

Scala for Machine Learning

Leverage Scala and Machine Learning to construct and
study systems that can learn from data

Patrick R. Nicolas

BIRMINGHAM - MUMBAI

Scala for Machine Learning

Copyright © 2014 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the author, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: December 2014

Production reference: 1121214

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78355-874-2

www.packtpub.com

www.packtpub.com

Credits

Author
Patrick R. Nicolas

Reviewers
Subhajit Datta

Rui Gonçalves

Patricia Hoffman, PhD

Md Zahidul Islam

Commissioning Editor
Owen Roberts

Acquisition Editor
Owen Roberts

Content Development Editor
Mohammed Fahad

Technical Editors
Madhuri Das

Taabish Khan

Copy Editors
Janbal Dharmaraj

Vikrant Phadkay

Project Coordinator
Danuta Jones

Proofreaders
Simran Bhogal

Maria Gould

Paul Hindle

Elinor Perry-Smith

Chris Smith

Indexer
Mariammal Chettiyar

Graphics
Sheetal Aute

Valentina D'silva

Disha Haria

Abhinash Sahu

Production Coordinator
Arvindkumar Gupta

Cover Work
Arvindkumar Gupta

About the Author

Patrick R. Nicolas is a lead R&D engineer at Dell in Santa Clara, California.
He has 25 years of experience in software engineering and building large-scale
applications in C++, Java, and Scala, and has held several managerial positions.
His interests include real-time analytics, modeling, and optimization.

Special thanks to the Packt Publishing team: Mohammed Fahad for
his patience and encouragement, Owen Roberts for the opportunity,
and the reviewers for their guidance and dedication.

About the Reviewers

Subhajit Datta is a passionate software developer.

He did his Bachelor of Engineering in Information Technology (BE in IT) from Indian
Institute of Engineering Science and Technology, Shibpur (IIEST, Shibpur), formerly
known as Bengal Engineering and Science University, Shibpur.

He completed his Master of Technology in Computer Science and Engineering
(MTech CSE) from Indian Institute of Technology Bombay (IIT Bombay); his
thesis focused on topics in natural language processing.

He has experience working in the investment banking domain and web application
domain, and is a polyglot having worked on Java, Scala, Python, Unix shell scripting,
VBScript, JavaScript, C#.Net, and PHP. He is interested in learning and applying
new and different technologies.

He believes that choosing the right programming language, tool, and framework for
the problem at hand is more important than trying to fit all problems in one technology.

He also has experience working in the Waterfall and Agile processes. He is excited
about the Agile software development processes.

Rui Gonçalves is an all-round, hardworking, and dedicated software engineer.
He is an enthusiast of software architecture, programming paradigms, algorithms,
and data structures with the ambition of developing products and services that
have a great impact on society.

He currently works at ShiftForward, where he is a software engineer in the online
advertising field. He is focused on designing and implementing highly efficient,
concurrent, and scalable systems as well as machine learning solutions. In order
to achieve this, he uses Scala as the main development language of these systems
on a day-to-day basis.

Patricia Hoffman, PhD, is a consultant at iCube Consulting Service Inc., with
over 25 years of experience in modeling and simulation, of which the last six years
concentrated on machine learning and data mining technologies. Her software
development experience ranges from modeling stochastic partial differential equations
to image processing. She is currently an adjunct faculty member at International
Technical University, teaching machine learning courses. She also teaches machine
learning and data mining at the University of California, Santa Cruz—Silicon Valley
Campus. She was Chair of Association for Computing Machinery of the Data Mining
Special Interest Group for the San Francisco Bay area for 5 years, organizing monthly
lectures and five data mining conferences with over 350 participants.

Patricia has a long list of significant accomplishments. She developed the architecture
and software development plan for a collaborative recommendation system
while consulting as a data mining expert for Quantum Capital. While consulting
for Revolution Analytics, she developed training materials for interfacing the R
statistical language with IBM's Netezza data warehouse appliance.

She has also set up the systems used for communication and software development
along with technical coordination for GTECH, a medical device start-up.

She has also technically directed, produced, and managed operations concepts
and architecture analysis for hardware, software, and firmware. She has performed
risk assessments and has written qualification letters, proposals, system specs, and
interface control documents. Also, she has coordinated with subcontractors, associate
contractors, and various Lockheed departments to produce analysis, documents,
technology demonstrations, and integrated systems. She was the Chief Systems
Engineer for a $12 million image processing workstation development, and had
scored 100 percent from the customer.

The various contributions of Patricia to the publications field are as follows:

• A unified view on the rotational symmetry of equilibria of nematic polymers, dipolar
nematic polymers, and polymers in higher dimensional space, Communications in
Mathematical Sciences, Volume 6, 949-974

• She worked as a technical editor on the book Machine Learning in Action, Peter
Harrington, Manning Publications Co.

• A Distributed Architecture for the C3 I (Command, Control, Communications,
and Intelligence) Collection Management Expert System, with Allen Rude,
AIC Lockheed

• A book review of computer-supported cooperative work, ACM/SIGCHI
Bulletin, Volume 21, Issue 2, pages 125-128, ISSN:0736-6906, 1989

Md Zahidul Islam is a software developer working for HSI Health and lives in
Concord, California, with his wife.

He has a passion for functional programming, machine learning, and working
with data. He is currently working with Scala, Apache Spark, MLlib, Ruby on Rails,
ElasticSearch, MongoDB, and Backbone.js. Earlier in his career, he worked with C#,
ASP.NET, and everything around the .NET ecosystem.

I would like to thank my wife, Sandra, who lovingly supports me in
everything I do. I'd also like to thank Packt Publishing and its staff
for the opportunity to contribute to this book.

www.PacktPub.com

Support files, eBooks, discount offers, and more
For support files and downloads related to your book, please visit www.PacktPub.com.

Did you know that Packt offers eBook versions of every book published, with PDF
and ePub files available? You can upgrade to the eBook version at www.PacktPub.com
and as a print book customer, you are entitled to a discount on the eBook copy. Get in
touch with us at service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign
up for a range of free newsletters and receive exclusive discounts and offers on Packt
books and eBooks.

TM

https://www2.packtpub.com/books/subscription/packtlib

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital
book library. Here, you can search, access, and read Packt's entire library of books.

Why subscribe?
• Fully searchable across every book published by Packt
• Copy and paste, print, and bookmark content
• On demand and accessible via a web browser

Free access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view 9 entirely free books. Simply use your login credentials for
immediate access.

www.PacktPub.com
www.PacktPub.com
www.PacktPub.com
https://www2.packtpub.com/books/subscription/packtlib
www.PacktPub.com

To Jennifer, for her kindness and support throughout this long journey.

