

Mastering CryENGINE

Use CryENGINE at a professional level and master the
engine's advanced features to build AAA quality games

Sascha Gundlach

Michelle K. Martin

 BIRMINGHAM - MUMBAI

Mastering CryENGINE

Copyright © 2014 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the authors, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: April 2014

Production Reference: 1040414

Published by Packt Publishing Ltd.

Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78355-025-8

www.packtpub.com

Cover Image by Berker Siino (berkersiino@gmail.com)

Credits

Authors
Sascha Gundlach

Michelle K. Martin

Reviewers
Hendrik Polczynski

Ross Rothenstine

Sheetanshu

Acquisition Editor
Owen Roberts

Content Development Editor
Neeshma Ramakrishnan

Technical Editors
Pragnesh Bilimoria

Pooja Nair

Nikhil Potdukhe

Copy Editors
Alisha Aranha

Roshni Banerjee

Gladson Monteiro

Adithi Shetty

Project Coordinator
Priyanka Goel

Proofreaders
Simran Bhogal

Maria Gould

Ameesha Green

Paul Hindle

Indexers
Mariammal Chettiyar

Monica Ajmera Mehta

Graphics
Ronak Dhruv

Disha Haria

Yuvraj Mannari

Abhinash Sahu

Production Coordinator
Adonia Jones

Cover Work
Adonia Jones

Shantanu Zagade

About the Authors

Sascha Gundlach has been working in the games industry for over a decade and
started his career as a script programmer in a small game studio in the early 2000s.
He worked for Crytek for eight years, working on games such as Crysis, Crysis:
Warhead, and Crysis 2.

He is a CryENGINE expert and has provided countless training sessions and
individual training to CryENGINE licensees in the past years.

In 2013, he founded his own game development company, MetalPop Games, together
with his partner and Crytek veteran Michelle K. Martin in Orlando, Florida.

He spends his days working on video game projects and provides consulting work
for other game projects.

Michelle K. Martin is a software engineer in the game industry, specializing in
animation systems. She started her career with the German developer, Crytek, working
on projects such as Crysis and Crysis 2. During her career, Michelle has helped develop
and improve CryENGINE's animation system with several features. Being an expert in
CryENGINE, she has provided a lot of support and training to CryENGINE licensees
over the years, helping their team to get the most out of the engine.

In 2013, she founded MetalPop Games together with her partner and Crytek veteran
Sascha Gundlach. It is an indie game development studio and they are currently
working on their first title.

When she's not in front of the computer programming, she is most likely to be in
front of the computer playing games.

More about Sascha and Michelle's company MetalPop Games can be found at
www.metalpopgames.com.

About the Reviewers

Hendrik Polczynski is a software developer from Germany. He has been working
on software development for over 10 years. He likes to take on a variety of fields,
from the automation industry to web, UI, and game development. You can find his
open source projects on github.com/hendrikp or on his YouTube channel. Hendrik
is currently maintaining a handful of open source projects around the CryDev
community using CryENGINE 3 FreeSDK. When he is not working, he is working
on his Bachelor thesis or helping out in the development of Miscreated by Entrada
Interactive, which is a post-apocalyptic, survival-based MMORPG; it is unlike
anything you've played before.

I would like to thank the following people who have helped me
review specific chapters of this book:
Victor Duarte, Simon Hambly, and Chris Ioakeimoglou

Ross Rothenstine has been interested in game development from the instant he
sat in front of a computer. Studying all engines, from self-made to commercial, he
loves to find ways to tinker with these massive systems and push them to their core,
thereafter presenting his findings to universities and teaching courses wherever he
may. Game development may be an intimidating task, but with books like these, he's
sure you can do it!

