


iOS Development with 
Xamarin Cookbook

Over 100 exciting recipes to help you develop iOS 
applications with Xamarin

Dimitris Tavlikos

BIRMINGHAM - MUMBAI



iOS Development with Xamarin Cookbook

Copyright © 2014 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or 
transmitted in any form or by any means, without the prior written permission of the publisher, 
except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the 
information presented. However, the information contained in this book is sold without 
warranty, either express or implied. Neither the author, nor Packt Publishing and its dealers 
and distributors will be held liable for any damages caused or alleged to be caused directly or 
indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies 
and products mentioned in this book by the appropriate use of capitals. However, Packt 
Publishing cannot guarantee the accuracy of this information.

First published: December 2011

Second edition: May 2014

Production reference: 1160514

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-84969-892-4

www.packtpub.com

Cover image by Kelly Gibson (gibsonkelly36@yahoo.com)

www.packtpub.com


Credits

Author
Dimitris Tavlikos

Reviewers
Ryan Alford

Yaroslav Bigus

William Smith

Acquisition Editors
Joanne Fitzpatrick

Usha Iyer

Content Development Editor
Amit Ghodake

Technical Editors
Neha Mankare

Humera Shaikh

Faisal Siddiqui

Copy Editors
Dipti Kapadia

Sayanee Mukherjee

Deepa Nambiar

Karuna Narayanan

Stuti Srivastava

Laxmi Subramanian

Project Coordinator
Amey Sawant

Proofreaders
Simran Bhogal

Bridget Braund

Lauren Harkins

Indexer
Mariammal Chettiyar

Production Coordinators
Aparna Bhagat

Arvindkumar Gupta

Saiprasad Kadam

Nilesh R. Mohite

Aditi Gajjar Patel

Cover Work
Nilesh R. Mohite



About the Author

Dimitris Tavlikos is a freelance software developer living in Greece. With over 10 years of 
professional experience as a programmer, he specializes in mobile development with clients 
all over the world. Dimitris has a passion for programming, and has recently been awarded the 
Xamarin MVP designation for his work. He has written a book on iOS development and various 
articles on his blog.



About the Reviewers

Ryan Alford is a .NET software engineer who works from home. Ryan has been a .NET 
developer for over 7 years, with the majority of his focus being on C#. In his early years, he 
worked almost exclusively on WinForms and Windows Mobile. He then started working with 
ASP.Net, AJAX, and Silverlight. In the past few years, as mobile development really started to 
take off, he took an interest in Xamarin and MonoTouch.

Ryan was able to help convince the management at his employer to use Xamarin for their 
upcoming enterprise application on iOS, as the company was using .Net and C# in other 
projects. It was at this point that Ryan was added to the three-person development team to 
write the new iOS enterprise application.

Ryan has written and released two Android applications: MotoTorch LED and Phase 10 
Score Center. MotoTorch LED has more than 500,000 downloads and was one of the first 
applications on Android that used the camera LEDs as a flashlight.

Today, Ryan is currently rewriting Phase 10 Score Center in Xamarin.Android to ease the 
development of new features. He is still on his iOS team and continues to add new features to 
his company's enterprise application.

Yaroslav Bigus is an expert in building cross-platform web and mobile applications. He 
has over 4 years experience in development and has worked for companies in Leeds and 
New York. He has been using the .NET Framework stack for developing backend systems, 
JavaScript for the frontend side, and Xamarin for mobile devices.

He is now working for an Israeli startup called yRuler. Previously, Yaroslav reviewed Xamarin 
Mobile Application Development for iOS, Paul F. Johnson, Packt Publishing.

I am thankful to my family and friends.



William Smith has been developing with Xamarin Studio for over 3 years and has been 
developing software since 2001. He currently works as a Geospatial Developer at Geographic 
Information Services, Inc., specializing in mobile-platform development. He is also the founder 
of Websmiths, LLC (www.websmithsllc.com), a consulting firm that offers services in 
cross-platform mobile application development and web development. William holds two BSc 
degrees in Computer Science and Business Administration from the University of Maryland.

www.websmithsllc.com


www.PacktPub.com

Support files, eBooks, discount offers, and more
You might want to visit www.PacktPub.com for support files and downloads related to  
your book.