Table of Contents
Preface 1
Chapter 1: Getting Started 9

Mathematical notation for the curious 10
Why machine learning? 10
Classification	 10
Prediction	 11
Optimization	 11
Regression	 11

Why Scala? 11
Abstraction	 11
Scalability	 12
Configurability	 13
Maintainability	 14
Computation	on	demand	 14

Model categorization 14
Taxonomy of machine learning algorithms 15
Unsupervised	learning	 15
Clustering	 15
Dimension	reduction	 16

Supervised	learning	 16
Generative	models	 16
Discriminative	models	 17

Reinforcement	learning	 18
Tools and frameworks 19
Java	 19
Scala	 20
Apache	Commons	Math	 20
Description	 20

Table of Contents

[ii]

Licensing	 20
Installation	 21

JFreeChart	 21
Description	 21
Licensing	 21
Installation	 22

Other	libraries	and	frameworks	 22
Source code 22
Context	versus	view	bounds	 23
Presentation	 23
Primitives	and	implicits	 24
Primitive	types	 24
Type	conversions	 24
Operators	 25

Immutability	 25
Performance	of	Scala	iterators	 26

Let's kick the tires 26
Overview	of	computational	workflows	 26
Writing	a	simple	workflow	 28
Selecting	a	dataset	 28
Loading	the	dataset	 29
Preprocessing	the	dataset	 30
Creating	a	model	(learning)	 34
Classify	the	data	 36

Summary 37
Chapter 2: Hello World! 39

Modeling 39
A	model	by	any	other	name	 39
Model	versus	design	 41
Selecting	a	model's	features	 41
Extracting	features	 42

Designing a workflow 42
The	computational	framework	 44
The	pipe	operator	 44
Monadic	data	transformation	 45
Dependency	injection	 46
Workflow	modules	 48
The	workflow	factory	 49
Examples	of	workflow	components	 51
The	preprocessing	module	 51
The	clustering	module	 52

Table of Contents

[iii]

Assessing a model 54
Validation	 54
Key	metrics	 54
Implementation	 56

K-fold	cross-validation	 57
Bias-variance	decomposition	 58
Overfitting	 61

Summary 62
Chapter 3: Data Preprocessing 63

Time series 63
Moving averages 66
The	simple	moving	average	 67
The	weighted	moving	average	 68
The	exponential	moving	average	 69

Fourier analysis 73
Discrete	Fourier	transform	(DFT)	 73
DFT-based	filtering	 79
Detection	of	market	cycles	 82

The Kalman filter 85
The	state	space	estimation	 86
The	transition	equation	 86
The	measurement	equation	 87

The	recursive	algorithm	 87
Prediction	 89
Correction	 91
Kalman	smoothing	 92
Experimentation	 93

Alternative preprocessing techniques 97
Summary 97

Chapter 4: Unsupervised Learning 99
Clustering 100
K-means	clustering	 101
Measuring	similarity	 101
Overview	of	the	K-means	algorithm	 103
Step	1	–	cluster	configuration	 103
Step	2	–	cluster	assignment	 107
Step	3	–	iterative	reconstruction	 108
Curse	of	dimensionality	 109
Experiment	 111
Tuning	the	number	of	clusters	 114
Validation	 117

Table of Contents

[iv]

Expectation-maximization	(EM)	algorithm	 118
Gaussian	mixture	model	 119
EM	overview	 120
Implementation	 120
Testing	 123
Online	EM	 126

Dimension reduction 126
Principal	components	analysis	(PCA)	 127
Algorithm	 128
Implementation	 129
Test	case	 130
Evaluation	 131

Other	dimension	reduction	techniques	 133
Performance considerations 133
K-means	 133
EM	 134
PCA	 134

Summary 135
Chapter 5: Naïve Bayes Classifiers 137

Probabilistic graphical models 137
Naïve Bayes classifiers 139
Introducing	the	multinomial	Naïve	Bayes	 139
Formalism	 141
The	frequentist	perspective	 142
The	predictive	model	 144
The	zero-frequency	problem	 145

Implementation	 145
Software	design	 145
Training	 146
Classification	 151
Labeling	 152
Results	 154

Multivariate Bernoulli classification 155
Model	 155
Implementation	 156

Naïve Bayes and text mining 156
Basics	of	information	retrieval	 158
Implementation	 159
Extraction	of	terms	 160
Scoring	of	terms	 161

Testing	 163
Retrieving	textual	information	 163
Evaluation	 166

Table of Contents

[v]

Pros and cons 168
Summary 168

Chapter 6: Regression and Regularization 169
Linear regression 169
One-variate	linear	regression	 170
Implementation	 170
Test	case	 171

Ordinary	least	squares	(OLS)	regression	 173
Design	 173
Implementation	 174
Test	case	1	–	trending	 175
Test	case	2	–	features	selection	 178

Regularization 184
Ln	roughness	penalty	 184
The	ridge	regression	 186
Implementation	 186
The	test	case	 188

Numerical optimization 191
The logistic regression 192
The	logit	function	 192
Binomial	classification	 193
Software	design	 196
The	training	workflow	 197
Configuring	the	least	squares	optimizer	 198
Computing	the	Jacobian	matrix	 199
Defining	the	exit	conditions	 200
Defining	the	least	squares	problem	 201
Minimizing	the	loss	function	 201
Test	 202

Classification	 203
Summary 205

Chapter 7: Sequential Data Models 207
Markov decision processes 207
The	Markov	property	 208
The	first-order	discrete	Markov	chain	 208

The hidden Markov model (HMM) 209
Notation	 211
The	lambda	model	 212
HMM	execution	state	 214
Evaluation	(CF-1)	 216
Alpha	class	(the	forward	variable)	 217
Beta	class	(the	backward	variable)	 220

Table of Contents

[vi]

Training	(CF-2)	 222
Baum-Welch	estimator	(EM)	 222

Decoding	(CF-3)	 226
The	Viterbi	algorithm	 226

Putting	it	all	together	 228
Test	case	 230
The	hidden	Markov	model	for	time	series	analysis	 232

Conditional random fields 232
Introduction	to	CRF	 233
Linear	chain	CRF	 235

CRF and text analytics 237
The	feature	functions	model	 238
Software	design	 240
Implementation	 241
Building	the	training	set	 242
Generating	tags	 243
Extracting	data	sequences	 244
CRF	control	parameters	 244
Putting	it	all	together	 245

Tests	 246
The	training	convergence	profile	 247
Impact	of	the	size	of	the	training	set	 247
Impact of the L2	regularization	factor	 248

Comparing CRF and HMM 249
Performance consideration 250
Summary 250

Chapter 8: Kernel Models and Support Vector Machines 251
Kernel functions 252
Overview	 252
Common	discriminative	kernels	 254

The support vector machine (SVM) 256
The	linear	SVM	 256
The	separable	case	(hard	margin)	 257
The	nonseparable	case	(soft	margin)	 258

The	nonlinear	SVM	 260
Max-margin	classification	 260
The	kernel	trick	 261

Support vector classifier (SVC) 262
The	binary	SVC	 262
LIBSVM	 262
Software	design	 263
Configuration	parameters	 264
SVM	implementation	 267

Table of Contents

[vii]