github.com/hendrikp

Sheetanshu is a professional developer who resides in the metro city of Gurgaon,
India. He is currently working to obtain an Engineering degree at the Guru Gobind
Singh Indraprastha University. He fell in love with programming during his
childhood and since then there was no turning back. From the beginning of his
bachelor's degree in engineering, he has been an active developer. He had already
contributed a lot to the web community when he further got involved in game
development at his brother's request. He has over a year's worth of experience
working with game engines such as Unity 3D, CryENGINE 3.5, and UDK. Presently,
as the final phase of his Engineering degree, he is working on his industrial
internship with 4play as the Chief Game Officer and is also working as a research
assistant with Dr. Aynur Unal from Stanford, Palo Alto.

www.PacktPub.com

Support files, eBooks, discount offers, and more
You might want to visit www.PacktPub.com for support files and downloads related
to your book.

Did you know that Packt offers eBook versions of every book published, with PDF
and ePub files available? You can upgrade to the eBook version at www.PacktPub.
com and as a print book customer, you are entitled to a discount on the eBook copy.
Get in touch with us at service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign
up for a range of free newsletters and receive exclusive discounts and offers on Packt
books and eBooks.

TM

http://PacktLib.PacktPub.com

Do you need instant solutions to your IT questions? PacktLib is Packt's online
digital book library. Here, you can access, read and search across Packt's entire
library of books.

Why Subscribe?
• Fully searchable across every book published by Packt
• Copy and paste, print and bookmark content
• On demand and accessible via web browser

Free Access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view nine entirely free books. Simply use your login credentials
for immediate access.

Table of Contents
Preface 1
Chapter 1: Setting Up the Perfect Pipeline 7

What is a production pipeline? 7
Importance of a strong pipeline 8
Version control for CryENGINE projects 8

What version control does for you 9
Production without version control 9

Working from a shared folder 9
Selecting a VCS for CryENGINE projects 10
Setting up version control for CryENGINE 11

Sandbox 11
Identifying CryENGINE project files to be excluded from version control 16

Automated builds and build scripts 16
Creating nightly builds 17
Setting up a build server 17

Operating systems 18
What the build scripts should do 18
Creating your custom build script 19

Writing your own script 20
Wrapping it up 29

Scheduling automated builds 30
Automated performance tests 34

Using level statistics to profile the performance of a level 35
Build integration 36

Integrating a new version of CryENGINE 36
The engine depot 37
Project branch 37
Integration 37

Table of Contents

[ii]

Quality assurance processes 38
QA pipeline in larger scale teams 39
QA pipeline in smaller teams 40
Working without a QA pipeline 40

Understanding issue tracking in CryENGINE 40
Summary 41

Chapter 2: Using the CryENGINE Input System – Keyboard,
Mouse, and Game Controller 43

The CryENGINE input system 43
A layer of abstraction 43
The input 44

Game actions 45
Action Maps 46

Multiple Action Maps 47
Creating a new Action 49

Setting up an Action event 50
Adding an Action mapping 50

Reacting to Action events 57
Action events in code 57
Action events in FlowGraph 62

Filtering Actions 63
Creating Action Filters 63
Using Action Filters 64

Reacting to Input events 65
Code 65
FlowGraph 67

User profiles 68
Modifying user profiles 68

DLCs and patches 70
The input event names reference 70

Keyboard 70
Mouse 72
Xbox 360 controller 72
PS3 controller 73

Summary 74
Chapter 3: Building Complex Flow Graph Logic 75

Who uses the flow graph system? 75
A more complex application of the flow graph 76
Revisiting the basics of flow graphs 76

Types of nodes 76
Entity nodes 76
Component nodes 77

Table of Contents

[iii]

Flow graph data format and storage 78
The entity nodes with dynamic targets 82

What happens if we input the wrong EntityId? 83
A more complex application of dynamic EntityIds 84

Let's take a shortcut 84
Q – node quick search 85
F/G – link highlighting 85
Ctrl + Shift + V – paste nodes with links 86

Embedding the flow graphs 86
GameTokens 89

The GameToken libraries 89
Reaction to a game token changing its state 90
The GraphTokens variable 91
Accessing the Lua functionality 91

