

Mastering Python Data Analysis

Become an expert at using Python for advanced statistical
analysis of data using real-world examples

Magnus Vilhelm Persson

Luiz Felipe Martins

BIRMINGHAM - MUMBAI

Mastering Python Data Analysis

Copyright © 2016 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or
transmitted in any form or by any means, without the prior written permission of the
publisher, except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the
information presented. However, the information contained in this book is sold without
warranty, either express or implied. Neither the authors, nor Packt Publishing, and its
dealers and distributors will be held liable for any damages caused or alleged to be caused
directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

Publishing Month: June 2016

Production reference: 1230616

Published by Packt Publishing Ltd.

Livery Place

35 Livery Street

Birmingham

B3 2PB, UK.

ISBN 978-1-78355-329-7

www.packtpub.com

http://www.packtpub.com

Credits

Authors

Magnus Vilhelm Persson
Luiz Felipe Martins

Copy Editor

Tasneem Fatehi

Reviewers

Hang (Harvey) Yu
Laurie Lugrin
Chris Morgan
Michele Pratusevich

Project Coordinator

Ritika Manoj

Commissioning Editor

Akram Hussain

Proofreader

Safis Editing

Acquisition Editor

Vinay Argekar

Indexer

Monica Ajmera Mehta

Content Development Editor

Arun Nadar

Graphics

Kirk D'Penha
Jason Monteiro

Technical Editors

Bharat Patil
Pranil Pathare

Production Coordinator

Nilesh Mohite

About the Authors
Magnus Vilhelm Persson is a scientist with a passion for Python and open source software
usage and development. He obtained his PhD in Physics/Astronomy from Copenhagen
University’s Centre for Star and Planet Formation (StarPlan) in 2013. Since then, he has
continued his research in Astronomy at various academic institutes across Europe. In his
research, he uses various types of data and analysis to gain insights into how stars are
formed. He has participated in radio shows about Astronomy and also organized
workshops and intensive courses about the use of Python for data analysis.

You can check out his web page at h t t p : / / v i l h e l m . n u.

This book would not have been possible without the great work that all the people at Packt are doing.
I would like to highlight Arun, Bharat, Vinay, and Pranil's work. Thank you for your patience
during the whole process. Furthermore, I would like to thank Packt for giving me the opportunity to
develop and write this book, it was really fun and I learned a lot. There where times when the work
was little overwhelming, but at those times, my colleague and friend Alan Heays always had some
supporting words to say. Finally, my wife, Mihaela, is the most supportive partner anyone could ever
have. For all the late evenings and nights where you pushed me to continue working on this to finish
it, thank you. You are the most loving wife and best friend anyone could ever ask for.

Luiz Felipe Martins holds a PhD in applied mathematics from Brown University and has
worked as a researcher and educator for more than 20 years. His research is mainly in the
field of applied probability. He has been involved in developing code for open source
homework system, WeBWorK, where he wrote a library for the visualization of systems of
differential equations. He was supported by an NSF grant for this project. Currently, he is
an associate professor in the department of mathematics at Cleveland State University,
Cleveland, Ohio, where he has developed several courses in applied mathematics and
scientific computing. His current duties include coordinating all first-year calculus sessions.

http://vilhelm.nu

About the Reviewer
Hang (Harvey) Yu is a data scientist in Silicon Valley. He works on search engine
development and model optimization. He has ample experience in big data and machine
learning. He graduated from the University of Illinois at Urbana-Champaign with a
background in data mining and statistics. Besides this book, he has also reviewed multiple
other books and papers including Mastering Python Data Visualization and R Data Analysis
Cookbook both by Packt Publishing. When Harvey is not coding, he is playing soccer, reading
fiction books, or listening to classical music. You can get in touch with him at
hangyu1@illinois.edu or on LinkedIn at h t t p : / / w w w . l i n k e d i n . c o m / i n / h a n g y u 1.

http://www.linkedin.com/in/hangyu1

www.PacktPub.com
For support files and downloads related to your book, please visit www.PacktPub.com.