Did you know that Packt offers eBook versions of every book published, with PDF and ePub 
files available? You can upgrade to the eBook version at www.PacktPub.com and as a print 
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at 
service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up  
for a range of free newsletters, and receive exclusive discounts and offers on Packt books  
and eBooks.

TM

http://PacktLib.PacktPub.com

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital book 
library. Here, you can access, read, and search across Packt's entire library of books.

Why subscribe?
ff Fully searchable across every book published by Packt

ff Copy and paste, print and bookmark content

ff On demand and accessible via web browser

Free access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access 
PacktLib today and view nine entirely free books. Simply use your login credentials for 
immediate access.

www.PacktPub.com
www.PacktPub.com
www.PacktPub.com
http://PacktLib.PacktPub.com 
www.PacktPub.com




Table of Contents
Preface	 1
Chapter 1: Development Tools	 7

Introduction	 7
Installing prerequisites	 8
Creating an iOS project with Xamarin Studio	 13
Interface Builder	 23
Creating the UI	 26
Accessing the UI with Outlets	 29
Adding Actions to controls	 34
Compiling an iOS project	 36
Debugging our application	 39

Chapter 2: User Interface – Views	 43
Introduction	 43
Adding and customizing views	 44
Receiving user input with buttons	 48
Displaying images	 53
Displaying and editing text	 57
Using the keyboard	 60
Displaying progress	 64
Displaying content larger than the screen	 67
Navigating through the content divided into pages	 70
Displaying alerts	 74
Creating a custom view	 78
Styling views	 81

Chapter 3: User Interface – View Controllers	 85
Introduction	 85
Loading a view with a view controller	 86
Navigating through different view controllers	 88



ii

Table of Contents

Providing controllers in tabs	 91
Modal view controllers	 94
Creating a custom view controller	 96
Using view controllers efficiently	 98
iPad view controllers	 100
UI flow design with storyboards	 105
Unwinding in storyboards	 109

Chapter 4: Data Management	 113
Introduction	 113
Creating files	 113
Using an SQLite database	 116
Preparing for iCloud support	 121
iCloud key/value storage	 122

Chapter 5: Displaying Data	 127
Introduction	 127
Providing lists	 128
Displaying data in a table	 132
Customizing rows	 136
Editing a table	 140
Table indexing	 143
Searching through the data	 145
Creating a simple web browser	 149
Displaying data in a grid	 151
Customizing the grid	 155

Chapter 6: Web Services	 159
Introduction	 159
Consuming web services	 159
Consuming REST services	 163
Communicating with native APIs	 165
Using WCF services	 168

Chapter 7: Multimedia Resources	 173
Introduction	 173
Selecting images and videos	 174
Capturing media with the camera	 177
Playing videos	 180
Playing music and sounds	 183
Recording with the microphone	 185
Managing album items directly	 189



iii

Table of Contents

Chapter 8: Integrating iOS Features	 193
Introduction	 193
Starting phone calls	 194
Sending text messages and e-mails	 196
Using text messaging in our application	 199
Using e-mail messaging in our application	 202
Managing the address book	 205
Displaying contacts	 209
Managing the calendar	 212

Chapter 9: Interacting with Device Hardware	 217
Introduction	 217
Detecting the device orientation	 218
Adjusting the UI orientation	 220
Proximity sensor	 224
Retrieving the battery information	 226
Handling motion events	 228
Handling touch events	 230
Recognizing gestures	 233
Custom gestures	 236
Using the accelerometer	 239
Using the gyroscope	 242

Chapter 10: Location Services and Maps	 247
Introduction	 247
Determining location	 248
Determining heading	 252
Using region monitoring	 255
Using a significant-change location service	 258
Location services in the background	 260
Displaying maps	 263
Geocoding	 266
Adding map annotations	 270
Adding map overlays	 274

Chapter 11: Graphics and Animation	 279
Introduction	 279
Animating views	 280
Transforming views	 282
Animating images	 284
Animating layers	 286
Drawing lines and curves	 290
Drawing shapes	 293



iv

Table of Contents

Drawing text	 295
A simple drawing app	 297
Creating an image context	 301

Chapter 12: Multitasking	 305
Introduction	 305
Detecting application states	 306
Receiving notifications for app states	 308
Running code in the background	 310
Playing audio in the background	 313
Updating data in the background	 315

