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Preface
Today, making games is easier than ever before. There are a plethora of game 
engines available for developers, and most of them can even be tried out free of 
charge or used to release games noncommercially. So, irrespective of whether you 
are modifying an already released game, building your own indie game, or maybe 
working on a big AAA production, the chances that you will be using a licensed 3D 
engine such as the popular CryENGINE are pretty big.

The times where development teams would write their custom game engine to 
produce a game are mostly over. The use of licensed 3D engines is very common and 
saves developers and publishers a lot of money. Using a licensed 3D engine instead 
of building a custom solution allows developers to focus on making a great game 
instead of developing and maintaining their own technology.

A result of this continually advancing technology development, however, is that it 
has become very difficult for developers to really master all aspects of a 3D engine. 
Engines such as CryENGINE are not simply rendering programs that are capable 
of drawing beautiful content on the screen in real time. Animation systems, physics 
simulation, AI behaviors, or particle systems are just a few parts of what makes up 
the CryENGINE. However, with the increasing complexity of game engines, it has 
become more difficult for today's game developers to stay on top of the technology.

This is where Mastering CryENGINE comes in. This book focuses on the professional 
CryENGINE developer and tries to provide an inside scoop on how to produce 
games at an AAA production level. Getting the most out of the engine and becoming 
a highly productive CryENGINE developer requires knowledge of the multitude of 
subsystems that CryENGINE offers.

The goal of this book is to provide you with valuable information about the most 
important aspects of CryENGINE production as well as guide you through the  
most common technical problems encountered when developing game content with 
the engine.
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What this book covers
This book covers a wide range of topics that are closely related to making games 
with CryENGINE at a professional level. Basic elements such as setting up the 
engine, building simple environments, or other topics that might be of interest for 
beginners might be touched upon, but they will not be covered in too much depth. 
Instead, this book focuses on arming you with in-depth knowledge of the core 
systems of CryENGINE that are necessary to build high-quality content.

Chapter 1, Setting Up the Perfect Pipeline, focuses on one of the most important aspects 
of game production: a stable and flexible pipeline. This chapter covers the tailoring 
of the perfect pipeline for your project as well as the important aspects of setting up a 
new pipeline.

Chapter 2, Using the CryENGINE Input System – Keyboard, Mouse, and Game Controller, 
provides an overview of the CryENGINE input systems. You will learn how to create 
new action maps and handle user profiles as well as how to react to input events in 
code and flow graphs.

Chapter 3, Building Complex Flow Graph Logic, focuses on the more advanced features 
of the flow graph system. Nested flow graphs as well as graph tokens will be 
explained in detail and will be used to build a practical game example.

Chapter 4, Morphs and Bones – Creating a Facial Setup for Your Character, covers all  
the steps necessary to create a complete facial setup for a character. You will learn 
about facial libraries as well as how to get a character ready for lip syncing and 
procedural blinking.

Chapter 5, Mastering Sandbox, focuses on increasing your production speed, efficiency, 
and productivity when working with CryENGINE. Hidden features, important 
shortcuts, and relevant engine settings will be discussed in this chapter.

Chapter 6, Utilizing Lua Script in CryENGINE, teaches you how to use the Lua 
scripting language to build more sophisticated gameplay elements. The creation of 
new script binds and modification of the existing entities will be covered here.

Chapter 7, Animating Characters, will explain the principles of CryMannequin, the 
high-level animation system of CryENGINE. You will also learn how to extend the 
state machine to trigger your own mannequin animation sequences. The chapter will 
also cover other methods of triggering animations.

Chapter 8, Mastering the Smart Objects System, will provide an insight on how to use 
the SmartObject system. This system will be used to build a gameplay example of a 
security guard AI behavior. Furthermore, navigational SmartObject systems will be 
used to set up AI characters that can climb over walls.
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Chapter 9, Eye Candy – Particles, Lens Flares, and More, focuses on adding some eye 
candy to your game. The setup and usage of particle effects as well as the brand new 
Lens Flare editor will be covered.

Chapter 10, Shipping the Build, focuses on getting your game ready to ship. It will 
cover how to prepare the build for release, remove unwanted source files, and 
reduce the overall build size.

What you need for this book
In order to make best use of the examples in this book, you should use the latest 
version of CryENGINE. Although much of the knowledge provided in this book can 
still be applied to older versions of the engine, it is recommended that you use this 
book with CryENGINE 3.5.2 or above.

The jump to CryENGINE 3.5
The CryENGINE technology has been around for over 10 years and the engine has 
undergone a lot of changes and improvements over those years.

Crytek released the latest version of the engine, CryENGINE 3, in 2009, which 
introduced a lot of improvements (for example, a deferred rendering pipeline) 
and brought the engine to XBOX 360 and PlayStation 3. Along with the addition of 
countless new rendering features, the Sandbox editor also underwent a big facelift.