Did you know that Packt offers eBook versions of every book published, with PDF and
ePub files available? You can upgrade to the eBook version at www.PacktPub.com and as a
print book customer, you are entitled to a discount on the eBook copy. Get in touch with us
at service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up for a
range of free newsletters and receive exclusive discounts and offers on Packt books and
eBooks.

h t t p s : / / w w w 2 . p a c k t p u b . c o m / b o o k s / s u b s c r i p t i o n / p a c k t l i b

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital book
library. Here, you can search, access, and read Packt's entire library of books.

Why subscribe?
Fully searchable across every book published by Packt
Copy and paste, print, and bookmark content
On demand and accessible via a web browser

Free access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view 9 entirely free books. Simply use your login credentials for
immediate access.

http://www.PacktPub.com
http://www.PacktPub.com
https://www2.packtpub.com/books/subscription/packtlib
https://www.packtpub.com/

Table of Contents
Preface 1

Chapter 1: Tools of the Trade 7
Before you start 7
Using the notebook interface 9
Imports 10
An example using the Pandas library 10
Summary 18

Chapter 2: Exploring Data 19
The General Social Survey 20

Obtaining the data 20
Reading the data 21

Univariate data 23
Histograms 23

Making things pretty 28
Characterization 29

Concept of statistical inference 32
Numeric summaries and boxplots 33

Relationships between variables – scatterplots 37
Summary 40

Chapter 3: Learning About Models 41
Models and experiments 41
The cumulative distribution function 42
Working with distributions 51
The probability density function 61
Where do models come from? 63
Multivariate distributions 68
Summary 70

Chapter 4: Regression 71
Introducing linear regression 72

Getting the dataset 73
Testing with linear regression 81

Multivariate regression 91
Adding economic indicators 91

[ii]

Taking a step back 98
Logistic regression 100

Some notes 107
Summary 107

Chapter 5: Clustering 108
Introduction to cluster finding 109

Starting out simple – John Snow on cholera 110
K-means clustering 116

Suicide rate versus GDP versus absolute latitude 116
Hierarchical clustering analysis 122

Reading in and reducing the data 122
Hierarchical cluster algorithm 132

Summary 137
Chapter 6: Bayesian Methods 138

The Bayesian method 138
Credible versus confidence intervals 139
Bayes formula 139
Python packages 140

U.S. air travel safety record 141
Getting the NTSB database 141
Binning the data 147
Bayesian analysis of the data 150

Binning by month 158
Plotting coordinates 160

Cartopy 160
Mpl toolkits – basemap 162

Climate change – CO2 in the atmosphere 163
Getting the data 164
Creating and sampling the model 166

Summary 173
Chapter 7: Supervised and Unsupervised Learning 174

Introduction to machine learning 174
Scikit-learn 175
Linear regression 176

Climate data 176
Checking with Bayesian analysis and OLS 181

Clustering 183
Seeds classification 188

[iii]

Visualizing the data 189
Feature selection 194
Classifying the data 196

The SVC linear kernel 198
The SVC Radial Basis Function 199
The SVC polynomial 200
K-Nearest Neighbour 200
Random Forest 201

Choosing your classifier 202
Summary 203

Chapter 8: Time Series Analysis 204
Introduction 204
Pandas and time series data 206
Indexing and slicing 209
Resampling, smoothing, and other estimates 212
Stationarity 218
Patterns and components 220

Decomposing components 221
Differencing 227

Time series models 229
Autoregressive – AR 230
Moving average – MA 232
Selecting p and q 233

Automatic function 234
The (Partial) AutoCorrelation Function 234

Autoregressive Integrated Moving Average – ARIMA 235
Summary 236

Appendix: More on Jupyter Notebook and matplotlib Styles 238
Jupyter Notebook 238

Useful keyboard shortcuts 239
Command mode shortcuts 239
Edit mode shortcuts 239

Markdown cells 240
Notebook Python extensions 241

Installing the extensions 241
Codefolding 243
Collapsible headings 245
Help panel 247
Initialization cells 247
NbExtensions menu item 249

[iv]

Ruler 249
Skip-traceback 250
Table of contents 252

Other Jupyter Notebook tips 254
External connections 255
Export 255
Additional file types 255

Matplotlib styles 256
Useful resources 261

General resources 261
Packages 262
Data repositories 264
Visualization of data 265

Summary 266
Index 267

Preface
The use of Python for data analysis and visualization has only increased in popularity in the
last few years. One reason for this is the availability and continued development of a
number of excellent tools for conducting advanced data analysis and visualization. Another
reason is the possibility of rapid and easy development, deployment, and sharing of code.
For these reasons, Python has become one of the most widely used programming and
scripting language for data analysis in many industries.