Creating nodes in C++ and Lua 92
Adding ports to an entity flow graph node 92
Creating flow graph nodes using the Lua script 93
Creating flow graph nodes using C++ 94

Summary 94
Chapter 4: Morphs and Bones – Creating a Facial Setup
for Your Character 95

Creating a facial setup for a character 96
Exporting the character's head 96
Using facial expression libraries 98

Creating a new facial expression library 99
Mapping the library 103
Creating expressions 104

Facial animation 106
Creating facial sequences 107
Using facial sequences in the engine 108

Inside the TrackView editor 109
Inside the FlowGraph node 110

Using expressions 111
The Lip Sync feature 112

Manual lip synching 112
Automatic phoneme extraction 112
Lip sync playback 113

Quality – phoneme extraction 115
Quality – visimes and phonemes 115
Quality – adding emotions 116

Summary 116

Table of Contents

[iv]

Chapter 5: Mastering Sandbox 117
Don't stop getting better 117
Getting faster with keyboard shortcuts 118

Thinking about hand placement 119
Object editing modes 120

Test it! 120
Aligning objects 121
Using the deep selection feature 122
Using the Goto Selection feature 124
Using camera tag-points 124
Top five shortcuts 125

Customizing Sandbox 126
Customizing the Sandbox window layout 127
Saving and loading layouts 127

Working with cameras 127
Camera targets 128
Switching cameras 129

Exploring Sandbox custom commands and macros 129
Sandbox custom commands and macros 130

Looking at some lesser-known features 131
Video recording 131
Mesh editing 132
Managing PAK files 133
Renaming multiple objects 133

Summary 134
Chapter 6: Utilizing Lua Script in CryENGINE 135

Understanding the relevance of the Lua script in CryENGINE 136
Lua-based entities 137

Creating a new Lua-based entity 137
Assigning a 3D object to an entity 140

Using entity slots 141
Setting up physics 143

Making an entity multiplayer-ready 144
Understanding the dataflow of Lua entities in
a multiplayer environment 145

The Client/Server functions 147
The Remote Method Invocation definitions 148

Using the state machine 151
Using script binds 152

Calling script binds 153
Creating new script binds 153

Table of Contents

[v]

Using engine callbacks 154
Using the Lua debugger 155
Summary 157

Chapter 7: Animating Characters 159
The CryENGINE animation system 159
Introducing CryMannequin 160

Splitting up the game and animation logic 161
Understanding CryMannequin's purpose 162

Selecting animations 162
Starting animations 164

Fragments, Fragment IDs, and Tags 165
Extending the state machine 167

Understanding the state machine hierarchy 168
Creating a new state 170
Triggering the new state 172

Playing animations without CryMannequin 174
TrackView 174

Multiple animation layers 174
CryMannequin tracks 177

Triggering animation from FlowGraph 177
The PlayAnimation node 178
Other animation nodes 179

The code 180
Summary 181

Chapter 8: Mastering the Smart Objects System 183
What are SmartObjects? 183
Where the Smart Objects system is used 184
Smart Objects categories 185

Environmental SmartObject 185
A time-based SmartObject 185
Navigational SmartObject 185

The concept of the SmartObject system 185
The SmartObjects editor 186

The Window layout of the SmartObject editor 187
The Rules and Tasks windows 188
The Rules List window 188
The Rule Properties window 188

The SmartObject library 189
Creating a new SmartObject rule 189

Preparing the level 190
Creating the SmartObject rule 191

Table of Contents

[vi]

Creating the SmartObject classes 192
Creating the SmartObject states 194
Creating a SmartObject state pattern 195

User and Object 195
The state pattern 196

Creating an AIAction 198
Selecting actions 198
Creating the action 199
Setting up the action and state changes 200