Within the lifespan of CryENGINE 3, there has been one big transition: the jump 
from Version 3.4.5 to Version 3.5.

With the upgrade to Version 3.5, all the changes and improvements made during the 
development of the critically acclaimed games, Crysis 3 and Ryse, found their way 
into the CryENGINE 3 SDK.

All the new features that made Crysis 3 and Ryse look so stunning became available 
to developers with this upgrade. An improved rendering pipeline and the new 
animation system CryMannequin, which replaced AnimationGraph, are two of the 
biggest changes done to the engine in Version 3.5.

Most of the topics covered in this book will still be valuable for you if you are 
working with an older version of the engine. However, some of the newer features 
discussed in this book, for example the LensFlare editor, might not be available for 
you if you are working with an older version of the engine.
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Other required software
In order to follow the examples in this book, we recommend that you obtain the 
following software:

• CryENGINE SDK 3.5.2 or above
• Photoshop Version 4 or above
• Notepad++
• Visual Studio 2010
• 3D Studio Max 2010

Who this book is for
This book is aimed at an experienced CryENGINE developer. Although it is certainly 
possible to use this book as a beginner who is unfamiliar with the CryENGINE 
technology, it will be much more efficient when a certain level of experience with the 
engine is there.

Whether you are a CryENGINE enthusiast looking to turn your hobby into a  
full-time profession or you've just started working with CryENGINE on a 
professional project, this book will provide you with valuable information and deep 
insights into the engine. This is invaluable to produce content at a professional level.

Conventions
In this book, you will find a number of styles of text that distinguish between 
different kinds of information. Here are some examples of these styles, and an 
explanation of their meaning.

Code words in text, database table names, folder names, filenames, file extensions, 
pathnames, dummy URLs, user input, and Twitter handles are shown as follows: 
"The OnReset() function will be called every time the entity script is reloaded."

A block of code is set as follows:

  if (slot == 0) then
    self:DrawSlot(0, 1);
    self:DrawSlot(1, 0);
  else
    self:DrawSlot(0, 0);
    self:DrawSlot(1, 1);
end
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When we wish to draw your attention to a particular part of a code block, the 
relevant lines or items are set in bold:

  if (slot == 0) then
    self:DrawSlot(0, 1);
    self:DrawSlot(1, 0);
  else
    self:DrawSlot(0, 0);
    self:DrawSlot(1, 1);
end

New terms and important words are shown in bold. Words that you see on the 
screen, in menus or dialog boxes for example, appear in the text like this: "Clicking 
on Show Log File will open the respective logfile for you automatically."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about 
this book—what you liked or may have disliked. Reader feedback is important for us 
to develop titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com, 
and mention the book title via the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing 
or contributing to a book, see our author guide on www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to 
help you to get the most from your purchase.
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Downloading the example code
You can download the example code files for all Packt books you have purchased 
from your account at http://www.packtpub.com. If you purchased this book 
elsewhere, you can visit http://www.packtpub.com/support and register to have 
the files e-mailed directly to you.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes 
do happen. If you find a mistake in one of our books—maybe a mistake in the text or 
the code—we would be grateful if you would report this to us. By doing so, you can 
save other readers from frustration and help us improve subsequent versions of this 
book. If you find any errata, please report them by visiting http://www.packtpub.
com/submit-errata, selecting your book, clicking on the errata submission form link, 
and entering the details of your errata. Once your errata are verified, your submission 
will be accepted and the errata will be uploaded on our website, or added to any list of 
existing errata, under the Errata section of that title. Any existing errata can be viewed 
by selecting your title from http://www.packtpub.com/support.

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media. 
At Packt, we take the protection of our copyright and licenses very seriously. If you 
come across any illegal copies of our works, in any form, on the Internet, please 
provide us with the location address or website name immediately so that we can 
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected  
pirated material.

We appreciate your help in protecting our authors, and our ability to bring you 
valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with 
any aspect of the book, and we will do our best to address it.



Setting Up the  
Perfect Pipeline

Before the actual work on any new project can begin, you as a developer have to 
think about your production pipeline. Time spent on designing a robust pipeline is 
always time well invested. The larger the project ahead of you, the more important it 
is to set up a stable pipeline. In this chapter, we will discuss the following topics:

• Production pipeline setup for CryENGINE projects
• Using version control in CryENGINE projects
• Setting up automated builds and build scripts
• Integration of CryENGINE builds and versions

The goal of this chapter is to provide you with information and best practices on 
building a stable and flexible CryENGINE production pipeline.

What is a production pipeline?
In simple words, a CryENGINE production pipeline could be described as a series 
of operations you are performing with the engine in order to create your product. 
Things like exporting a 3D asset of compiling C++ code, for example, are parts of a 
typical CryENGINE pipeline. Our production pipeline also defines how and to what 
standards you perform all project-related tasks.