The aim of this book is to develop skills to effectively approach almost any data analysis
problem, and extract all of the available information. This is done by introducing a range of
varying techniques and methods such as uni- and multi-variate linear regression, cluster
finding, Bayesian analysis, machine learning, and time series analysis. Exploratory data
analysis is a key aspect to get a sense of what can be done and to maximize the insights that
are gained from the data. Additionally, emphasis is put on presentation-ready figures that
are clear and easy to interpret.

Knowing how to explore data and present results and conclusions from data analysis in a
meaningful way is an important skill. While the theory behind statistical analysis is
important to know, to be able to quickly and accurately perform hands-on sorting,
reduction, analysis, and subsequently present the insights gained, is a make or break for
today's quickly evolving business and academic sector.

What this book covers
Chapter 1, Tools of the Trade, provides an overview of the tools available for data analysis
in Python and details the packages and libraries that will be used in the book with some
installation tips. A quick example highlights the common data structure used in the Pandas
package.

Chapter 2, Exploring Data, introduces methods for initial exploration of data, including
numeric summaries and distributions, and various ways of displaying data, such as
histograms, Kernel Density Estimation (KDE) plots, and box plots.

Preface

[2]

Chapter 3, Learning About Models, covers the concept of models in data analysis and how
using the cumulative distribution function and probability density function can help
characterize a variable. Furthermore, it shows how to make point estimates and generate
random numbers with a given distribution.

Chapter 4, Regression, introduces linear, multiple, and logistic regression with in-depth
examples of using SciPy and statsmodels packages to test various hypotheses of
relationships between variables.

Chapter 5, Clustering, explains some of the theory behind cluster finding analysis and goes
through some more complex examples using the K-means and hierarchical clustering
algorithms available in SciPy.

Chapter 6, Bayesian Methods, explains how to construct and test a model using Bayesian
analysis in Python using the PyMC package. It covers setting up stochastic and
deterministic variables with prior information, constructing the model, running the Markov
Chain Monte Carlo (MCMC) sampler, and interpreting the results. In addition, a short
bonus section covers how to plot coordinates on maps using both the basemap and cartopy
packages, which are important for presenting and analyzing data with geographical
coordinate information.

Chapter 7, Supervised and Unsupervised Learning, looks at linear regression, clustering, and
classification with two machine learning analysis techniques available in the Scikit-learn
package.

Chapter 8, Time Series Analysis, examines various aspects of time series modeling using
Pandas and statsmodels. Initially, the important concepts of smoothing, resampling, rolling
estimates, and stationarity are covered. Later, autoregressive (AR), moving average (MA),
and combined ARIMA models are explained and applied to one of the data sets, including
making shorter forecasts using the constructed models.

Appendix, More on Jupyter Notebook and matplotlib Styles, shows some convenient extensions
of Jupyter Notebook and some useful keyboard shortcuts to make the Jupyter workflow
more efficient. The matplotlib style files are explained and how to customize plots even
further to make beautiful figures ready for inclusion in reports. Lastly, various useful online
resources are listed and described.

Preface

[3]

What you need for this book
All you need to follow through the examples in this book is a computer running any recent
version of Python. While the examples use Python 3, they can easily be adapted to work
with Python 2, with only minor changes. The packages used in the examples are NumPy,
SciPy, matplotlib, Pandas, statsmodels, PyMC, Scikit-learn. Optionally, the packages
basemap and cartopy are used to plot coordinate points on maps. The easiest way to obtain
and maintain a Python environment that meets all the requirements of this book is to
download a prepackaged Python distribution. In this book, we have checked all the code
against Continuum Analytics' Anaconda Python distribution and Ubuntu Xenial Xerus
(16.04) running Python 3.

To download the example data and code, an Internet connection is needed.