C-penalty	and	margin	 269
Kernel	evaluation	 272
Application	to	risk	analysis	 277

Anomaly detection with one-class SVC 282
Support vector regression (SVR) 284
Overview	 284
SVR	versus	linear	regression	 285

Performance considerations 288
Summary 288

Chapter 9: Artificial Neural Networks 289
Feed-forward neural networks (FFNN) 289
The	Biological	background	 290
The	mathematical	background	 291

The multilayer perceptron (MLP) 293
The	activation	function	 294
The	network	architecture	 295
Software	design	 296
Model	definition	 297
Layers	 298
Synapses	 299
Connections	 299

Training	cycle/epoch	 300
Step	1	–	input	forward	propagation	 301
Step	2	–	sum	of	squared	errors	 305
Step	3	–	error	backpropagation	 305
Step	4	–	synapse/weights	adjustment	 308
Step	5	–	convergence	criteria	 309
Configuration	 309
Putting	all	together	 310

Training	strategies	and	classification	 312
Online	versus	batch	training	 312
Regularization	 313
Model	instantiation	 313
Prediction	 314

Evaluation 315
Impact	of	learning	rate	 315
Impact	of	the	momentum	factor	 316
Test	case	 317
Implementation	 319
Models	evaluation	 321
Impact	of	hidden	layers	architecture	 323

Benefits and limitations 324
Summary 326

Table of Contents

[viii]

Chapter 10: Genetic Algorithms 327
Evolution 327
The	origin	 328
NP	problems	 328
Evolutionary	computing	 329

Genetic algorithms and machine learning 330
Genetic algorithm components 330
Encodings	 331
Value	encoding	 331
Predicate	encoding	 332
Solution	encoding	 333
The	encoding	scheme	 334

Genetic	operators	 335
Selection	 336
Crossover	 338
Mutation	 339

Fitness	score	 340
Implementation 340
Software	design	 340
Key	components	 341
Selection	 344
Controlling	population	growth	 345
GA	configuration	 345
Crossover	 345
Population	 346
Chromosomes	 347
Genes	 348

Mutation	 349
Population	 349
Chromosomes	 349
Genes	 349

The	reproduction	cycle	 350
GA for trading strategies 351
Definition	of	trading	strategies	 352
Trading	operators	 353
The	cost/unfitness	function	 353
Trading	signals	 354
Trading	strategies	 355
Signal	encoding	 356

Test	case	 357
Data	extraction	 358
Initial	population	 358
Configuration	 359
GA	instantiation	 359

Table of Contents

[ix]

GA	execution	 360
Tests	 360

Advantages and risks of genetic algorithms 363
Summary 364

Chapter 11: Reinforcement Learning 365
Introduction 365
The	problem	 366
A	solution	–	Q-learning	 366
Terminology	 367
Concept	 368
Value	of	policy	 369
Bellman	optimality	equations	 370
Temporal	difference	for	model-free	learning	 371
Action-value	iterative	update	 372

Implementation	 373
Software	design	 373
States	and	actions	 374
Search	space	 375
Policy	and	action-value	 376
The	Q-learning	training	 378
Tail	recursion	to	the	rescue	 380
Prediction	 381

Option	trading	using	Q-learning	 382
Option	property	 383
Option	model	 384
Function	approximation	 385
Constrained	state-transition	 386
Putting	it	all	together	 387

Evaluation	 389
Pros	and	cons	of	reinforcement	learning	 391

Learning classifier systems 391
Introduction	to	LCS	 392
Why	LCS	 393
Terminology	 394
Extended	learning	classifier	systems	(XCS)	 395
XCS	components	 396
Application	to	portfolio	management	 396
XCS	core	data	 398
XCS	rules	 399
Covering	 401
Example	of	implementation	 401

Benefits	and	limitation	of	learning	classifier	systems	 402
Summary 403

Table of Contents

[x]

Chapter 12: Scalable Frameworks 405
Overview 406
Scala 407
Controlling	object	creation	 407
Parallel	collections	 407
Processing	a	parallel	collection	 408
Benchmark	framework	 409
Performance	evaluation	 410

Scalability with Actors 413
The	Actor	model	 413
Partitioning	 415
Beyond	actors	–	reactive	programming	 415

Akka 415
Master-workers	 417
Messages	exchange	 417
Worker	actors	 418
The	workflow	controller	 419
The	master	Actor	 419
Master	with	routing	 421
Distributed	discrete	Fourier	transform	 422
Limitations	 425

Futures	 425
The	Actor	life	cycle	 426
Blocking	on	futures	 426
Handling	future	callbacks	 428
Putting	all	together	 430

Apache Spark 431
Why	Spark	 432
Design	principles	 433
In-memory	persistency	 433
Laziness	 433
Transforms	and	Actions	 434
Shared	variables	 436

Experimenting	with	Spark	 437
Deploying	Spark	 437
Using	Spark	shell	 438
MLlib	 439
RDD	generation	 439
K-means	using	Spark	 440

Performance	evaluation	 442
Tuning	parameters	 442
Tests	 443
Performance	considerations	 444

Pros	and	cons	 445
0xdata	Sparkling	Water	 446

Summary 446

Table of Contents

[xi]

Appendix A: Basic Concepts 447
Scala programming 447
List	of	libraries	 447
Format	of	code	snippets	 448
Encapsulation	 449
Class	constructor	template	 449
Companion	objects	versus	case	classes	 450
Enumerations	versus	case	classes	 450
Overloading	 451
Design	template	for	classifiers	 452
Data	extraction	 453
Data	sources	 454
Extraction	of	documents	 455
Matrix	class	 456

Mathematics 457
Linear	algebra	 457
QR	Decomposition	 458
LU	factorization	 458
LDL	decomposition	 458
Cholesky	factorization	 458
Singular	value	decomposition	 459
Eigenvalue	decomposition	 459
Algebraic	and	numerical	libraries	 459

First	order	predicate	logic	 460
Jacobian	and	Hessian	matrices	 461
Summary	of	optimization	techniques	 462
Gradient	descent	methods	 462
Quasi-Newton	algorithms	 463
Nonlinear	least	squares	minimization	 464
Lagrange	multipliers	 465

Overview	of	dynamic	programming	 466
Finances 101 467
Fundamental	analysis	 467
Technical	analysis	 468
Terminology	 468
Trading	signals	and	strategy	 469
Price	patterns	 471

Options	trading	 471
Financial	data	sources	 472

Suggested online courses 473
References 473

Index 475

Preface
Not a single day passes by that we do not hear about Big Data in the news media,
technical conferences, and even coffee shops. The ever-increasing amount of data
collected in process monitoring, research, or simple human behavior becomes
valuable only if you extract knowledge from it. Machine learning is the essential
tool to mine data for gold (knowledge).

This book covers the "what", "why", and "how" of machine learning:

• What are the objectives and the mathematical foundation of machine learning?
• Why is Scala the ideal programming language to implement machine

learning algorithms?
• How can you apply machine learning to solve real-world problems?