Chapter 13: Localization	 319
Introduction	 319
Creating an app for different languages	 319
Localizable resources	 323
Regional formatting	 325

Chapter 14: Deploying	 329
Introduction	 329
Creating profiles	 329
Creating an ad hoc distribution bundle	 335
Preparing an app for the App Store	 337
Submitting an app to the App Store	 340

Chapter 15: Advanced Features	 343
Introduction	 343
Reproducing the page curl effect	 344
Integrating content sharing	 348
Implementing custom transitions	 353
Using physics in UI elements	 358
Implementing the text-to-speech feature	 360

Index	 363



Preface
This book will provide you with all the necessary skills to develop and deploy rich and powerful 
applications for the iPhone and iPad, with the C# programming language. Xamarin.iOS, 
formerly known as MonoTouch, is already established as a powerful software development 
kit that brings iOS development to .NET programmers. Packed with easy-to-understand and 
detailed examples, this book will be your best companion in your iOS development journey.

What this book covers
Chapter 1, Development Tools, teaches you how to install and use the development tools 
necessary to create your first iOS app. From there, you will create and debug your first 
Xamarin.iOS project.

Chapter 2, User Interface – Views, discusses the essential User Interface components of the 
iOS SDK. Covering the most commonly used views and controls and many more in detail, we 
will get familiar with the platform through a number of example projects. We will also discuss 
the similarities and differences with standard .NET components.

Chapter 3, User Interface – View Controllers, introduces you to the view controllers, the 
objects that are responsible for providing the interaction mechanism between your app and 
the user. Explained with simple step-by-step processes, you will start creating complete apps 
that can run on both the iPhone and iPad devices.

Chapter 4, Data Management, covers data management practices available on the iOS platform 
and how to use them efficiently with the convenience of C#. You will learn to manage locale 
SQLite database files, but also work on using iCloud to store data across different devices.

Chapter 5, Displaying Data, focuses on another important part of data management. Through 
a series of simple and complete projects, you will learn about the available components 
to display data on the screen of the iPhone, which are smaller than computer screens. 
Displaying various types of data in a user-friendly manner is essential for mobile devices,  
and by the time you finish reading this chapter, you will certainly be more skillful in this area.



Preface

2

Chapter 6, Web Services, guides you through .NET SOAP, WCF, and REST services for creating 
apps that connect the user to the world. These powerful .NET features would not have been 
part of iOS development without Xamarin.iOS.

Chapter 7, Multimedia Resources, will teach you to create applications that capture, 
reproduce, and manage multimedia content through the device's hardware. You will not only 
learn to use the camera to capture images and video, but also learn how to play back and 
record audio.

Chapter 8, Integrating iOS Features, will walk you through the ways to incorporate the 
platform's native applications and components. You will learn how to provide e-mail, text 
messaging, and address book features in your application and how to use the native calendar 
to create events.

Chapter 9, Interacting with Device Hardware, discusses creating applications that are fully 
aware of their surrounding environment through the device's sensors. You will learn to adjust 
the User Interface according to device orientations and respond to accelerometer and 
gyroscope events.

Chapter 10, Location Services and Maps, is a detailed guide for using the built-in location 
services to create applications that provide location information to the user. You will not only 
learn to use the GPS hardware, but also how to display and layout information on maps.

Chapter 11, Graphics and Animation, introduces 2D graphics and animation. You will learn to 
animate components and draw simple graphics on the screen. By the end of this chapter, you 
will create a small finger-drawing application.

Chapter 12, Multitasking, will walk you through the details of implementing multitasking in  
iOS applications. This dramatically enhances the user experience by executing code behind 
the scenes.

Chapter 13, Localization, discusses how to provide localized content in applications. You will 
learn how to prepare your application to target users worldwide.

Chapter 14, Deploying, will not only walk you through the required steps to deploy your 
finished application to devices, but also to prepare and distribute it to the App Store.

Chapter 15, Advanced Features, introduces some of the key features introduced in newer iOS 
versions, such as implementing physics to User Interface components through the power of 
iOS 7's UIKit Dynamics, customizing animated transitions between view controllers, and more!