When working with CryENGINE, those project-related tasks can include:

• Exporting a 3D asset
• Compiling code
• Creating automatic builds
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• Processing bug reports
• Checking files into your version control system

A pipeline is basically a number of rules and guidelines you set for yourself and your 
team to work on your project. If those rules make sense and fit your project, your life 
will become a lot easier. If they do not fit your project or if they do not exist yet, you 
will have a higher chance of running into all kinds of problems.

Importance of a strong pipeline
No matter what CryENGINE project you are about to start, you will have weeks or 
possibly months of work ahead of you. Being as prepared as you can for this should 
be your goal. Planning and preparing your pipeline will help you save time and 
work more efficiently during the lifespan of your whole project.

A well thought out pipeline, which is standardized and enforced within your team, 
will increase production speed significantly. In this chapter, we will discuss the most 
important aspects of a CryENGINE production pipeline.

Overview of the production pipeline

Version control for CryENGINE projects
The decision of which version control system (VCS) to use is one of the 
most important pipeline decisions to make when you are planning your  
CryENGINE project.

It is also one of the first things that should be discussed, since a lot of other aspects of 
your production will depend on it.
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What version control does for you
Version control is incredibly useful in any area of game production. What a VCS 
basically does is keep track of changes made to your files and allows you to review 
those changes and even helps you revert to the older versions of your files.

This means if you make a mistake or delete or lose a file, it is generally very easy to 
recover whatever you have lost. In addition to this, using a VCS makes it a lot easier 
to collaborate since you will always have an overview of what changes your team 
members made to the project files.

Production without version control
Even today, where VCSs such as SVN, Perforce, or Git have become very affordable, 
or even free, there are still teams out there working without the safety net of a 
version control system.

Not using any version control whatsoever is always a bad decision 
for larger projects.

Working from a shared folder
One method often used by less experienced mod teams is to work out of a shared 
folder, which is accessible for everybody from the network. While it might seem 
simple and easy to work this way with everybody just copying their files into the 
shared folder, there are a lot of things which can go wrong, which are as follows:

• Files can get overwritten accidently
• Code and script conflicts cannot be caught and resolved easily
• Tracing back older changes becomes extremely difficult

With low cost version control systems being widely available today, there is no 
reason even for small teams to work this way. Setting up and maintaining a version 
control solution will of course consume a certain amount of time, but it is always 
time well invested.
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Let's have a look at a real-life example. You are working on a CryENGINE game 
project and you discover a game breaking bug. Let's say someone on your team 
submitted something which broke the game. Now it is up to you to identify and fix 
the issue. Having no access to either the file history or changes done to the individual 
files will make it very difficult for you to solve the issue. However, in a project 
environment with a VCS setup, you could simply step backwards through the 
submitted changes to identify the file which was responsible for breaking your game.

Selecting a VCS for CryENGINE projects
When it comes to deciding which VCS to use for your CryENGINE project, your 
decision will be determined by your budget, the scale of your project, and possibly 
your personal preference.

You will have to choose between a centralized and distributed VCS. While a 
centralized VCS keeps all files on a central server, a distributed VCS mirrors the 
whole repository on each client. Both systems come with different upsides and 
downsides, but for CryENGINE, it makes no difference which type of system is used.

There are many VCSs available today, and they come in many flavors. Most 
commonly used VCSs for CryENGINE projects are as follows:

• Perforce: This is sometimes also called P4 and is a professional centralized 
VCS, which mostly is the tool of choice for professional and larger size game 
teams. Perforce licenses are generally not free, but there are various license 
options which allow indie and mod teams to make use of the software 
without spending much money. CryENGINE has native support for Perforce 
and allows you to check in/out files directly from Sandbox.

• SVN: This is also called Subversion and is a free, open source centralized 
VCS. It is widely used by smaller teams without a big budget, since it can be 
used without any cost.

• Git: This is also a free to use open source VCS. It differs from Perforce and 
SVN by using a distributed architecture. In direct comparison to Perforce 
and SVN, Git can be quite difficult to use, especially for developers with a 
nontechnical background.
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Setting up version control for CryENGINE
Once you have made your decision regarding which version control system to use 
for your project, it is time to set up your CryENGINE environment. Depending on 
your role in your game's production, certain aspects of this setup might be more 
or less interesting to you. For example, if you are a programmer, you might be less 
interested to learn about setting up your Photoshop or 3ds Max and skip ahead to 
the relevant coding topics.

Sandbox
Being able to check out levels, layers, or materials files directly from Sandbox 
without switching to your version control client is very comfortable and will speed 
up your workflow considerably.

Support for Perforce version control is integrated into the Sandbox editor. Sandbox 
will automatically check out the corresponding files when they are being modified.

When using SVN, Git, or any other system, files cannot be directly checked in/out 
from Sandbox. In this case, no further setup is necessary.

Perforce setup
The first step to setting up Sandbox to work with Perforce is to enable version 
control. This is done in the Sandbox preferences as follows:

1. Open the Preferences window from the Tools menu.