Throughout this book, machine learning algorithms are described with diagrams,
mathematical formulation, and documented snippets of Scala code, allowing you
to understand these key concepts in your own unique way.

What this book covers
Chapter 1, Getting Started, introduces the basic concepts of statistical analysis,
classification, regression, prediction, clustering, and optimization. This chapter
covers the Scala languages features and libraries, followed by the implementation
of a simple application.

Chapter 2, Hello World!, describes a typical workflow for classification, the concept of
bias/variance trade-off, and validation using the Scala dependency injection applied
to the technical analysis of financial markets.

Preface

[2]

Chapter 3, Data Preprocessing, covers time series analyses and leverages Scala to
implement data preprocessing and smoothing techniques such as moving averages,
discrete Fourier transform, and the Kalman recursive filter.

Chapter 4, Unsupervised Learning, focuses on the implementation of some of the most
widely used clustering techniques, such as K-means, the expectation-maximization,
and the principal component analysis as a dimension reduction method.

Chapter 5, Naïve Bayes Classifiers, introduces probabilistic graphical models, and then
describes the implementation of the Naïve Bayes and the multivariate Bernoulli
classifiers in the context of text mining.

Chapter 6, Regression and Regularization, covers a typical implementation of the linear
and least squares regression, the ridge regression as a regularization technique, and
finally, the logistic regression.

Chapter 7, Sequential Data Models, introduces the Markov processes followed by a full
implementation of the hidden Markov model, and conditional random fields applied
to pattern recognition in financial market data.

Chapter 8, Kernel Models and Support Vector Machines, covers the concept of kernel
functions with implementation of support vector machine classification and
regression, followed by the application of the one-class SVM to anomaly detection.

Chapter 9, Artificial Neural Networks, describes feed-forward neural networks followed
by a full implementation of the multilayer perceptron classifier.

Chapter 10, Genetic Algorithms, covers the basics of evolutionary computing and the
implementation of the different components of a multipurpose genetic algorithm.

Chapter 11, Reinforcement Learning, introduces the concept of reinforcement learning
with an implementation of the Q-learning algorithm followed by a template to build
a learning classifier system.

Chapter 12, Scalable Frameworks, covers some of the artifacts and frameworks to create
scalable applications for machine learning such as Scala parallel collections, Akka,
and the Apache Spark framework.

Appendix A, Basic Concepts, covers the Scala constructs used throughout the book,
elements of linear algebra, and an introduction to investment and trading strategies.

Appendix B, References, provides a chapter-wise list of references for [source entry]
in the respective chapters. This appendix is available as an online chapter at
https://www.packtpub.com/sites/default/files/downloads/8742OS_
AppendixB_References.pdf.

https://www.packtpub.com/sites/default/files/downloads/8742OS_AppendixB_References.pdf
https://www.packtpub.com/sites/default/files/downloads/8742OS_AppendixB_References.pdf

Preface

[3]

Short test applications using financial data illustrate the large variety of predictive,
regression, and classification models.

The interdependencies between chapters are kept to a minimum. You can easily
delve into any chapter once you complete Chapter 1, Getting Started, and Chapter 2,
Hello World!.

What you need for this book
A decent command of the Scala programming language is a prerequisite. Reading
through a mathematical formulation, conveniently defined in an information box,
is optional. However, some basic knowledge of mathematics and statistics might
be helpful to understand the inner workings of some algorithms.

The book uses the following libraries:

• Scala 2.10.3 or higher
• Java JDK 1.7.0_45 or 1.8.0_25
• SBT 0.13 or higher
• JFreeChart 1.0.1
• Apache Commons Math library 3.3 (Chapter 3, Data Preprocessing, Chapter 4,

Unsupervised Learning, and Chapter 6, Regression and Regularization)
• Indian Institute of Technology Bombay CRF 0.2 (Chapter 7, Sequential

Data Models)
• LIBSVM 0.1.6 (Chapter 8, Kernel Models and Support Vector Machines)
• Akka 2.2.4 or higher (or Typesafe activator 1.2.10 or higher) (Chapter 12,

Scalable Frameworks)
• Apache Spark 1.0.2 or higher (Chapter 12, Scalable Frameworks)

Understanding the mathematical formulation of a
model is optional.

Who this book is for
This book is for software developers with a background in Scala programming who
want to learn how to create, validate, and apply machine learning algorithms.

The book is also beneficial to data scientists who want to explore functional
programming or improve the scalability of their existing applications using Scala.

Preface

[4]

This book is designed as a tutorial with comparative hands-on exercises using
technical analysis of financial markets.

Conventions
In this book, you will find a number of text styles that distinguish between different
kinds of information. Here are some examples of these styles and an explanation of
their meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows:
"Finally, the environment variables JAVA_HOME, PATH, and CLASSPATH have to be
updated accordingly."

A block of code is set as follows:

[default]
val lsp = builder.model(lrJacobian)
 .weight(wMatrix)
 .target(labels)

When we wish to draw your attention to a particular part of a code block,
the relevant lines or items are set in bold:

[default]
val lsp = builder.model(lrJacobian)
 .weight(wMatrix)
 .target(labels)

The source code block is described using a reference number embedded as a
code comment:

[default]
val lsp = builder.model(lrJacobian) //1
 .weight(wMatrix)
 .target(labels)

The reference number is used in the chapter as follows: "The model instance is
initialized with the Jacobian matrix, lrJacobian (line 1)."

Any command-line input or output is written as follows:

sbt/sbt assembly

Preface

[5]

New terms and important words are shown in bold. Words that you see on the
screen, for example, in menus or dialog boxes, appear in the text like this: "The loss
function is then known as the hinge loss."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Mathematical formulas (optional to read) appear in a
box like this

For the sake of readability, the elements of the Scala code that are not essential to
the understanding of an algorithm such as class, variable, and method qualifiers
and validation of arguments, exceptions, or logging are omitted. The convention
for code snippets is detailed in the Format of code snippets section in Appendix A,
Basic Concepts.

You will be provided with in-text citation of papers, conference, books, and
instructional videos throughout the book. The sources are listed in the the
Appendix B, References using in the following format:

[In-text citation]

For example, in the chapter, you will find an instance as follows:

This time around RSS increases with λ before reaching a maximum for λ > 60. This
behavior is consistent with other findings [6:12].

The respective [source entry] is mentioned in Appendix B, References, as follows:

[6:12] Model selection and assessment H. Bravo, R. Irizarry, 2010, available at http://
www.cbcb.umd.edu/~hcorrada/PracticalML/pdf/lectures/selection.pdf.

http://www.cbcb.umd.edu/~hcorrada/PracticalML/pdf/lectures/selection.pdf
http://www.cbcb.umd.edu/~hcorrada/PracticalML/pdf/lectures/selection.pdf

Preface

[6]

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or disliked. Reader feedback is important for us as it
helps us develop titles that you will really get the most out of.