Preface

3

What you need for this book
The minimum requirement for this book is a Mac computer running at least Mac OS X Lion 
(10.7.*). Almost all projects you will create with the help of this book work on iOS Simulator. 
However, some projects will require a device to work properly. You will find all the appropriate 
details in Chapter 1, Development Tools.

Who this book is for
This book is essential for C# and .NET developers with no previous experience in iOS 
development, but it is also for Objective-C developers who want to make a transition to the 
benefits of Xamarin.iOS and C# language to create complete, compelling iPhone, iPod, and 
iPad applications and deploy them to the App Store.

Conventions
In this book, you will find a number of styles of text that distinguish between different kinds of 
information. Here are some examples of these styles, and an explanation of their meaning.

Code words in text, cookbook names, recipe names, scripts, database table names, folder 
names, filenames, file extensions, and pathnames are shown as follows: "The Register 
attribute is used to expose classes to the underlying Objective-C runtime."

A block of code is set as follows:

using System;
using System.Collections.Generic;
using System.Linq;
using MonoTouch.Foundation;
using MonoTouch.UIKit;

When we wish to draw your attention to a particular part of a code block, the relevant lines or 
items are set in bold:

EKEvent newEvent = EKEvent.FromStore(evStore);
newEvent.StartDate = DateTime.Now.AddDays(1);
newEvent.EndDate = DateTime.Now.AddDays(1.1);
newEvent.Title = "Xamarin event!";

Any command-line input or output is written as follows:

cd <code_directory>/CH06_code/WcfService/WcfService

./start_wcfservice.sh



Preface

4

New terms and important words are shown in bold. Words you see on the screen, in menus 
or dialog boxes, for example, appear in the text like this: "Go to the Library pane and select 
Objects from the drop-down list."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about this  
book—what you liked or may have disliked. Reader feedback is important for us to develop 
titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com, and 
mention the book title via the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing or 
contributing to a book, see our author guide on www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to help you to 
get the most from your purchase.

Downloading the example code
You can download the example code files for all Packt books you have purchased from your 
account at http://www.packtpub.com. If you purchased this book elsewhere, you can visit 
http://www.packtpub.com/support and register to have the files e-mailed directly to you.

www.packtpub.com/authors
http://www.packtpub.com
http://www.packtpub.com/support


Preface

5

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes do happen. 
If you find a mistake in one of our books—maybe a mistake in the text or the code—we would be 
grateful if you would report this to us. By doing so, you can save other readers from frustration 
and help us improve subsequent versions of this book. If you find any errata, please report 
them by visiting http://www.packtpub.com/submit-errata, selecting your book, 
clicking on the errata submission form link, and entering the details of your errata. Once your 
errata are verified, your submission will be accepted and the errata will be uploaded on our 
website, or added to any list of existing errata, under the Errata section of that title. Any existing 
errata can be viewed by selecting your title from http://www.packtpub.com/support.

Piracy
Piracy of copyrighted material on the Internet is an ongoing problem across all media. At 
Packt, we take the protection of our copyright and licenses very seriously. If you come across 
any illegal copies of our works, in any form, on the Internet, please provide us with the location 
address or website name immediately so we can pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected pirated material.

We appreciate your help in protecting our authors, and our ability to bring you valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with any 
aspect of the book, and we will do our best to address it.

http://www.packtpub.com/submit-errata
http://www.packtpub.com/support




1
Development Tools

In this chapter, we will cover:

ff Installing prerequisites

ff Creating an iOS project with Xamarin Studio

ff Interface Builder

ff Creating the UI

ff Accessing the UI with Outlets

ff Adding Actions to controls

ff Compiling an iOS project

ff Debugging our application

Introduction
One of the most important things professionals care about is the tools that are required to 
complete their work with. Just like carpenters need a chisel to scrape wood, or photographers 
need a camera to capture light, we developers need certain tools which we cannot work without.

In this chapter, we will provide information on what IDEs (Integrated Development 
Environments) and SDKs (Software Development Kits) are needed to develop applications 
for iOS, Apple's operating system, for the company's mobile devices. We will describe what the 
role of every tool in the development cycle is, and go through the features that are essential to 
develop our first application.

The following are the tools needed to develop applications with Xamarin.iOS:

ff An Apple Mac computer running at least the Lion (10.7.*) operating system:  
The essential programs we need cannot be installed on other computer platforms.



