

Unity 3D UI Essentials

Leverage the power of the new and improved UI
system for Unity to enhance your games and apps

Simon Jackson

BIRMINGHAM - MUMBAI

Unity 3D UI Essentials

Copyright © 2015 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book
is sold without warranty, either express or implied. Neither the author nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: January 2015

Production reference: 1270115

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN - 978-1-78355-361-7

www.packtpub.com

www.packtpub.com

Credits

Author
Simon Jackson

Reviewers
Attilio Carotenuto

Adam Dawes

Javier García-Lajara Herrero

Dr. Sebastian T. Koenig

Simon Wheatley

Commissioning Editor
Akram Hussain

Acquisition Editor
James Jones

Content Development Editor
Sumeet Sawant

Technical Editor
Utkarsha S. Kadam

Copy Editors
Gladson Monteiro

Merilyn Pereira

Project Coordinator
Danuta Jones

Proofreaders
Simran Bhogal

Ameesha Green

Paul Hindle

Indexer
Priya Subramani

Graphics
Sheetal Aute

Production Coordinator
Nitesh Thakur

Cover Work
Nitesh Thakur

About the Author

Ever since my early years I have been a tinkerer, engineer, problem solver, and
solution gatherer. In short, I love to break things apart, figure out how they work,
and then put them back together, usually better than before.

I started way back when with my first computer, the Commodore Vic20. It was
simple, used a tape deck, and forced you to write programs in basic or assembly;
they were fun times. From there, I progressed through the ZX Spectrum +2 and the
joyous days of modern graphics, but with the 30 minute load times from a trusty
tape deck. Games were a passion of mine even then, which led to many requests for
another gaming machine, but Santa brought me an Amstrad 1640, my first PC. From
there, my tinkering and building exploded, and that machine ended up being a huge
monstrosity with so many addons, tweaks, and fixes; I was Frankenstein, and this
PC became my own personal monster crafted from so many parts. Good times.

This passion has led me down many paths, and I learned to help educate others on
the tips and tricks I learned along the way; these skills have equipped me well for
the future.

Today I would class myself as a game development generalist. I work with many
different frameworks, each time digging down, ripping them apart, and then
showing whoever would listen through my blog, videos, and speaking events
how to build awesome frameworks and titles. This has been throughout many
generations of C++, MDX, XNA (what a breath of fresh air that was), MonoGame,
Unity 3D, The Sunburn Gaming Engine, HTML, and a bunch of other proprietary
frameworks; I do them all. This gives a very balanced view of how to build and
manage many different types of multiplatform titles.

I don't stop there, as I regularly contribute to the MonoGame project, adding
new features and new samples before publishing it on NuGet. I also have several
of my own open source projects and actively seek out any new and interesting ones
to help with.

By day I am a lowly lead technical architect working in the healthcare software
industry seeking to improve patients' health and care through better software
(a challenge to be sure), but by night I truly soar! Building, tinkering, and educating
whilst trying to push game titles of my own. One day they will pay the bills, but
until then I still lead a double life.

More recently, I achieved the highly acclaimed reward of being a Microsoft MVP in
the ID@Xbox program, for my evangelizing efforts in the game development space.
This won't change much about me, but will give me additional tools to help game
developers out there.

Lastly, you should check out my previous title, which has been one of Packt's best
sellers since its release, especially if you want to learn more about Unity's 2D system.
Check it out here: http://bit.ly/MasteringUnity2DGameDevelopment.

It truly has been a tormentous year but it looks to be getting
better. Through it all, my wife Caroline has been my tiller, keeping
me straight and true while I tend to my game development and
writing efforts. Looking forward, I'll likely be crafting more of my
own experiences with my kids pitching in; Caitlin, new to game
development in school, being my sidekick, Jessica adding her
colorful artistic talent to the mix, and the boys (Alexander and
Nathan) no doubt trying to destroy my efforts through testing.