To send us general feedback, simply e-mail feedback@packtpub.com, and mention
the book's title in the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide at www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Downloading the example code
You can download the example code files from your account at http://www.
packtpub.com for all the Packt Publishing books you have purchased. If you
purchased this book elsewhere, you can visit http://www.packtpub.com/support
and register to have the files e-mailed directly to you.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in the text or
the code—we would be grateful if you could report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
book. If you find any errata, please report them by visiting http://www.packtpub.
com/submit-errata, selecting your book, clicking on the Errata Submission Form
link, and entering the details of your errata. Once your errata are verified, your
submission will be accepted and the errata will be uploaded to our website or added
to any list of existing errata under the Errata section of that title.

To view the previously submitted errata, go to https://www.packtpub.com/books/
content/support and enter the name of the book in the search field. The required
information will appear under the Errata section.

www.packtpub.com/authors
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com/support
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support

Preface

[7]

Piracy
Piracy of copyrighted material on the Internet is an ongoing problem across all
media. At Packt, we take the protection of our copyright and licenses very seriously.
If you come across any illegal copies of our works in any form on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors and our ability to bring you
valuable content.

Questions
If you have a problem with any aspect of this book, you can contact us at
questions@packtpub.com, and we will do our best to address the problem.

Getting Started
It is critical for any computer scientist to understand the different classes of machine
learning algorithms and be able to select the ones that are relevant to the domain of
their expertise and dataset. However, the application of these algorithms represents
a small fraction of the overall effort needed to extract an accurate and performing
model from input data. A common data mining workflow consists of the following
sequential steps:

1. Loading the data.
2. Preprocessing, analyzing, and filtering the input data.
3. Discovering patterns, affinities, clusters, and classes.
4. Selecting the model features and the appropriate machine learning

algorithm(s).
5. Refining and validating the model.
6. Improving the computational performance of the implementation.

As we will emphasize throughout this book, each stage of the process is critical to
build the right model.

This first chapter introduces you to the taxonomy of machine learning algorithms,
the tools and frameworks used in the book, and a simple application of logistic
regression to get your feet wet.

Getting Started

[10]

Mathematical notation for the curious
Each chapter contains a small section dedicated to the formulation of the algorithms
for those interested in the mathematical concepts behind the science and art of
machine learning. These sections are optional and defined within a tip box. For
example, the mathematical expression of the mean and the variance of a variable
X mentioned in a tip box will be as follows:

Mean value of a variable X = {x} is defined as:

The variance of a variable X = {x} is defined as:

Why machine learning?
The explosion in the number of digital devices generates an ever-increasing amount
of data. The best analogy I can find to describe the need, desire, and urgency to
extract knowledge from large datasets is the process of extracting a precious metal
from a mine, and in some cases, extracting blood from a stone.

Knowledge is quite often defined as a model that can be constantly updated or
tweaked as new data comes into play. Models are obviously domain-specific ranging
from credit risk assessment, face recognition, maximization of quality of service,
classification of pathological symptoms of disease, optimization of computer networks,
and security intrusion detection, to customers' online behavior and purchase history.

Machine learning problems are categorized as classification, prediction, optimization,
and regression.

Classification
The purpose of classification is to extract knowledge from historical data. For
instance, a classifier can be built to identify a disease from a set of symptoms. The
scientist collects information regarding the body temperature (continuous variable),
congestion (discrete variables HIGH, MEDIUM, and LOW), and the actual diagnostic
(flu). This dataset is used to create a model such as IF temperature > 102 AND
congestion = HIGH THEN patient has the flu (probability 0.72), which
doctors can use in their diagnostic.

Chapter 1

[11]

Prediction
Once the model is extracted and validated against the past data, it can be used to
draw inference from the future data. A doctor collects symptoms from a patient,
such as body temperature and nasal congestion, and anticipates the state of
his/her health.

Optimization
Some global optimization problems are intractable using traditional linear and
non-linear optimization methods. Machine learning techniques improve the chances
that the optimization method converges toward a solution (intelligent search). You
can imagine that fighting the spread of a new virus requires optimizing a process
that may evolve over time as more symptoms and cases are uncovered.

Regression
Regression is a classification technique that is particularly suitable for a continuous
model. Linear (least square), polynomial, and logistic regressions are among the
most commonly used techniques to fit a parametric model, or function, y= f (xj), to a
dataset. Regression is sometimes regarded as a specialized case of classification for
which the output variables are continuous instead of categorical.

Why Scala?
Like most functional languages, Scala provides developers and scientists with a
toolbox to implement iterative computations that can be easily woven dynamically
into a coherent dataflow. To some extent, Scala can be regarded as an extension of
the popular MapReduce model for distributed computation of large amounts of data.
Among the capabilities of the language, the following features are deemed essential
to machine learning and statistical analysis.

Abstraction
Monoids and monads are important concepts in functional programming.
Monads are derived from the category and group theory allowing developers to
create a high-level abstraction as illustrated in Twitter's Algebird (https://github.
com/twitter/algebird) or Google's Breeze Scala (https://github.com/dlwh/
breeze) libraries.

A monoid defines a binary operation op on a dataset T with the property of closure,
identity operation, and associativity.

https://github.com/twitter/algebird
https://github.com/twitter/algebird
https://github.com/dlwh/breeze
https://github.com/dlwh/breeze

Getting Started

[12]

Let's consider the + operation is defined for a set T using the following
monoidal representation:

trait Monoid[T] {
 def zero: T
 def op(a: T, b: T): c
}

Monoids are associative operations. For instance, if ts1, ts2, and ts3 are three
time series, then the property ts1 + (ts2 + ts3) = (ts1 + ts2) + ts2 is true.
The associativity of a monoid operator is critical in regards to parallelization of
computational workflows.

Monads are structures that can be seen either as containers by programmers or as
a generalization of Monoids. The collections bundled with the Scala standard library
(list, map, and so on) are constructed as monads [1:1]. Monads provide the ability
for those collections to perform the following functions:

1. Create the collection.
2. Transform the elements of the collection.
3. Flatten nested collections.

A common categorical representation of a monad in Scala is a trait, Monad,
parameterized with a container type M:

trait Monad[M[_]] {
 def apply[T])(a: T): M[T]
 def flatMap[T, U](m: M[T])(f: T=>M[U]): M[U]
}

Monads allow those collections or containers to be chained to generate a workflow.
This property is applicable to any scientific computation [1:2].

Scalability
As seen previously, monoids and monads enable parallelization and chaining of
data processing functions by leveraging the Scala higher-order methods. In terms
of implementation, Actors are the core elements that make Scala scalable. Actors act
as coroutines, managing the underlying threads pool. Actors communicate through
passing asynchronous messages. A distributed computing Scala framework such
as Akka and Spark extends the capabilities of the Scala standard library to support
computation on very large datasets. Akka and Spark are described in detail in the
last chapter of this book [1:3].