Development Tools

8

Xamarin also offers Visual Studio development integration for their 
products. A Mac computer is still required for compiling, testing, 
debugging, and distributing the application. More information can 
be found on Xamarin's website at http://docs.xamarin.
com/guides/ios/getting_started/introduction_
to_xamarin_ios_for_visual_studio/.

ff Latest iOS SDK: To be able to download iOS SDK, a developer must be registered as 
an Apple developer. iOS SDK, among other things, includes two essential components:

�� Xcode: This is Apple's IDE for developing native applications for iOS and Mac 
with the Objective-C programming language.

�� iOS Simulator: This is an essential program to debug iOS apps on the 
computer, without the need of a device. Note that there are many iOS 
features that do not work on the simulator. Hence, a device is needed  
if an app uses these features.

Both the registration and SDK download are free of charge from 
Apple's developer portal (http://developer.apple.com). 
If we want to run and debug our apps on the device or distribute 
them on the App Store, we need to enroll to iOS Developer 
Program, which requires a subscription fee.

ff Xamarin Installer: Xamarin offers all their necessary tools in one installation 
bundle. This bundle includes the Xamarin.iOS SDK and Xamarin Studio, the IDE for 
developing iOS applications with C#. A free registration is required for downloading 
the Xamarin Installer, and it can be found by clicking on the link http://xamarin.
com/download.

This chapter will also describe how to create our first iPhone project with Xamarin Studio, 
construct its UI with Xcode, and access the app's user interface from within our code, with  
the concepts of Outlets and Actions.

Last, but not least, we will learn how to compile our app, the available compilation options we 
have, and how to debug on the simulator.

Installing prerequisites
This section gives you information on how to download and install the necessary tools to 
develop with Xamarin.iOS.

http://docs.xamarin.com/guides/ios/getting_started/introduction_to_xamarin_ios_for_visual_studio/
http://docs.xamarin.com/guides/ios/getting_started/introduction_to_xamarin_ios_for_visual_studio/
http://docs.xamarin.com/guides/ios/getting_started/introduction_to_xamarin_ios_for_visual_studio/
http://developer.apple.com
http://xamarin.com/download
http://xamarin.com/download


Chapter 1

9

Getting ready
We need to download all the necessary components on our computer. The first thing to do 
is register as an Apple developer on http://developer.apple.com. The registration is 
free and easy, and it provides access to all the necessary development resources. After the 
registration is confirmed through e-mail, we can login and download the iOS SDK from the 
address https://developer.apple.com/devcenter/ios/index.action#downloads. 
At the time of writing, Xcode's latest version is 5.0.1 and iOS SDK's latest version is 7.0.3.

How to do it...
To prepare our computer for iOS development, we need to download and install the necessary 
components in the following order:

ff Xcode and iOS SDK: A login to the Mac App Store is required. You can either 
search for Xcode in the App Store or click on the Download Xcode button in the 
iOS developer portal's download section. After the download is complete, follow the 
onscreen instructions to install Xcode. The following screenshot shows Xcode in the 
Mac App Store:

http://developer.apple.com
https://developer.apple.com/devcenter/ios/index.action#downloads


Development Tools

10

ff Xamarin Starter Edition: Download and run the Xamarin Starter Edition from 
Xamarin's website http://xamarin.com/download. Follow the onscreen 
instructions to install Xamarin Studio and Xamarin.iOS.

The Xamarin Starter Edition is free, but there are some 
restrictions, such as a limit on the maximum app bundle 
size and no Visual Studio support. It does support, 
however, deploying to a device and to the App Store.  
At the time of writing, all recipes shown in this book  
are fully supported by the Starter Edition, except for  
the Using WCF services recipe in Chapter 6, Web 
Services. A Business or Enterprise Edition is needed for 
WCF support.

How it works...
Now that we have everything ready, let's see what each component is needed for.