Additionally, a big thanks to my extended family (Mike and
Marilyn) for helping out with the kids and keeping the writing area
a kids-free zone for a few desperate hours. (It's amazing what a few
hours respite can do.)

Also a big shout out to the PWSA (Prader-Willi Syndrome
Association — http://pwsa.co.uk) for their help and support
with Alexander, plus the Warrington Youth Club (http://www.
warringtonyouthclub.co.uk/) for their exciting events to keep
him entertained, especially in his more trying times. On that last
thread, a very big thank you to Westland Drive respite (supported
by Warrington council), who give us peace of mind and a night off
from time to time; Alexander certainly loves his visits there.

Finally, thanks to the reviewers of this title (especially Simon W
and Andrew D who joined me from my previous book); they kept
me grounded and on target, although didn't help keeping the page
count down. Thanks for your support guys!

http://bit.ly/MasteringUnity2DGameDevelopment
http://pwsa.co.uk
http://www.warringtonyouthclub.co.uk/
http://www.warringtonyouthclub.co.uk/

About the Reviewers

Attilio Carotenuto is a senior game developer at Space Ape Games, based in
London. There, he uses Unity to create awesome mobile and tablet strategy games
such as Samurai Siege.

Attilio previously worked at King, developing Farm Heroes Saga, and EA Playfish,
creating social games and tools based on the The Sims brand. Before that, he was a
freelance game and web developer, using tools such as Unity, Cocos2D, Flash,
and XNA.

He has previously worked with Packt Publishing on Unity 3D Game Development
(a video tutorial) as a technical reviewer.

Recent projects, tutorials, and articles from Attilio can be found on his personal
website, www.attiliocarotenuto.com.

Adam Dawes is a software developer and systems architect working at a
cutting-edge online service development company.

He has long maintained a fondness for computer games. From the very first time
Nightmare Park displayed its devious maze of pathways in green symbols back
in 1980, he has been a player across a variety of genres and styles. Creating his
own games has always been a hobby, and while he has no plans to become part
of the professional games industry, Adam has a lot of fun developing his own
titles nonetheless.

Over the last few years, Adam has also published three books of his own,
the most recent of which, Windows 8 and Windows Phone 8 Game Development
(published by Apress), explains everything you need to know to develop Windows 8
games in C# using the open source MonoGame platform.

More information is available from his website at www.adamdawes.com.

www.attiliocarotenuto.com

Javier García-Lajara Herrero was part of the booming video game industry in
Spain, participating in the Commandos saga of Pyro Studios, where he developed as
an artist, before continuing his career in different studies at Virtual Toys, Bitoon,
and Unusual Studios.

He is now one of the professors at U-Tad University of Technology.

Always passionate about technical advances, he now researches and develops
new proposals in games, virtual reality, and aerial photogrammetry of objects and
environments with drones.

Dr. Sebastian T. Koenig received his PhD in human interface technology
from the University of Canterbury, New Zealand, developing a framework for
individualized virtual reality cognitive rehabilitation. He obtained his diploma in
psychology from the University of Regensburg, Germany, in the areas of clinical
neuropsychology and virtual reality rehabilitation.

Dr. Koenig is the founder and CEO of Katana Simulations, where he oversees
the design, development, and evaluation of cognitive assessment and training
simulations. His professional experience spans over ten years of clinical work in
cognitive rehabilitation and over seven years of virtual reality research, development,
and user testing. Dr. Koenig has extensive experience as a speaker at international
conferences and as a reviewer of scientific publications in the areas of rehabilitation,
cognitive psychology, neuropsychology, software engineering, game development,
games user research, and virtual reality.

Dr. Koenig has developed numerous software applications for cognitive
assessment and training. For his work on the Virtual Memory Task, he was
awarded the prestigious Laval Virtual Award in 2011, for the Medicine and Health
category. Other applications include the virtual reality executive function assessment
in collaboration with the Kessler Foundation, NJ, USA, and the patent-pending
Microsoft Kinect-based motor and cognitive training JewelMine/Mystic Isle at
the USC Institute for Creative Technologies, CA, USA.