Chapter 1

[13]

In a nutshell, a workflow is implemented as a sequence of activities or computational
tasks. Those tasks consist of high-order Scala methods such as flatMap, map, fold,
reduce, collect, join, or filter applied to a large collection of observations. Scala
allows these observations to be partitioned by executing those tasks through a cluster
of actors. Scala also supports message dispatching and routing of messages between
local and remote actors. The engineers can decide to execute a workflow either locally
or distributed across CPU cores and servers with no code or very little code changes.

Deployment of a workflow as a distributed computation

In this diagram, a controller, that is, the master node, manages the sequence of
tasks 1 to 4 similar to a scheduler. These tasks are actually executed over multiple
worker nodes that are implemented by the Scala actors. The master node exchanges
messages with the workers to manage the state of the execution of the workflow
as well as its reliability. High availability of these tasks is implemented through a
hierarchy of supervising actors.

Configurability
Scala supports dependency injection using a combination of abstract variables,
self-referenced composition, and stackable traits. One of the most commonly used
dependency injection patterns, the cake pattern, is used throughout this book to
create dynamic computation workflows and plots.

Getting Started

[14]

Maintainability
Scala embeds Domain Specific Languages (DSL) natively. DSLs are syntactic layers
built on top of Scala native libraries. DSLs allow software developers to abstract
computation in terms that are easily understood by scientists. The most notorious
application of DSLs is the definition of the emulation of the syntax used in the
MATLAB program, which data scientists are familiar with.

Computation on demand
Lazy methods and values allow developers to execute functions and allocate
computing resources on demand. The Spark framework relies on lazy variables
and methods to chain Resilient Distributed Datasets (RDD).

Model categorization
A model can be predictive, descriptive, or adaptive.

Predictive models discover patterns in historical data and extract fundamental
trends and relationships between factors. They are used to predict and classify
future events or observations. Predictive analytics is used in a variety of fields
such as marketing, insurance, and pharmaceuticals. Predictive models are created
through supervised learning using a preselected training set.

Descriptive models attempt to find unusual patterns or affinities in data by grouping
observations into clusters with similar properties. These models define the first level
in knowledge discovery. They are generated through unsupervised learning.

A third category of models, known as adaptive modeling, is generated through
reinforcement learning. Reinforcement learning consists of one or several
decision-making agents that recommend and possibly execute actions in
the attempt of solving a problem, optimizing an objective function, or
resolving constraints.

Chapter 1

[15]

Taxonomy of machine learning
algorithms
The purpose of machine learning is to teach computers to execute tasks without
human intervention. An increasing number of applications such as genomics, social
networking, advertising, or risk analysis generate a very large amount of data that
can be analyzed or mined to extract knowledge or provide insight into a process,
a customer, or an organization. Ultimately, machine learning algorithms consist
of identifying and validating models to optimize a performance criterion using
historical, present, and future data [1:4].

Data mining is the process of extracting or identifying patterns in a dataset.

Unsupervised learning
The goal of unsupervised learning is to discover patterns of regularities and
irregularities in a set of observations. The process known as density estimation
in statistics is broken down into two categories: discovery of data clusters and
discovery of latent factors. The methodology consists of processing input data to
understand patterns similar to the natural learning process in infants or animals.
Unsupervised learning does not require labeled data, and therefore, is easy to
implement and execute because no expertise is needed to validate an output.
However, it is possible to label the output of a clustering algorithm and use it for
future classification.

Clustering
The purpose of data clustering is to partition a collection of data into a number of
clusters or data segments. Practically, a clustering algorithm is used to organize
observations into clusters by minimizing the observations within a cluster and
maximizing the observations between clusters. A clustering algorithm consists
of the following steps:

1. Creating a model by making an assumption on the input data.
2. Selecting the objective function or goal of the clustering.
3. Evaluating one or more algorithms to optimize the objective function.

Data clustering is also known as data segmentation or data partitioning.

Getting Started

[16]

Dimension reduction
Dimension reduction techniques aim at finding the smallest but most relevant set
of features that models dataset reliability. There are many reasons for reducing the
number of features or parameters in a model, from avoiding overfitting to reducing
computation costs.

There are many ways to classify the different techniques used to extract knowledge
from data using unsupervised learning. The following taxonomy breaks down these
techniques according to their purpose, although the list is far for being exhaustive, as
shown in the following diagram:

Supervised learning
The best analogy for supervised learning is function approximation or curve fitting.
In its simplest form, supervised learning attempts to extract a relation or function f
x → y from a training set {x, y}. Supervised learning is far more accurate and reliable
than any other learning strategy. However, a domain expert may be required to label
(tag) data as a training set for certain types of problems.

Supervised machine learning algorithms can be broken into two categories:

• Generative models
• Discriminative models

Generative models
In order to simplify the description of statistics formulas, we adopt the following
simplification: the probability of an event X is the same as the probability of the
discrete random variable X to have a value x, p(X) = p(X=x). The notation of joint
probability (resp. conditional probability) becomes p(X, Y) = p(X=x, Y=y) (resp.
p(X|Y)=p(X=x | Y=y).

Chapter 1

[17]

Generative models attempt to fit a joint probability distribution, p(X,Y), of two events
(or random variables), X and Y, representing two sets of observed and hidden (latent)
variables x and y. Discriminative models learn the conditional probability p(Y|X) of an
event or random variable Y of hidden variables y, given an event or random variable
X of observed variables x. Generative models are commonly introduced through the
Bayes' rule. The conditional probability of an event Y, given an event X, is computed
as the product of the conditional probability of the event X, given the event Y, and the
probability of the event X normalized by the probability of event Y [1:5].

Join probability (if X and Y are independent):

Conditional probability:

The Bayes' rule:

The Bayes' rule is the foundation of the Naïve Bayes classifier, which is the topic of
Chapter 5, Naïve Bayes Classifiers.

Discriminative models
Contrary to generative models, discriminative models compute the conditional
probability p(Y|X) directly, using the same algorithm for training and classification.

Generative and discriminative models have their respective advantages and
drawbacks. Novice data scientists learn to match the appropriate algorithm to each
problem through experimentation. Here is a brief guideline describing which type of
models makes sense according to the objective or criteria of the project:

Objective Generative models Discriminative models
Accuracy Highly dependent on the

training set.
Probability estimates tend to be
more accurate.

Modeling
requirements

There is a need to model both
observed and hidden variables,
which requires a significant
amount of training.

The quality of the training set
does not have to be as rigorous
as for generative models.

Getting Started

[18]

Objective Generative models Discriminative models
Computation cost This is usually low. For

example, any graphical method
derived from the Bayes' rule
has low overhead.

Most algorithms rely on
optimization of a convex
that introduces significant
performance overhead.

Constraints These models assume some
degree of independence among
the model features.

Most discriminative algorithms
accommodate dependencies
between features.

