[T <: Double]

Such a design introduces constraints on the client to inherit from simple types and to 
deal with covariance and contravariance for container types [1:9].

For this book, view bounds are used instead of context bounds only where they 
require an implicit conversion to the parameterized type to be defined:

Class MyClassFloat[T <% Double]
implicit def T2Double(t : T): Double

Presentation
For the sake of readability of the implementation of algorithms, all nonessential code 
such as error checking, comments, exceptions, or imports are omitted. The following 
code elements are discarded in the code snippet presented in the book:

• Code comments
• Validation of class parameters and method arguments:

class BaumWelchEM(val lambda: HMMLambda ...) {
   require( lambda != null, "Lambda model is undefined")

• Exceptions and an exception handler:
   try { .. }
   catch {
      case e: ArrayIndexOutOfBoundsException  =>println(e.
toString)
    }

http://www.packtpub.com
http://www.packtpub.com/support
http://www.packtpub.com/support
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• Nonessential annotation:
   @inline def mean = ..

• Logging and debugging code:
       m_logger.debug( …)

• Private and nonessential methods

Primitives and implicits
The algorithms presented in this book share the same primitive types, generic 
operators, and implicit conversions.

Primitive types
For the sake of readability of the code, the following primitive types will be used:

type XY = (Double, Double)
type XYTSeries = Array[(Double, Double)]
type DMatrix[T] = Array[Array[T]]
type DVector[T] = Array[T]  
type DblMatrix = DMatrix[Double]
type DblVector = Array[Double]

The types have the behavior (methods) of their primitive counterpart (array). 
However, adding a new functionality to vectors, matrices, and time series requires 
classes of their own right. These classes will be introduced in the next chapter.

Type conversions
Implicit conversion is an important feature of the Scala programming language 
because it allows developers to specify a type conversion for an entire library  
in a single place. Here are a few of the implicit type conversions used throughout  
the book:

implicit def int2Double(n: Int): Double = n.toDouble
implicit def vectorT2DblVector[T <% Double](vt: DVector[T]): DblVector 
= vt.map( t => t.toDouble)
implicit def double2DblVector(x: Double): DblVector = Array[Double](x)
implicit def dblPair2DbLVector(x: (Double, Double)): DblVector = 
Array[Double](x._1,x._2)
implicit def dblPairs2DblRows(x: (Double, Double)): DblMatrix = 
Array[Array[Double]](Array[Double](x._1, x._2))
...
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Library-specific conversion
The conversion between the primitive type listed here and 
types introduced in a particular library (such as Apache 
Commons Math) is declared in future chapters the first 
time those libraries are used.

Operators
Lastly, some operations are applied by multiple machine learning or preprocessing 
algorithms. They need to be defined implicitly. The operation on a pair of a vector of 
arbitrary type and vector of Double is defined as follows:

def Op[T <% Double](v: DVector[T], w: DblVector, op: (T, Double) => 
Double): DblVector = 
   v.zipWithIndex.map(x => op(x._1, w(x._2)))

It is also convenient to define the following operators that are included in the Scala 
standard library:

implicit def /(v: DblVector, n: Int):DblVector = v.map( x => x/n)
implicit def /(m: DblMatrix, col: Int, z: Double): DblMatrix = { (0 
until m(n).size).foreach(i => m(n)(i) /= z)  }

We won't have to redefine the types, conversions, and operators from now on.

Immutability
It is usually a good idea to reduce the number of states of an object. Method 
invocation transitions an object from one state to another. The larger the number  
of methods or states, the more cumbersome the testing process becomes.

There is no point in creating a model that is not defined (trained). Therefore, making 
the training of a model as part of the constructor of the class it implements makes a 
lot of sense. Therefore, the only public methods of a machine learning algorithm are:

• Classification or prediction
• Validation
• Retrieval of model parameters (weights, latent variables, hidden states, and 

so on), if needed
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Performance of Scala iterators
The evaluation of the performance of Scala high-order iterative methods is beyond 
the scope of this book. However, it is important to be aware of the trade-off of  
each method.

The for loop construct is to be avoided as a counting iterator except if it is used  
in conjunction with yield. It is designed to implement the for-comprehension 
monad (map-flatMap). The source code presented in this book uses the while  
and foreach constructs.

Scala reducer methods reduce and fold are also frequently used for their efficiency.

Let's kick the tires
This final section introduces the key elements of the training and classification 
workflow. A test case using a simple logistic regression is used to illustrate each  
step of the computational workflow.

Overview of computational workflows
In its simplest form, a computational workflow to perform runtime processing of a 
dataset is composed of the following stages:

1. Loading the dataset from files, databases, or any streaming devices.
2. Splitting the dataset for parallel data processing.
3. Preprocessing data using filtering techniques, analysis of variance, and 

applying penalty and normalization functions whenever necessary.
4. Applying the model, either a set of clusters or classes to classify new data.
5. Assessing the quality of the model.

A similar sequence of tasks is used to extract a model from a training dataset:

1. Loading the dataset from files, databases, or any streaming devices.
2. Splitting the dataset for parallel data processing.
3. Applying filtering techniques, analysis of variance, and penalty and 

normalization functions to the raw dataset whenever necessary.
4. Selecting the training, testing, and validation set from the cleansed input data.
5. Extracting key features, establishing affinity between a similar group of 

observations using clustering techniques or supervised learning algorithms.
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6. Reducing the number of features to a manageable set of attributes to avoid 
overfitting the training set.

7. Validating the model and tuning the model by iterating steps 5, 6, and 7 until 
the error meets criteria.

8. Storing the model into the file or database to be loaded for runtime 
processing of new observations.

Data clustering and data classification can be performed independent of each other 
or as part of a workflow that uses clustering techniques as a preprocessing stage 
of the training phase of a supervised learning algorithm. Data clustering does 
not require a model to be extracted from a training set, while classification can be 
performed only if a model has been built from the training set. The following image 
gives an overview of training and classification:

A generic data flow for training and running a model

This diagram is an overview of a typical data mining processing pipeline.  
The first phase consists of extracting the model through clustering or training  
of a supervised learning algorithm. The model is then validated against test data,  
for which the source is the same as the training set but with different observations. 
Once the model is created and validated, it can be used to classify real-time data 
or predict future behavior. In reality, real-world workflows are more complex 
and require being dynamically configurable to allow experimentation of different 
models. Several alternative classifiers can be used to perform a regression and 
different filtering algorithms are applied against input data depending of the  
latent noise in the raw data.