Dr. Koenig maintains the website www.virtualgamelab.com about his research
and his software development projects. His website also contains a comprehensive
list of tutorials for the game engine Unity.

www.virtualgamelab.com

Simon Wheatley first got into programming with the Sinclair ZX81 and then
the Acorn BBC Micro. This hobby led onto a bachelor's degree in information
technology, after which he embarked on an IT career working in the service,
manufacturing, and higher education sectors.

Recently, he discovered Unity's new 2D tools and set about enthusiastically
learning as much as possible about them while contributing plenty of errata
to several recently published Unity books. Currently, he is developing an indie
mobile game using Unity. When he isn't working, he can be found singing down
at his local karaoke bar or out enjoying the fantastic British countryside!

www.PacktPub.com

Support files, eBooks, discount offers, and more
For support files and downloads related to your book, please visit www.PacktPub.com.

Did you know that Packt offers eBook versions of every book published, with PDF
and ePub files available? You can upgrade to the eBook version at www.PacktPub.
com and as a print book customer, you are entitled to a discount on the eBook copy.
Get in touch with us at service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles,
sign up for a range of free newsletters and receive exclusive discounts and offers
on Packt books and eBooks.

TM

https://www2.packtpub.com/books/subscription/packtlib

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital
book library. Here, you can search, access, and read Packt's entire library of books.

Why subscribe?
• Fully searchable across every book published by Packt
• Copy and paste, print, and bookmark content
• On demand and accessible via a web browser

Free access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view 9 entirely free books. Simply use your login credentials for
immediate access.

http://www.PacktPub.com
www.PacktPub.com
http://www.PacktPub.com
http://www.PacktPub.com
mailto:service@packtpub.com
http://www.PacktPub.com
https://www2.packtpub.com/books/subscription/packtlib
http://www.packtpub.com/

Table of Contents
Preface 1
Chapter 1: Looking Back, Looking Forward 7

State of play 8
GUI controls 9

The Label control 10
Texture drawing 11
The Button control 13
The Text control 14
The Box control 16
The Toggle/checkbox control 17
Toolbar panels 18
The Slider/Scrollbar controls 20
The ScrollView control 21
Rich Text Formatting 24

Common control features 26
Grouping controls 26
Naming controls 27
Getting in focus 27
Tooltips 30
The Window control 31

GUI styles and skins 33
GUI events and properties 38
Layout controls 39

BeginArea 39
Horizontal and Vertical layout groups 40

The Asset Store 40
Enter Thunderdome 40

New layouts 41
Rect Transform 42
The Canvas 42

Table of Contents

[ii]

Groups 43
Masking 44

New controls 44
New UnityEvent system 46
Control extensibility 46
Animation 46
Even the Asset Store has you covered 47

TextMeshPro ($65) 47
GUI Generator ($40) 48
MenuPage ($10) 48

Summary 48
Chapter 2: Building Layouts 51

The Rect Transforms 52
The Rect Tool 52
The Rect Transform component 53

Scaling the Rect Transform 56
The Canvas 56

The Canvas Renderer 61
Canvas Groups 61

Automatic layouts and options 62
Horizontal Layout Group 62
Vertical Layout Group 65
Grid Layout Group 66
Layout options 69

Layout Element 70
Content Size Fitter 74
Aspect Ratio Fitter 76
Scroll Rect 78
Masks 81

Resolution and scaling 82
Constant Pixel Size 83
Scale with Screen Size 84
Constant Physical Size 85

The UnityEvent system 86
Raycasting 86
Input modules 87
Input events 88
Event Triggers 90

Summary 92

Table of Contents

[iii]

Chapter 3: Control, Control, You Must Learn Control 93
Overview 94

A word on code 94
Setting up the project 95
A warning on the built-in images 95

Dealing with text 96
A simple FPS control 100
Adding interaction with input 102
Shadows and effects 104