Who this book is for
This book is intended for professionals with a beginner to intermediate level of Python
programming knowledge who want to move in the direction of solving more sophisticated
problems and gain deeper insights through advanced data analysis. Some experience with
the math behind basic statistics is assumed, but quick introductions are given where
required. If you want to learn the breadth of statistical analysis techniques in Python and
get an overview of the methods and tools available, you will find this book helpful. Each
chapter consists of a number of examples using mostly real-world data to highlight various
aspects of the topic and teach how to conduct data analysis from start to finish.

Conventions
In this book, you will find a number of text styles that distinguish between different kinds
of information. Here are some examples of these styles and an explanation of their meaning.
Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows: "This
code has the effect of selecting matplotlib stylesheet mystyle.mplstyle."

A block of code is set as follows:

gss_data = pd.read_stata('data/GSS2012merged_R5.dta',
 convert_categoricals=False)
gss_data.head()

Preface

[4]

Any command-line input or output is written as follows:

 python -c 'import numpy'

New terms and important words are shown in bold. Words that you see on the screen, for
example, in menus or dialog boxes, appear in the text like this: "Here, you can check the box
for add a toolbar button to open the shortcuts dialog/panel."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about this
book-what you liked or disliked. Reader feedback is important for us as it helps us develop
titles that you will really get the most out of.

To send us general feedback, simply e-mail feedback@packtpub.com, and mention the
book's title in the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing or
contributing to a book, see our author guide at www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to help you
to get the most from your purchase.

http://www.packtpub.com/authors

Preface

[5]

Downloading the example code
You can download the example code files for this book from your account at h t t p : / / w w w .
p a c k t p u b . c o m. If you purchased this book elsewhere, you can visit h t t p : / / w w w . p a c k t p u
b . c o m / s u p p o r t and register to have the files e-mailed directly to you.

You can download the code files by following these steps:

Log in or register to our website using your e-mail address and password.1.
Hover the mouse pointer on the SUPPORT tab at the top.2.
Click on Code Downloads & Errata.3.
Enter the name of the book in the Search box.4.
Select the book for which you're looking to download the code files.5.
Choose from the drop-down menu where you purchased this book from.6.
Click on Code Download.7.

You can also download the code files by clicking on the Code Files button on the book's
webpage at the Packt Publishing website. This page can be accessed by entering the book's
name in the Search box. Please note that you need to be logged in to your Packt account.

Once the file is downloaded, please make sure that you unzip or extract the folder using the
latest version of:

WinRAR / 7-Zip for Windows
Zipeg / iZip / UnRarX for Mac
7-Zip / PeaZip for Linux

The code bundle for the book is also hosted on GitHub at h t t p s : / / g i t h u b . c o m / P a c k t P u
b l i s h i n g / M a s t e r i n g - P y t h o n - D a t a - A n a l y s i s. We also have other code bundles from
our rich catalog of books and videos available at h t t p s : / / g i t h u b . c o m / P a c k t P u b l i s h i n
g /. Check them out!

Downloading the color images of this book
We also provide you with a PDF file that has color images of the screenshots/diagrams used
in this book. The color images will help you better understand the changes in the output.
You can download this file from h t t p s : / / w w w . p a c k t p u b . c o m / s i t e s / d e f a u l t / f i l e s /
d o w n l o a d s / m a s t e r i n g p y t h o n d a t a a n a l y s i s _ C o l o r I m a g e s . p d f.

http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com/support
http://www.packtpub.com/support
https://github.com/PacktPublishing/Mastering-Python-Data-Analysis
https://github.com/PacktPublishing/Mastering-Python-Data-Analysis
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://www.packtpub.com/sites/default/files/downloads/masteringpythondataanalysis_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/masteringpythondataanalysis_ColorImages.pdf

Preface

[6]

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes do
happen. If you find a mistake in one of our books-maybe a mistake in the text or the code-
we would be grateful if you could report this to us. By doing so, you can save other readers
from frustration and help us improve subsequent versions of this book. If you find any
errata, please report them by visiting h t t p : / / w w w . p a c k t p u b . c o m / s u b m i t - e r r a t a,
selecting your book, clicking on the Errata Submission Form link, and entering the details
of your errata. Once your errata are verified, your submission will be accepted and the
errata will be uploaded to our website or added to any list of existing errata under the
Errata section of that title.