We can further refine the taxonomy of supervised learning algorithms by segregating
between sequential and random variables for generative models and breaking down
discriminative methods as applied to continuous processes (regression) and discrete
processes (classification):

Reinforcement learning
Reinforcement learning is not as well understood as supervised and unsupervised
learning outside the realms of robotics or game strategy. However, since the 90s,
genetic-algorithms-based classifiers have become increasingly popular to solve
problems that require collaboration with a domain expert. For some types of
applications, reinforcement learning algorithms output a set of recommended
actions for the adaptive system to execute. In its simplest form, these algorithms
compute or estimate the best course of action. Most complex systems based on
reinforcement learning establish and update policies that can be vetoed by an expert.
The foremost challenge developers of reinforcement learning systems face is that the
recommended action or policy may depend on partially observable states and how to
deal with uncertainty.

Chapter 1

[19]

Genetic algorithms are not usually considered part of the reinforcement learning
toolbox. However, advanced models such as learning classifier systems use genetic
algorithms to classify and reward the rules and policies.

As with the two previous learning strategies, reinforcement learning models can be
categorized as Markovian or evolutionary:

This is a brief overview of machine learning algorithms with a suggested taxonomy.
There are almost as many ways to introduce machine learning as there are data and
computer scientists. We encourage you to browse through the list of references at the
end of the book and find the documentation appropriate to your level of interest and
understanding.

Tools and frameworks
Before getting your hands dirty, you need to download and deploy a minimum set
of tools and libraries so as not to reinvent the wheel. A few key components have to
be installed in order to compile and run the source code described throughout the
book. We focus on open source and commonly available libraries, although you are
invited to experiment with equivalent tools of your choice. The learning curve for the
frameworks described here is minimal.

Java
The code described in the book has been tested with JDK 1.7.0_45 and JDK 1.8.0_25
on Windows x64 and MacOS X x64 . You need to install the Java Development Kit if
you have not already done so. Finally, the environment variables JAVA_HOME, PATH,
and CLASSPATH have to be updated accordingly.

Getting Started

[20]

Scala
The code has been tested with Scala 2.10.4. We recommend using Scala version
2.10.3 or higher and SBT 0.13 or higher. Let's assume that Scala runtime (REPL)
and libraries have been properly installed and environment variables SCALA_HOME
and PATH have been updated. The description and installation instructions of the
Scala plugin for Eclipse are available at http://scala-ide.org/docs/user/
gettingstarted.html.

You can also download the Scala plugin for Intellij IDEA from the JetBrains website
at http://confluence.jetbrains.com/display/SCA/.

The ubiquitous simple build tool (sbt) will be our primary building engine.
The syntax of the build file sbt/build.sbt conforms to version 0.13, and is
used to compile and assemble the source code presented throughout this book.

Apache Commons Math
Apache Commons Math is a Java library for numerical processing, algebra, statistics,
and optimization [1:6].

Description
This is a lightweight library that provides developers with a foundation of small,
ready-to-use Java classes that can be easily weaved into a machine learning problem.
The examples used throughout the book require version 3.3 or higher.

The main components of Apache Commons Math are:

• Functions, differentiation, and integral and ordinary differential equations
• Statistics distribution
• Linear and nonlinear optimization
• Dense and Sparse vectors and matrices
• Curve fitting, correlation, and regression

For more information, visit http://commons.apache.org/proper/commons-math.

Licensing
We need Apache Public License 2.0; the terms are available at http://www.apache.
org/licenses/LICENSE-2.0.

http://scala-ide.org/docs/user/gettingstarted.html
http://scala-ide.org/docs/user/gettingstarted.html
http://confluence.jetbrains.com/display/SCA/
http://commons.apache.org/proper/commons-math
http://www.apache.org/licenses/LICENSE-2.0
http://www.apache.org/licenses/LICENSE-2.0

Chapter 1

[21]

Installation
The installation and deployment of the Commons Math library are quite simple:

1. Go to the download page, http://commons.apache.org/proper/commons-
math/download_math.cgi.

2. Download the latest .jar files in the Binaries section, commons-math3-3.3-
bin.zip (for version 3.3, for instance).

3. Unzip and install the .jar files.
4. Add commons-math3-3.3.jar to classpath as follows:

 ° For Mac OS X, use the command export CLASSPATH=$CLASSPATH:/
Commons_Math_path/commons-math3-3.3.jar

 ° For Windows, navigate to System property | Advanced system
settings | Advanced | Environment variables…, then edit the
entry of the CLASSPATH variable

5. Add the commons-math3-3.3.jar file to your IDE environment if needed
(that is, for Eclipse, navigate to Project | Properties | Java Build Path |
Libraries | Add External JARs).

You can also download commons-math3-3.3-src.zip from the Source section.

JFreeChart
JFreeChart is an open source chart and plotting Java library, widely used in the Java
programmer community. It was originally created by David Gilbert [1:7].

Description
The library supports a variety of configurable plots and charts (scatter, dial, pie, area,
bar, box and whisker, stacked, and 3D). We use JFreeChart to display the output
of data processing and algorithms throughout the book, but you are encouraged to
explore this great library on your own, as time permits.

Licensing
It is distributed under the terms of the GNU Lesser General Public License (LGPL),
which permits its use in proprietary applications.

http://commons.apache.org/proper/commons-math/download_math.cgi
http://commons.apache.org/proper/commons-math/download_math.cgi

Getting Started

[22]

Installation
To install and deploy JFreeChart, perform the following steps:

1. Visit http://www.jfree.org/jfreechart.
2. Download the latest version from Source Forge at http://sourceforge.

net/projects/jfreechart/files.
3. Unzip and install the .jar file.
4. Add jfreechart-1.0.17.jar (for version 1.0.17) to classpath as follows:

 ° For Mac OS, update the classpath by using export
CLASSPATH=$CLASSPATH:/JFreeChart_path/ jfreechart-1.0.17.
jar

 ° For Windows, go to System property | Advanced system settings |
Advanced | Environment variables… and then edit the entry of the
CLASSPATH variable

5. Add the jfreechart-1.0.17.jar file to your IDE environment, if needed.

Other libraries and frameworks
Libraries and tools that are specific to a single chapter are introduced along with
the topic. Scalable frameworks are presented in the last chapter along with the
instructions to download them. Libraries related to the conditional random fields
and support vector machines are described in the respective chapters.

Why not use Scala algebra and numerical libraries
Libraries such as Breeze, ScalaNLP, and Algebird are great Scala
frameworks for linear algebra, numerical analysis, and machine
learning. They provide even the most seasoned Scala programmer
with a high-quality layer of abstraction. However, this book is
designed as a tutorial that allows developers to write algorithms
from the ground up using simple common Java libraries [1:8].

Source code
The Scala programming language is used to implement and evaluate the machine
learning techniques presented in this book. Only a subset of the source code used
to implement the techniques are presented in the book. The formal implementation
of these algorithms is available on the website of Packt Publishing (http://www.
packtpub.com).

http://www.jfree.org/jfreechart
http://sourceforge.net/projects/jfreechart/files
http://sourceforge.net/projects/jfreechart/files
http://www.packtpub.com
http://www.packtpub.com

Chapter 1

[23]

Downloading the example code
You can download the example code files for all Packt books you
have purchased from your account at http://www.packtpub.com.
If you purchased this book elsewhere, you can visit http://www.
packtpub.com/support and register to have the files e-mailed
directly to you.