Bring on the images 106
Image types 108

Simple Images 108
Sliced Images 108
Tiled Images 110
Filled Images 111

Adding animation to the mix 112
A word on RawImage 117

Don't push this button 117
What makes it Selectable? 120
An event occurred, what do I do? 122
The ultimate awesome menu 126

Which direction to travel? 130
Grouping toggles 132
Dynamic event properties 133

Sliding opportunities 134
Ancient scrolls 137

Scrolling, Rect'ing, and Masking, oh my 139
Navigation 141
A word on shaders 143
Summary 143

Chapter 4: Anchors Away 145
Dropping Anchor 145
Put a nail in it, and trim the sails 147
Stretch it, bend it 152
Scaling and resolution 157

Working with the constant default 157
Scaling to my view 159
Getting physical 162
Which to choose? 167

Summary 167

Table of Contents

[iv]

Chapter 5: Screen Space, World Space, and the Camera 169
The Canvas and Cameras 170

Screen Space and World Space 170
Render cameras 171
Event Cameras 172

Getting some perspective 173
Setting up for the big game 176

Some prerequisites 177
Next up, some Sprite 2D work 177

A Screen Space – Camera health bar 179
What's in a Canvas? 180
Am I dead yet? 182
Reaching in 186
It's all gone a bit flat 187

Going deep 189
Hang your Canvas wherever you like 189
The showcase 190
Build your UI and place it in the scene 191
Troubles with scale 194
A better way 195
A final word on Event Cameras 196

Summary 196
Chapter 6: Working with the UI Source 199

Unravelling the Event System 200
The Event System loop 200
Controlling state 201
Raycast Marshalling 202

Working with events 202
Using a parameter 206
Built-in event interfaces 208
Executing events 210
Building your own handlers or custom events 213

A custom event Data Structure 214
A custom event Interface 216
A custom event static container 216
Processing a custom event 217

The Roll a Ball Derby 219
The Droid script 220
The Alarm plates 222
Who watches the watchers? 224

Summing up the Event System 226

Table of Contents

[v]

Examples, examples, and even more examples 226
Getting access to the source 228

The repository 228
Getting forked 230
Downloading the code 232
Keeping up to date 235
What is in the solution? 236
Adding your own version of UI to your project 238
Extra credit, push it back to Unity 240

Summary 242
Appendix: The 3D Scene Sample 243

Setting up for the big game 244
The initial 3D scene 245

Index 253

Preface
A new era has dawned, and Unity Technologies have taken a big, bold step. Not only
have they delivered on some big promises for an all new and improved UI system
for Unity projects, but they have also made the source for the new UI completely
open source, giving everyday developers access to the inner workings of the new UI.

These are bold steps indeed. Many felt that the new UI wouldn't live up to the dream
that was sold, as it had been years since they announced it was coming. Delays
and rewrites made it look like it was never going to happen, leaving developers
with either having to live with the existing legacy GUI or pay for some of the more
advanced GUI systems on the asset store (such as NGUI).

Now, after a long and highly deliberated beta program, the new UI system is
finally upon us. In some areas, it meets our expectations; in some, it falls a bit short
(however, this is only the beginning). In other areas however, it has gone far beyond.

Throughout this title, we will peel back the layers of all this new technology to
understand what each component does, how it fits together, and how to use it to
build a fantastic new UI in our projects. Each chapter builds upon the last, to arm
you (the reader) with all the knowledge required to assemble your UI within your
projects. You will not just build on screen menus and options, but to embed UI
elements within your 3D game world.

Not only have Unity released the new UI system, they have also given every
developer access to the source that builds the UI, allowing you to better understand
how things are built and enable you to extend the existing controls or even build
your own. If you are feeling adventurous, you can even submit fixes or new features
back to Unity for them to include within Unity itself.