Getting the level ready 201
Testing the SmartObject rule 202

Troubleshooting 203
Debugging SmartObjects 203

Debugging AIActions 204
Changing states from Lua 204

Summary 205
Chapter 9: Eye Candy – Particles, Lens Flares, and More 207

Types of eye candy 207
Particle effects 208

Working with particle effects in CryENGINE 208
The particle editor 208
Creating a new particle effect 209

Customizing the particle parameters 211
Tweaking the effect 212

Particle effects at runtime 213
Lens flares 214

The lens flare editor 214
Creating a new lens flare effect 214
Assigning a lens flare effect to a light 216
Lens flare effects caused by the sun 217

Postprocessing effects and the flow graph 217
Using material FX graphs 218

Creating a custom material FX graph 219
Testing the new material effect 222
Debugging material effects 222

Postprocessing in TrackView 222
Using effect tracks in a TrackView sequence 223
Using track events 224

Performance considerations 225
Overdraw 226
Draw calls 226

Summary 226

Table of Contents

[vii]

Chapter 10: Shipping the Build 227
Getting your game ready to ship 227

Optimizing performance 228
Optimizing levels 228
Optimizing shadows 229
Vegetation 231
Layers 231

Testing and QA 231
Errors and warnings 233

Log verbosity 233
Tackling legal issues 234

Copyright 234
Credits 235
CryENGINE license 236
Things to consider for indies 236

MobyGames 237
Preparing your build 237

Building a release candidate 238
Auto-loading the first level 238
PAK files 239
Removing all debug features 240

Reducing your build size 241
Shaders 242

Creating an installer 244
A ZIP file 244
Selecting an installer 245
Dependencies 246
An icon for your executable 246

Summary 247
Index 249

Preface
Today, making games is easier than ever before. There are a plethora of game
engines available for developers, and most of them can even be tried out free of
charge or used to release games noncommercially. So, irrespective of whether you
are modifying an already released game, building your own indie game, or maybe
working on a big AAA production, the chances that you will be using a licensed 3D
engine such as the popular CryENGINE are pretty big.

The times where development teams would write their custom game engine to
produce a game are mostly over. The use of licensed 3D engines is very common and
saves developers and publishers a lot of money. Using a licensed 3D engine instead
of building a custom solution allows developers to focus on making a great game
instead of developing and maintaining their own technology.

A result of this continually advancing technology development, however, is that it
has become very difficult for developers to really master all aspects of a 3D engine.
Engines such as CryENGINE are not simply rendering programs that are capable
of drawing beautiful content on the screen in real time. Animation systems, physics
simulation, AI behaviors, or particle systems are just a few parts of what makes up
the CryENGINE. However, with the increasing complexity of game engines, it has
become more difficult for today's game developers to stay on top of the technology.

This is where Mastering CryENGINE comes in. This book focuses on the professional
CryENGINE developer and tries to provide an inside scoop on how to produce
games at an AAA production level. Getting the most out of the engine and becoming
a highly productive CryENGINE developer requires knowledge of the multitude of
subsystems that CryENGINE offers.

The goal of this book is to provide you with valuable information about the most
important aspects of CryENGINE production as well as guide you through the
most common technical problems encountered when developing game content with
the engine.

Preface

[2]

What this book covers
This book covers a wide range of topics that are closely related to making games
with CryENGINE at a professional level. Basic elements such as setting up the
engine, building simple environments, or other topics that might be of interest for
beginners might be touched upon, but they will not be covered in too much depth.
Instead, this book focuses on arming you with in-depth knowledge of the core
systems of CryENGINE that are necessary to build high-quality content.

Chapter 1, Setting Up the Perfect Pipeline, focuses on one of the most important aspects
of game production: a stable and flexible pipeline. This chapter covers the tailoring
of the perfect pipeline for your project as well as the important aspects of setting up a
new pipeline.

Chapter 2, Using the CryENGINE Input System – Keyboard, Mouse, and Game Controller,
provides an overview of the CryENGINE input systems. You will learn how to create
new action maps and handle user profiles as well as how to react to input events in
code and flow graphs.