To view the previously submitted errata, go to h t t p s : / / w w w . p a c k t p u b . c o m / b o o k s / c o n
t e n t / s u p p o r t and enter the name of the book in the search field. The required information
will appear under the Errata section.

Piracy
Piracy of copyrighted material on the Internet is an ongoing problem across all media. At
Packt, we take the protection of our copyright and licenses very seriously. If you come
across any illegal copies of our works in any form on the Internet, please provide us with
the location address or website name immediately so that we can pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected pirated
material.

We appreciate your help in protecting our authors and our ability to bring you valuable
content.

Questions
If you have a problem with any aspect of this book, you can contact us
at questions@packtpub.com, and we will do our best to address the problem.

http://www.packtpub.com/submit-errata
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support

1
Tools of the Trade

This chapter gives you an overview of the tools available for data analysis in Python, with
details concerning the Python packages and libraries that will be used in this book. A few
installation tips are given, and the chapter concludes with a brief example. We will
concentrate on how to read data files, select data, and produce simple plots, instead of
delving into numerical data analysis.

Before you start
We assume that you have familiarity with Python and have already developed and run
some scripts or used Python interactively, either in the shell or on another interface, such as
the Jupyter Notebook (formerly known as the IPython notebook). Hence, we also assume
that you have a working installation of Python. In this book, we assume that you have
installed Python 3.4 or later.

We also assume that you have developed your own workflow with Python, based on needs
and available environment. To follow the examples in this book, you are expected to have
access to a working installation of Python 3.4 or later. There are two alternatives to get
started, as outlined in the following list:

Use a Python installation from scratch. This can be downloaded from h t t p s : / / w
w w . p y t h o n . o r g. This will require a separate installation for each of the required
libraries.
Install a prepackaged distribution containing libraries for scientific and data
computing. Two popular distributions are Anaconda Scientific Python (h t t p s : /
/ s t o r e . c o n t i n u u m . i o / c s h o p / a n a c o n d a) and Enthought distribution (h t t p s :
/ / w w w . e n t h o u g h t . c o m).

https://www.python.org
https://www.python.org
https://store.continuum.io/cshop/anaconda
https://store.continuum.io/cshop/anaconda
https://www.enthought.com
https://www.enthought.com

Tools of the Trade

[8]

Even if you have a working Python installation, you might want to try one
of the prepackaged distributions. They contain a well-rounded collection
of packages and modules suitable for data analysis and scientific
computing. If you choose this path, all the libraries in the next list are
included by default.

We also assume that you have the libraries in the following list:

numpy and scipy: These are available at h t t p : / / w w w . s c i p y . o r g. These are the
essential Python libraries for computational work. NumPy defines a fast and
flexible array data structure, and SciPy has a large collection of functions for
numerical computing. They are required by some of the libraries mentioned in
the list.
matplotlib: This is available at h t t p : / / m a t p l o t l i b . o r g. It is a library for
interactive graphics built on top of NumPy. I recommend versions above 1.5,
which is what is included in Anaconda Python by default.
pandas: This is available at h t t p : / / p a n d a s . p y d a t a . o r g. It is a Python data
analysis library. It will be used extensively throughout the book.
pymc: This is a library to make Bayesian models and fitting in Python accessible
and straightforward. It is available at h t t p : / / p y m c - d e v s . g i t h u b . i o / p y m c /.
This package will mainly be used in Chapter 6, Bayesian Methods, of this book.
scikit-learn: This is available at h t t p : / / s c i k i t - l e a r n . o r g. It is a library
for machine learning in Python. This package is used in Chapter 7, Supervised
and Unsupervised Learning.
IPython: This is available at h t t p : / / i p y t h o n . o r g. It is a library providing
enhanced tools for interactive computations in Python from the command line.
Jupyter: This is available at h t t p s : / / j u p y t e r . o r g /. It is the notebook
interface working on top of IPython (and other programming languages).
Originally part of the IPython project, the notebook interface is a web-based
platform for computational and data science that allows easy integration of the
tools that are used in this book.