Preface

[2]

Finally, we can now build what we want, how we want and best of all, it's
completely free and available with the Free license for Unity. All hail and rejoice!

Now what are you waiting for? Pack up your towel, brew a freshly hot cup of tea,
crack open this guide, and start exploring the all new universe of UI.

What this book covers
Chapter 1, Looking Back, Looking Forward, is a retrospective look at what Unity3D
had to offer prior to 4.6 and an overview of what 4.6 and beyond brings to the
table, including a high-level overview of all the new UI features.

Chapter 2, Building Layouts, covers the core elements of the new Unity UI system,
the Canvas and Rect Transforms. These elements are the foundations of the new
Unity UI system.

Chapter 3, Control, Control, You Must Learn Control, Unity UI introduces a heap-load
of new UI controls to suit just about any UI need, from buttons and checkboxes
to entire scrollable areas and layout masks. Here, we will delve deep into how
to make the most of all the controls available.

Chapter 4, Anchors Away, provides a detailed walk-through of how to make the
most of the new Unity UI anchor system and build responsive layouts/designs.

Chapter 5, Screen Space, World Space, and the Camera, Here we finally delve into
one of the most highly anticipated parts of the new UI system: the ability to easily
build perspective UI layouts and add UI elements as 3D objects within a scene.

Chapter 6, Working with the UI Source, looks at all the coding behind the UI framework
and explores the new Event System and UnityEvent frameworks. The chapter finishes
with a walk-through, the open source project for the UI system, allowing you to see
just about every line of code Unity has written for the new UI.

Appendix, The 3D Scene Sample, talks about a flashy 3D demo scene, which was
discussed in Chapter 5, Screen Space, World Space, and the Camera, to show off the UI.
Because this wasn't the focus of the book, it was added as an optional appendix that
you could follow if you wish. The instructions are also available online and
as a downloadable package to enable developers of all levels to make use of it.

Preface

[3]

What you need for this book
• Unity3D V4.6+
• Visual Studio 2012 (Express, Pro, or higher); optional but recommended

Who this book is for
This book is for anyone with a solid understanding of Unity's core functionality
and a decent grasp of C# scripting in Unity (although not required for just the core
editor portions of the new Unity UI system). With this book, you'll be well placed
to take advantage of the new UI feature set.

Conventions
In this book, you will find a number of styles of text that distinguish between
different kinds of information. Here are some examples of these styles and an
explanation of their meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows:
"For standards stake, you should add scripts into a folder called Scripts and scenes
into a folder called Scenes."

A block of code is set as follows:

void OnGUI() {
 GUI.Label(new Rect(25, 15, 100, 30), "Label");
}

When we wish to draw your attention to a particular part of a code block, the
relevant lines or items are set in bold:

public Texture2D myTexture;
void Start() {
 myTexture = new Texture2D(125, 15);
}
void OnGUI() {
 GUI.DrawTexture(new Rect(325, 15, 100, 15), myTexture,
 ScaleMode.ScaleToFit,true,0.5f);
}

Preface

[4]

New terms and important words are shown in bold. Words that you see on
the screen, in menus or dialog boxes for example, appear in the text like this:
"With the new Unity UI system, you can define several layout groups."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or may have disliked. Reader feedback is important for
us to develop titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com,
and mention the book title via the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide on www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Downloading the example code
You can download the example code files from your account at http://www.
packtpub.com for all the Packt Publishing books you have purchased. If you
purchased this book elsewhere, you can visit http://www.packtpub.com/support
and register to have the files e-mailed directly to you.