Chapter 3, Building Complex Flow Graph Logic, focuses on the more advanced features
of the flow graph system. Nested flow graphs as well as graph tokens will be
explained in detail and will be used to build a practical game example.

Chapter 4, Morphs and Bones – Creating a Facial Setup for Your Character, covers all
the steps necessary to create a complete facial setup for a character. You will learn
about facial libraries as well as how to get a character ready for lip syncing and
procedural blinking.

Chapter 5, Mastering Sandbox, focuses on increasing your production speed, efficiency,
and productivity when working with CryENGINE. Hidden features, important
shortcuts, and relevant engine settings will be discussed in this chapter.

Chapter 6, Utilizing Lua Script in CryENGINE, teaches you how to use the Lua
scripting language to build more sophisticated gameplay elements. The creation of
new script binds and modification of the existing entities will be covered here.

Chapter 7, Animating Characters, will explain the principles of CryMannequin, the
high-level animation system of CryENGINE. You will also learn how to extend the
state machine to trigger your own mannequin animation sequences. The chapter will
also cover other methods of triggering animations.

Chapter 8, Mastering the Smart Objects System, will provide an insight on how to use
the SmartObject system. This system will be used to build a gameplay example of a
security guard AI behavior. Furthermore, navigational SmartObject systems will be
used to set up AI characters that can climb over walls.

Preface

[3]

Chapter 9, Eye Candy – Particles, Lens Flares, and More, focuses on adding some eye
candy to your game. The setup and usage of particle effects as well as the brand new
Lens Flare editor will be covered.

Chapter 10, Shipping the Build, focuses on getting your game ready to ship. It will
cover how to prepare the build for release, remove unwanted source files, and
reduce the overall build size.

What you need for this book
In order to make best use of the examples in this book, you should use the latest
version of CryENGINE. Although much of the knowledge provided in this book can
still be applied to older versions of the engine, it is recommended that you use this
book with CryENGINE 3.5.2 or above.

The jump to CryENGINE 3.5
The CryENGINE technology has been around for over 10 years and the engine has
undergone a lot of changes and improvements over those years.

Crytek released the latest version of the engine, CryENGINE 3, in 2009, which
introduced a lot of improvements (for example, a deferred rendering pipeline)
and brought the engine to XBOX 360 and PlayStation 3. Along with the addition of
countless new rendering features, the Sandbox editor also underwent a big facelift.

Within the lifespan of CryENGINE 3, there has been one big transition: the jump
from Version 3.4.5 to Version 3.5.

With the upgrade to Version 3.5, all the changes and improvements made during the
development of the critically acclaimed games, Crysis 3 and Ryse, found their way
into the CryENGINE 3 SDK.

All the new features that made Crysis 3 and Ryse look so stunning became available
to developers with this upgrade. An improved rendering pipeline and the new
animation system CryMannequin, which replaced AnimationGraph, are two of the
biggest changes done to the engine in Version 3.5.

Most of the topics covered in this book will still be valuable for you if you are
working with an older version of the engine. However, some of the newer features
discussed in this book, for example the LensFlare editor, might not be available for
you if you are working with an older version of the engine.

Preface

[4]

Other required software
In order to follow the examples in this book, we recommend that you obtain the
following software:

• CryENGINE SDK 3.5.2 or above
• Photoshop Version 4 or above
• Notepad++
• Visual Studio 2010
• 3D Studio Max 2010

Who this book is for
This book is aimed at an experienced CryENGINE developer. Although it is certainly
possible to use this book as a beginner who is unfamiliar with the CryENGINE
technology, it will be much more efficient when a certain level of experience with the
engine is there.

Whether you are a CryENGINE enthusiast looking to turn your hobby into a
full-time profession or you've just started working with CryENGINE on a
professional project, this book will provide you with valuable information and deep
insights into the engine. This is invaluable to produce content at a professional level.