Notice that each of the libraries in the preceding list may have several dependencies, which
must also be separately installed. To test the availability of any of the packages, start a
Python shell and run the corresponding import statement. For example, to test the
availability of NumPy, run the following command:

 import numpy

http://www.scipy.org
http://matplotlib.org
http://pandas.pydata.org
http://pymc-devs.github.io/pymc/
http://scikit-learn.org
http://ipython.org
https://jupyter.org/

Tools of the Trade

[9]

If NumPy is not installed in your system, this will produce an error message. An alternative
approach that does not require starting a Python shell is to run the command line:

 python -c 'import numpy'

We also assume that you have either a programmer's editor or Python IDE. There are
several options, but at the basic level, any editor capable of working with unformatted text
files will do.

Using the notebook interface
Most examples in this book will use the Jupyter Notebook interface. This is a browser-based
interface that integrates computations, graphics, and other forms of media. Notebooks can
be easily shared and published, for example, h t t p : / / n b v i e w e r . i p y t h o n . o r g / provides
a simple publication path.

It is not, however, absolutely necessary to use the Jupyter interface to run the examples in
this book. We strongly encourage, however, that you at least experiment with the notebook
and its many features. The Jupyter Notebook interface makes it possible to mix formatted,
descriptive text with code cells that evaluate at the same time. This feature makes it suitable
for educational purposes, but it is also useful for personal use as it makes it easier to add
comments and share partial progress before writing a full report. We will sometimes refer
to a Jupyter Notebook as just a notebook.

To start the notebook interface, run the following command line from the shell or Anaconda
command prompt:

 jupyter notebook

The notebook server will be started in the directory where the command is issued. After a
while, the notebook interface will appear in your default browser. Make sure that you are
using a standards-compliant browser, such as Chrome, Firefox, Opera, or Safari. Once the
Jupyter dashboard shows on the browser, click on the New button on the upper-right side
of the page and select Python 3. After a few seconds, a new notebook will open in the
browser. A useful place to learn about the notebook interface is h t t p : / / j u p y t e r . o r g.

http://nbviewer.ipython.org/
http://jupyter.org

Tools of the Trade

[10]

Imports
There are some modules that we will need to load at the start of every project. Assuming
that you are running a Jupyter Notebook, the required imports are as follows:

 %matplotlib inline
 import matplotlib.pyplot as plt
 import numpy as np
 import pandas as pd

Enter all the preceding commands in a single notebook cell and press Shift + Enter to run the
whole cell. A new cell will be created when there is none after the one you are running;
however, if you want to create one yourself, the menu or keyboard shortcut Ctrl +M +A/B is
handy (A for above, B for below the current cell). In Appendix, More on Jupyter Notebook and
matplotlib Styles, we cover some of the keyboard shortcuts available and installable
extensions (that is, plugins) for Jupyter Notebook.

The statement %matplotlib inline is an example of Jupyter Notebook magic and sets up
the interface to display plots inline, that is, embedded in the notebook. This line is not
needed (and causes an error) in scripts. Next, optionally, enter the following commands:

 import os
 plt.style.use(os.path.join(os.getcwd(), 'mystyle.mplstyle'))

As before, run the cell by pressing Shift +Enter. This code has the effect of
selecting matplotlib stylesheet mystyle.mplstyle. This is a custom style sheet that I
created, which resides in the same folder as the notebook. It is a rather simple example of
what can be done; you can modify it to your liking. As we gain experience in drawing
figures throughout the book, I encourage you to play around with the settings in the file.
There are also built-in styles that you can by typing plt.style.available in a new cell.

This is it! We are all set to start the fun part!

An example using the Pandas library
The purpose of this example is to check whether everything is working in your installation
and give a flavor of what is to come. We concentrate on the Pandas library, which is the
main tool used in Python data analysis.

Tools of the Trade

[11]

We will use the MovieTweetings 50K movie ratings dataset, which can be downloaded
from h t t p s : / / g i t h u b . c o m / s i d o o m s / M o v i e T w e e t i n g s. The data is from the study
MovieTweetings: a Movie Rating Dataset Collected From Twitter – by Dooms, De
Pessemier and Martens presented during Workshop on Crowdsourcing and Human
Computation for Recommender Systems, CrowdRec at RecSys (2013). The dataset is spread
in several text files, but we will only use the following two files:

ratings.dat: This is a double colon-separated file containing the ratings for
each user and movie
movies.dat: This file contains information about the movies

To see the contents of these files, you can open them with a standard text editor. The data is
organized in columns, with one data item per line. The meanings of the columns are
described in the README.md file, distributed with the dataset. The data has a peculiar
aspect: some of the columns use a double colon (::) character as a separator, while others
use a vertical bar (|). This emphasizes a common occurrence with real-world data: we have
no control on how the data is collected and formatted. For data stored in text files, such as
this one, it is always a good strategy to open the file in a text editor or spreadsheet software
to take a look at the data and identify inconsistencies and irregularities.