Additionally, the author has provided a support forum for the book. This forum
provides direct support from the author on your queries and any forthcoming
announcements regarding the title. You can find this forum at http://bit.ly/
Unity3DUIEssentialsForums.

www.packtpub.com/authors
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com/suppor

Preface

[5]

Downloading the color images of this book
We also provide you with a PDF file that has color images of the
screenshots/diagrams used in this book. The color images will help you
better understand the changes in the output. You can download this file from:
https://www.packtpub.com/sites/default/files/downloads/3617OS.pdf.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in the text or
the code—we would be grateful if you could report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
book. If you find any errata, please report them by visiting http://www.packtpub.
com/submit-errata, selecting your book, clicking on the Errata Submission Form
link, and entering the details of your errata. Once your errata are verified, your
submission will be accepted and the errata will be uploaded to our website or added
to any list of existing errata under the Errata section of that title.

To view the previously submitted errata, go to https://www.packtpub.com/books/
content/support and enter the name of the book in the search field. The required
information will appear under the Errata section.

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media.
At Packt, we take the protection of our copyright and licenses very seriously. If you
come across any illegal copies of our works, in any form, on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors, and our ability to bring you
valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with
any aspect of the book, and we will do our best to address it.

Additionally you can post questions directly to the author about the content of the
title on the book's support forum at http://bit.ly/Unity3DUIEssentialsForums.

http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
mailto:copyright@packtpub.com
http://bit.ly/Unity3DUIEssentialsForums

Looking Back, Looking
Forward

The new Unity UI has long been sought by developers; it has been announced
and re-announced over several years, and now it is finally here. The new UI system
is truly awesome and (more importantly for a lot of developers on a shoestring
budget) it's free.

As we start to look forward to the new UI system, it is very important to understand
the legacy GUI system (which still exists for backwards compatibility) and all it has
to offer, so you can fully understand just how powerful and useful the new system is.
It's crucial to have this understanding, especially since most tutorials will still speak
of the legacy GUI system (so you know what on earth they are talking about).

With an understanding of the legacy system, you will then peer over the diving
board and walk through a 10,000-foot view of the new system, so you get a feel of
what to expect from the rest of this book.

The following is the list of topics that will be covered in this chapter:

• A look back into what legacy Unity GUI is
• Tips, tricks, and an understanding of legacy GUI and what it has done for us
• A high level overview of the new UI features

Looking Back, Looking Forward

[8]

Downloading the example code
You can download the example code files for all Packt books you have
purchased from your account at http://www.packtpub.com. If you
purchased this book elsewhere, you can visit http://www.packtpub.
com/support and register to have the files e-mailed directly to you.
Additionally, the author has provided a support forum for the book.
This forum provides direct support from the author on your queries and
any forthcoming announcements regarding the title. You can find this
forum at http://bit.ly/Unity3DUIEssentialsForums.

State of play
You may not expect it, but the legacy Unity GUI has evolved over time,
adding new features and improving performance. However, because it has
kept evolving based on the its original implementation, it has been hampered
with many constraints and the ever pressing need to remain backwards compatible
(just look at Windows, which even today has to cater for programs written in BASIC
(http://en.wikipedia.org/wiki/BASIC)). Not to say the old system is bad, it's
just not as evolved as some of the newer features being added to the Unity 4.x and
Unity 5.x series, which are based on newer and more enhanced designs, and more
importantly, a new core.

The main drawback of the legacy GUI system is that it is only drawn in screen space
(drawn on the screen instead of within it) on top of any 3D elements or drawing in
your scenes. This is fine if you want menus or overlays in your title but if you want
to integrate it further within your 3D scene, then it is a lot more difficult.

For more information about world space and screen space, see
this Unity Answers article (http://answers.unity3d.com/
questions/256817/about-world-space-and-local-
space.html).

So before we can understand how good the new system is, we first need to get to
grips with where we are coming from. (If you are already familiar with the legacy
GUI system, feel free to skip over this section.)

http://en.wikipedia.org/wiki/BASIC
http://answers.unity3d.com/questions/256817/about-world-space-and-local-space.html
http://answers.unity3d.com/questions/256817/about-world-space-and-local-space.html
http://answers.unity3d.com/questions/256817/about-world-space-and-local-space.html

Chapter 1

[9]

A point of reference
Throughout this book, we will refer to the legacy GUI simply as GUI.
When we talk about the new system, it will be referred to as UI or
Unity UI, just so you don't get mixed-up when reading.
When looking around the Web (or even in the Unity support forums),
you may hear about or see references to uGUI, which was the
development codename for the new Unity UI system.