Conventions
In this book, you will find a number of styles of text that distinguish between
different kinds of information. Here are some examples of these styles, and an
explanation of their meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows:
"The OnReset() function will be called every time the entity script is reloaded."

A block of code is set as follows:

 if (slot == 0) then
 self:DrawSlot(0, 1);
 self:DrawSlot(1, 0);
 else
 self:DrawSlot(0, 0);
 self:DrawSlot(1, 1);
end

Preface

[5]

When we wish to draw your attention to a particular part of a code block, the
relevant lines or items are set in bold:

 if (slot == 0) then
 self:DrawSlot(0, 1);
 self:DrawSlot(1, 0);
 else
 self:DrawSlot(0, 0);
 self:DrawSlot(1, 1);
end

New terms and important words are shown in bold. Words that you see on the
screen, in menus or dialog boxes for example, appear in the text like this: "Clicking
on Show Log File will open the respective logfile for you automatically."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or may have disliked. Reader feedback is important for us
to develop titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com,
and mention the book title via the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide on www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Preface

[6]

Downloading the example code
You can download the example code files for all Packt books you have purchased
from your account at http://www.packtpub.com. If you purchased this book
elsewhere, you can visit http://www.packtpub.com/support and register to have
the files e-mailed directly to you.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in the text or
the code—we would be grateful if you would report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
book. If you find any errata, please report them by visiting http://www.packtpub.
com/submit-errata, selecting your book, clicking on the errata submission form link,
and entering the details of your errata. Once your errata are verified, your submission
will be accepted and the errata will be uploaded on our website, or added to any list of
existing errata, under the Errata section of that title. Any existing errata can be viewed
by selecting your title from http://www.packtpub.com/support.

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media.
At Packt, we take the protection of our copyright and licenses very seriously. If you
come across any illegal copies of our works, in any form, on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors, and our ability to bring you
valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with
any aspect of the book, and we will do our best to address it.

Setting Up the
Perfect Pipeline

Before the actual work on any new project can begin, you as a developer have to
think about your production pipeline. Time spent on designing a robust pipeline is
always time well invested. The larger the project ahead of you, the more important it
is to set up a stable pipeline. In this chapter, we will discuss the following topics:

• Production pipeline setup for CryENGINE projects
• Using version control in CryENGINE projects
• Setting up automated builds and build scripts
• Integration of CryENGINE builds and versions

The goal of this chapter is to provide you with information and best practices on
building a stable and flexible CryENGINE production pipeline.

What is a production pipeline?
In simple words, a CryENGINE production pipeline could be described as a series
of operations you are performing with the engine in order to create your product.
Things like exporting a 3D asset of compiling C++ code, for example, are parts of a
typical CryENGINE pipeline. Our production pipeline also defines how and to what
standards you perform all project-related tasks.

When working with CryENGINE, those project-related tasks can include:

• Exporting a 3D asset
• Compiling code
• Creating automatic builds

Setting Up the Perfect Pipeline

[8]

• Processing bug reports
• Checking files into your version control system

A pipeline is basically a number of rules and guidelines you set for yourself and your
team to work on your project. If those rules make sense and fit your project, your life
will become a lot easier. If they do not fit your project or if they do not exist yet, you
will have a higher chance of running into all kinds of problems.

Importance of a strong pipeline
No matter what CryENGINE project you are about to start, you will have weeks or
possibly months of work ahead of you. Being as prepared as you can for this should
be your goal. Planning and preparing your pipeline will help you save time and
work more efficiently during the lifespan of your whole project.

A well thought out pipeline, which is standardized and enforced within your team,
will increase production speed significantly. In this chapter, we will discuss the most
important aspects of a CryENGINE production pipeline.

Overview of the production pipeline

Version control for CryENGINE projects
The decision of which version control system (VCS) to use is one of the
most important pipeline decisions to make when you are planning your
CryENGINE project.