To read the ratings file, run the following command:

 cols = ['user id', 'item id', 'rating', 'timestamp']
 ratings = pd.read_csv('data/ratings.dat', sep='::',
 index_col=False, names=cols,
 encoding="UTF-8")

The first line of code creates a Python list with the column names in the dataset. The next
command reads the file, using the read_csv() function, which is part of Pandas. This is a
generic function to read column-oriented data from text files. The arguments used in the
call are as follows:

data/ratings.dat: This is the path to file containing the data (this argument is
required).
sep='::': This is the separator, a double colon character in this case.
index_col=False: We don't want any column to be used as an index. This will
cause the data to be indexed by successive integers, starting with 1.
names=cols: These are the names to be associated with the columns.

https://github.com/sidooms/MovieTweetings

Tools of the Trade

[12]

The read_csv() function returns a DataFrame object, which is the Pandas data structure
that represents tabular data. We can view the first rows of the data with the following
command:

 ratings[:5]

This will output a table, as shown in the following image:

To start working with the data, let us find out how many times each rating appears in the
table. This can be done with the following commands:

 rating_counts = ratings['rating'].value_counts()
 rating_counts

The first line of code computes the counts and stores them in the rating_counts variable.
To obtain the count, we first use the ratings['rating'] expression to select the rating
column from the table ratings. Then, the value_counts() method is called to compute the
counts. Notice that we retype the variable name, rating_counts, at the end of the cell.
This is a common notebook (and Python) idiom to print the value of a variable in the output
area that follows each cell. In a script, it has no effect; we could have printed it with the
print command,(print(rating_counts)), as well. The output is displayed in the
following image:

Tools of the Trade

[13]

Notice that the output is sorted according to the count values in descending order. The
object returned by value_counts is of the Series type, which is the Pandas data structure
used to represent one-dimensional, indexed, data. The Series objects are used extensively in
Pandas. For example, the columns of a DataFrame object can be thought as Series objects
that share a common index.

In our case, it makes more sense to sort the rows according to the ratings. This can be
achieved with the following commands:

 sorted_counts = rating_counts.sort_index()
 sorted_counts

This works by calling the sort_index() method of the Series object, rating_counts. The
result is stored in the sorted_counts variable. We can now get a quick visualization of the
ratings distribution using the following commands:

 sorted_counts.plot(kind='bar', color='SteelBlue')
 plt.title('Movie ratings')
 plt.xlabel('Rating')
 plt.ylabel('Count')

Tools of the Trade

[14]

The first line produces the plot by calling the plot() method for the sorted_counts
object. We specify the kind='bar' option to produce a bar chart. Notice that we added
the color='SteelBlue' option to select the color of the bars in the histogram. SteelBlue
is one of the HTML5 color names (for example, h t t p : / / m a t p l o t l i b . o r g / e x a m p l e s / c o l
o r / n a m e d _ c o l o r s . h t m l) available in matplotlib. The next three statements set the title,
horizontal axis label, and vertical axis label respectively. This will produce the following
plot:

The vertical bars show how many voters that have given a certain rating, covering all the
movies in the database. The distribution of the ratings is not very surprising: the counts
increase up to a rating of 8, and the count of 9-10 ratings is smaller as most people are
reluctant to give the highest rating. If you check the values of the bar for each rating, you
can see that it corresponds to what we had previously when printing the rating_counts
object. To see what happens if you do not sort the ratings first, plot the rating_counts
object, that is, run rating_counts.plot(kind='bar', color='SteelBlue') in a cell.

http://matplotlib.org/examples/color/named_colors.html
http://matplotlib.org/examples/color/named_colors.html

Tools of the Trade

[15]