Context versus view bounds
Most Scala classes discussed in the book are parameterized with the type
associated to the discrete/categorical value (Int) or continuous value (Double).
Context bounds would require that any type used by the client code has Int or
Double as upper bounds:

class MyClassInt[T <: Int]
class MyClassFloat[T <: Double]

Such a design introduces constraints on the client to inherit from simple types and to
deal with covariance and contravariance for container types [1:9].

For this book, view bounds are used instead of context bounds only where they
require an implicit conversion to the parameterized type to be defined:

Class MyClassFloat[T <% Double]
implicit def T2Double(t : T): Double

Presentation
For the sake of readability of the implementation of algorithms, all nonessential code
such as error checking, comments, exceptions, or imports are omitted. The following
code elements are discarded in the code snippet presented in the book:

• Code comments
• Validation of class parameters and method arguments:

class BaumWelchEM(val lambda: HMMLambda ...) {
 require(lambda != null, "Lambda model is undefined")

• Exceptions and an exception handler:
 try { .. }
 catch {
 case e: ArrayIndexOutOfBoundsException =>println(e.
toString)
 }

http://www.packtpub.com
http://www.packtpub.com/support
http://www.packtpub.com/support

Getting Started

[24]

• Nonessential annotation:
 @inline def mean = ..

• Logging and debugging code:
 m_logger.debug(…)

• Private and nonessential methods

Primitives and implicits
The algorithms presented in this book share the same primitive types, generic
operators, and implicit conversions.

Primitive types
For the sake of readability of the code, the following primitive types will be used:

type XY = (Double, Double)
type XYTSeries = Array[(Double, Double)]
type DMatrix[T] = Array[Array[T]]
type DVector[T] = Array[T]
type DblMatrix = DMatrix[Double]
type DblVector = Array[Double]

The types have the behavior (methods) of their primitive counterpart (array).
However, adding a new functionality to vectors, matrices, and time series requires
classes of their own right. These classes will be introduced in the next chapter.

Type conversions
Implicit conversion is an important feature of the Scala programming language
because it allows developers to specify a type conversion for an entire library
in a single place. Here are a few of the implicit type conversions used throughout
the book:

implicit def int2Double(n: Int): Double = n.toDouble
implicit def vectorT2DblVector[T <% Double](vt: DVector[T]): DblVector
= vt.map(t => t.toDouble)
implicit def double2DblVector(x: Double): DblVector = Array[Double](x)
implicit def dblPair2DbLVector(x: (Double, Double)): DblVector =
Array[Double](x._1,x._2)
implicit def dblPairs2DblRows(x: (Double, Double)): DblMatrix =
Array[Array[Double]](Array[Double](x._1, x._2))
...

Chapter 1

[25]

Library-specific conversion
The conversion between the primitive type listed here and
types introduced in a particular library (such as Apache
Commons Math) is declared in future chapters the first
time those libraries are used.

Operators
Lastly, some operations are applied by multiple machine learning or preprocessing
algorithms. They need to be defined implicitly. The operation on a pair of a vector of
arbitrary type and vector of Double is defined as follows:

def Op[T <% Double](v: DVector[T], w: DblVector, op: (T, Double) =>
Double): DblVector =
 v.zipWithIndex.map(x => op(x._1, w(x._2)))

It is also convenient to define the following operators that are included in the Scala
standard library:

implicit def /(v: DblVector, n: Int):DblVector = v.map(x => x/n)
implicit def /(m: DblMatrix, col: Int, z: Double): DblMatrix = { (0
until m(n).size).foreach(i => m(n)(i) /= z) }

We won't have to redefine the types, conversions, and operators from now on.

Immutability
It is usually a good idea to reduce the number of states of an object. Method
invocation transitions an object from one state to another. The larger the number
of methods or states, the more cumbersome the testing process becomes.

There is no point in creating a model that is not defined (trained). Therefore, making
the training of a model as part of the constructor of the class it implements makes a
lot of sense. Therefore, the only public methods of a machine learning algorithm are:

• Classification or prediction
• Validation
• Retrieval of model parameters (weights, latent variables, hidden states, and

so on), if needed

Getting Started

[26]

Performance of Scala iterators
The evaluation of the performance of Scala high-order iterative methods is beyond
the scope of this book. However, it is important to be aware of the trade-off of
each method.

The for loop construct is to be avoided as a counting iterator except if it is used
in conjunction with yield. It is designed to implement the for-comprehension
monad (map-flatMap). The source code presented in this book uses the while
and foreach constructs.

Scala reducer methods reduce and fold are also frequently used for their efficiency.

Let's kick the tires
This final section introduces the key elements of the training and classification
workflow. A test case using a simple logistic regression is used to illustrate each
step of the computational workflow.

Overview of computational workflows
In its simplest form, a computational workflow to perform runtime processing of a
dataset is composed of the following stages:

1. Loading the dataset from files, databases, or any streaming devices.
2. Splitting the dataset for parallel data processing.
3. Preprocessing data using filtering techniques, analysis of variance, and

applying penalty and normalization functions whenever necessary.
4. Applying the model, either a set of clusters or classes to classify new data.
5. Assessing the quality of the model.

A similar sequence of tasks is used to extract a model from a training dataset:

1. Loading the dataset from files, databases, or any streaming devices.
2. Splitting the dataset for parallel data processing.
3. Applying filtering techniques, analysis of variance, and penalty and

normalization functions to the raw dataset whenever necessary.
4. Selecting the training, testing, and validation set from the cleansed input data.
5. Extracting key features, establishing affinity between a similar group of

observations using clustering techniques or supervised learning algorithms.

Chapter 1

[27]

6. Reducing the number of features to a manageable set of attributes to avoid
overfitting the training set.

7. Validating the model and tuning the model by iterating steps 5, 6, and 7 until
the error meets criteria.

8. Storing the model into the file or database to be loaded for runtime
processing of new observations.

Data clustering and data classification can be performed independent of each other
or as part of a workflow that uses clustering techniques as a preprocessing stage
of the training phase of a supervised learning algorithm. Data clustering does
not require a model to be extracted from a training set, while classification can be
performed only if a model has been built from the training set. The following image
gives an overview of training and classification:

A generic data flow for training and running a model

This diagram is an overview of a typical data mining processing pipeline.
The first phase consists of extracting the model through clustering or training
of a supervised learning algorithm. The model is then validated against test data,
for which the source is the same as the training set but with different observations.
Once the model is created and validated, it can be used to classify real-time data
or predict future behavior. In reality, real-world workflows are more complex
and require being dynamically configurable to allow experimentation of different
models. Several alternative classifiers can be used to perform a regression and
different filtering algorithms are applied against input data depending of the
latent noise in the raw data.