GUI controls
The legacy GUI controls provide basic and stylized controls for use in your titles.

All legacy GUI controls are drawn during the GUI rendering phase from the built-in
OnGUI method. In the sample that accompanies this title, there are examples of all the
controls in the Assets\BasicGUI.cs script.

For GUI controls to function, a camera in the scene must have the
GUILayer component attached to it. It is there by default on any Camera
in a scene, so for most of the time you won't notice it. However, if you
have removed it, then you will have to add it back for GUI to work.
The component is just the hook for the OnGUI delegate handler, to
ensure it has called each frame.

Like the Update method in scripts, the OnGUI method can be called
several times per frame if rendering is slowing things down. Keep this
in mind when building your own legacy GUI scripts.

The controls that are available in the legacy GUI are:

• Label
• Texture
• Button
• Text fields (single/multiline and password variant)
• Box
• Toolbars
• Sliders
• ScrollView
• Window

Looking Back, Looking Forward

[10]

So let's go through them in more detail:

All the following code is implemented in the sample project in the
basic GUI script located in the Assets\Scripts folder of the
downloadable code.
To experiment yourself, create a new project, scene, and script,
placing the code for each control in the script and attach the
script to the camera (by dragging it from the project view on to
the Main Camera GameObject in the scene hierarchy). You can
then either run the project or adorn the class in the script with the
[ExecuteInEditMode] attribute to see it in the game view.

The Label control
Most GUI systems start with a Label control; this simply provides a stylized control
to display read-only text on the screen, it is initiated by including the following
OnGUI method in your script:

void OnGUI() {
 GUI.Label(new Rect(25, 15, 100, 30), "Label");
}

This results in the following on-screen display:

The Label control supports altering its font settings through the use of the guiText
GameObject property (guiText.font) or GUIStyles. (See the following section on
GUIStyles for more detail.)

To set guiText.font in your script, you would simply apply the
following in your script, either in the Awake/Start functions or
before drawing the next section of text you want drawn in another font:

public Font myFont = new Font("arial");

guiText.font = myFont;

You can also set the myFont property in Inspector using an
imported font.

The Label control forms the basis for all controls to display text, and as such,
all other controls inherit from it and have the same behaviors for styling the
displayed text.

Chapter 1

[11]

The Label control also supports using a Texture for its contents, but not both text
and a texture at the same time. However, you can layer Labels and other controls
on top of each other to achieve the same effect (controls are drawn implicitly in the
order they are called), for example:

public Texture2D myTexture;
void Start() {
 myTexture = new Texture2D(125, 15);
}
void OnGUI() {
 //Draw a texture
 GUI.Label(new Rect(125, 15, 100, 30), myTexture);
 //Draw some text on top of the texture using a label
 GUI.Label(new Rect(125, 15, 100, 30), "Text overlay");
}

You can override the order in which controls are drawn by setting
GUI.depth = /*<depth number>*/; in between calls; however,
I would advise against this unless you have a desperate need.

The texture will then be drawn to fit the dimensions of the Label field, By default
it scales on the shortest dimension appropriately. This too can be altered using
GUIStyle to alter the fixed width and height or even its stretch characteristics.

GUIStyles and GUISkins are explained in the later GUI styles
and skins section.

Texture drawing
Not specifically a control in itself, the GUI framework also gives you the ability
to simply draw a Texture to the screen Granted there is little difference to using
DrawTexture function instead of a Label with a texture or any other control. (Just
another facet of the evolution of the legacy GUI). This is, in effect, the same as the
previous Label control but instead of text it only draws a texture, for example:

public Texture2D myTexture;
void Start() {