Let's say that we would like to know if the ratings distribution for a particular movie genre,
say Crime Drama, is similar to the overall distribution. We need to cross-reference the
ratings information with the movie information, contained in the movies.dat file. To read
this file and store it in a Pandas DataFrame object, use the following command:

 cols = ['movie id','movie title','genre']
 movies = pd.read_csv('data/movies.dat', sep='::',
 index_col=False, names=cols,
 encoding="UTF-8")

Downloading the example code
Detailed steps to download the code bundle are mentioned in the Preface
of this book. Please have a look.
The code bundle for the book is also hosted on GitHub at h t t p s : / / g i t h u
b . c o m / P a c k t P u b l i s h i n g / M a s t e r i n g - P y t h o n - D a t a - A n a l y s i s. We
also have other code bundles from our rich catalog of books and videos
available at h t t p s : / / g i t h u b . c o m / P a c k t P u b l i s h i n g /. Check them out!

We are again using the read_csv() function to read the data. The column names were
obtained from the README.md file distributed with the data. Notice that the separator used
in this file is also a double colon, ::. The first few lines of the table can be displayed with
the command:

 movies[:5]

Notice how the genres are indicated, clumped together with a vertical bar, |, as separator.
This is due to the fact that a movie can belong to more than one genre. We can now select
only the movies that are crime dramas using the following lines:

 drama = movies[movies['genre']=='Crime|Drama']

Notice that this uses the standard indexing notation with square brackets, movies[...].
Instead of specifying a numeric or string index, however, we are using the
Boolean movies['genre']=='Crime|Drama' expression as an index. To understand how
this works, run the following code in a cell:

 is_drama = movies['genre']=='Crime|Drama'
 is_drama[:5]

https://github.com/PacktPublishing/Mastering-Python-Data-Analysis
https://github.com/PacktPublishing/Mastering-Python-Data-Analysis
https://github.com/PacktPublishing/

Tools of the Trade

[16]

This displays the following output:

The movies['genre']=='Crime|Drama' expression returns a Series object, where each
entry is either True or False, indicating whether the corresponding movie is a crime
drama or not, respectively.

Thus, the net effect of the drama = movies[movies['genre']=='Crime|Drama']
assignment is to select all the rows in the movies table for which the entry in the genre
column is equal to Crime|Drama and store the result in the drama variable, which is an
object of the DataFrame type.

All that we need is the movie id column of this table, which can be selected with the
following statement:

 drama_ids = drama['movie id']

This, again, uses standard indexing with a string to select a column from a table.

The next step is to extract those entries that correspond to dramas from the ratings table.
This requires yet another indexing trick. The code is contained in the following lines:

 criterion = ratings['item id'].map(lambda x:(drama_ids==x).any())
 drama_ratings = ratings[criterion]

The key to how this code works is the definition of the variable criterion. We want to
look up each row of the ratings table and check whether the item id entry is in
the drama_ids table. This can be conveniently done by the map() method. This method
applies a function to all the entries of a Series object. In our example, the function is as
follows:

 lambda x:(drama_ids==x).any()

Tools of the Trade

[17]

This function simply checks whether an item appears in drama_ids, and if it does, it
returns True. The resulting object criterion will be a Series that contains the True value
only in the rows that correspond to dramas. You can view the first rows with the following
code:

 criterion[:10]

We then use the criterion object as an index to select the rows from the ratings table.

We are now done with selecting the data that we need. To produce a rate count and bar
chart, we use the same commands as before. The details are in the following code, which
can be run in a single execution cell:

 rating_counts = drama_ratings['rating'].value_counts()
 sorted_counts = rating_counts.sort_index()
 sorted_counts.plot(kind='bar', color='SteelBlue')
 plt.title('Movie ratings for dramas')
 plt.xlabel('Rating')
 plt.ylabel('Count')

As before, this code first computes the counts, indexes them according to the ratings, and
then produces a bar chart. This produces a graph that seems to be similar to the overall
ratings distribution, as shown in the following figure:

Tools of the Trade

[18]

Summary
In this chapter, we have seen what tools are available for data analysis in Python, reviewed
issues related to installation and workflow, and considered a simple example that requires
reading and manipulating data files.

In the next chapter, we will cover techniques to explore data graphically and numerically
using some of the main tools provided by the Pandas module.