It is also one of the first things that should be discussed, since a lot of other aspects of
your production will depend on it.

Chapter 1

[9]

What version control does for you
Version control is incredibly useful in any area of game production. What a VCS
basically does is keep track of changes made to your files and allows you to review
those changes and even helps you revert to the older versions of your files.

This means if you make a mistake or delete or lose a file, it is generally very easy to
recover whatever you have lost. In addition to this, using a VCS makes it a lot easier
to collaborate since you will always have an overview of what changes your team
members made to the project files.

Production without version control
Even today, where VCSs such as SVN, Perforce, or Git have become very affordable,
or even free, there are still teams out there working without the safety net of a
version control system.

Not using any version control whatsoever is always a bad decision
for larger projects.

Working from a shared folder
One method often used by less experienced mod teams is to work out of a shared
folder, which is accessible for everybody from the network. While it might seem
simple and easy to work this way with everybody just copying their files into the
shared folder, there are a lot of things which can go wrong, which are as follows:

• Files can get overwritten accidently
• Code and script conflicts cannot be caught and resolved easily
• Tracing back older changes becomes extremely difficult

With low cost version control systems being widely available today, there is no
reason even for small teams to work this way. Setting up and maintaining a version
control solution will of course consume a certain amount of time, but it is always
time well invested.

Setting Up the Perfect Pipeline

[10]

Let's have a look at a real-life example. You are working on a CryENGINE game
project and you discover a game breaking bug. Let's say someone on your team
submitted something which broke the game. Now it is up to you to identify and fix
the issue. Having no access to either the file history or changes done to the individual
files will make it very difficult for you to solve the issue. However, in a project
environment with a VCS setup, you could simply step backwards through the
submitted changes to identify the file which was responsible for breaking your game.

Selecting a VCS for CryENGINE projects
When it comes to deciding which VCS to use for your CryENGINE project, your
decision will be determined by your budget, the scale of your project, and possibly
your personal preference.

You will have to choose between a centralized and distributed VCS. While a
centralized VCS keeps all files on a central server, a distributed VCS mirrors the
whole repository on each client. Both systems come with different upsides and
downsides, but for CryENGINE, it makes no difference which type of system is used.

There are many VCSs available today, and they come in many flavors. Most
commonly used VCSs for CryENGINE projects are as follows:

• Perforce: This is sometimes also called P4 and is a professional centralized
VCS, which mostly is the tool of choice for professional and larger size game
teams. Perforce licenses are generally not free, but there are various license
options which allow indie and mod teams to make use of the software
without spending much money. CryENGINE has native support for Perforce
and allows you to check in/out files directly from Sandbox.

• SVN: This is also called Subversion and is a free, open source centralized
VCS. It is widely used by smaller teams without a big budget, since it can be
used without any cost.

• Git: This is also a free to use open source VCS. It differs from Perforce and
SVN by using a distributed architecture. In direct comparison to Perforce
and SVN, Git can be quite difficult to use, especially for developers with a
nontechnical background.

Chapter 1

[11]

Setting up version control for CryENGINE
Once you have made your decision regarding which version control system to use
for your project, it is time to set up your CryENGINE environment. Depending on
your role in your game's production, certain aspects of this setup might be more
or less interesting to you. For example, if you are a programmer, you might be less
interested to learn about setting up your Photoshop or 3ds Max and skip ahead to
the relevant coding topics.

Sandbox
Being able to check out levels, layers, or materials files directly from Sandbox
without switching to your version control client is very comfortable and will speed
up your workflow considerably.

Support for Perforce version control is integrated into the Sandbox editor. Sandbox
will automatically check out the corresponding files when they are being modified.

When using SVN, Git, or any other system, files cannot be directly checked in/out
from Sandbox. In this case, no further setup is necessary.

Perforce setup
The first step to setting up Sandbox to work with Perforce is to enable version
control. This is done in the Sandbox preferences as follows:

1. Open the Preferences window from the Tools menu.