Xcode
Xcode is Apple's IDE for developing applications for both iOS and Mac platforms. It is targeted 
on the Objective-C programming language, which is the main language to program in with the 
iOS SDK. Since Xamarin.iOS is an SDK for the C# language, one might ask what we would 
need it for. Apart from providing various tools for debugging iOS apps, Xcode provides us with 
the Organizer window. Shown in the following screenshot, we can use it to view a device's 
console logs, install and manage the necessary provisioning profiles, and even view the 
device's crash logs. To open the Organizer window, navigate to Window | Organizer on the 
menu bar, or press Cmd + Shift + 2 on the keyboard.

http://xamarin.com/download


Chapter 1

11

Interface Builder
The second component is Interface Builder. This is the user interface designer, which was 
formerly a standalone application. Starting with Xcode 4.0, it is integrated into the IDE. 
Interface Builder provides all the necessary functionality to construct an application user 
interface. It is also quite different from what .NET developers are accustomed to.

iOS Simulator
The third component is iOS Simulator. It is exactly what its name suggests: a device simulator 
that we can use to run our apps on, without the need for an actual device. The most important 
thing about iOS Simulator is that it has the option of simulating older iOS versions (if they are 
installed on the computer), both iPhone and iPad interfaces and device orientations. However, 
the simulator lacks some device features that are dependent on hardware such as the 
compass or accelerometer. Applications using these features must be tested and debugged 
on an actual device.



Development Tools

12

Xamarin.iOS is the SDK that allows .NET developers to develop apps for iOS, using the C# 
programming language. All APIs available to Objective-C developers are also available to C# 
developers through Xamarin.iOS. It is not a standalone framework with its own APIs for, say, 
user interfaces. A Xamarin.iOS programmer can use the same UI elements as an Objective-C 
programmer, along with the added benefits of C# such as generics, LINQ, and asynchronous 
programming with async/await.

There's more...
Applications developed with Xamarin.iOS have the same chances of making it to the App Store 
as all other applications developed with the native Objective-C programming language. This 
means that if an app does not conform to Apple's strict policy about app acceptance, it will 
fail, whether is written in Objective-C or C#. The Xamarin.iOS team has done a great job in 
creating an SDK that leaves the developer to worry only about the design and best practice  
of the code, and nothing else.

Useful links
The following are useful links that you can go through:

ff Apple iOS developer portal: http://developer.apple.com/devcenter/ios/
index.action

ff Xamarin.iOS: http://xamarin.com/ios

ff Xamarin installation guide for Mac: http://docs.xamarin.com/guides/ios/
getting_started/installation/mac/

ff Information about Apple developer tools: http://developer.apple.com/
technologies/tools/xcode.html

Updates
Xamarin Studio has a feature for checking available updates. Whenever a program starts, it 
checks for updates of Xamarin.iOS. It can be turned off, but this is not suggested since it helps 
with staying up to date with the latest versions. It can be found under Xamarin Studio | Check 
for Updates.

See also
ff The Compiling an iOS project and Debugging our application recipes

ff The Preparing our app for the App Store recipe in Chapter 14, Deploying

http://developer.apple.com/devcenter/ios/index.action
http://developer.apple.com/devcenter/ios/index.action
http://xamarin.com/ios
http://docs.xamarin.com/guides/ios/getting_started/installation/mac/
http://docs.xamarin.com/guides/ios/getting_started/installation/mac/
http://developer.apple.com/technologies/tools/xcode.html
http://developer.apple.com/technologies/tools/xcode.html


Chapter 1

13

Creating an iOS project with Xamarin Studio
In this recipe, we will discuss how to create our first iOS project with Xamarin Studio.

Getting ready...
Now that we have all the prerequisites installed, we will discuss how to create our first iOS 
project with Xamarin Studio.

Start Xamarin Studio. It can be found in the Applications folder. Xamarin Studio's default 
project location is /Users/{yourusername}/Projects. If it does not exist on the hard disk, 
it will be created when we create out first project. If you want to change the folder, go to Xamarin 
Studio | Preferences from the menu bar. Select Load/Save in the pane on the left, enter the 
preferred location for the projects in the Default Solution location field, and click on OK.

How to do it...
The first thing that is loaded when starting Xamarin Studio is its start page. Perform the 
following steps to create an iOS project with Xamarin Studio:

1.	 Navigate to File | New | Solution... from the menu bar. A window that provides us 
with the available project options will appear.



Development Tools

14

2.	 In the pane on the left of this window, go to C# | iOS | iPhone. The iPhone project 
templates will be presented on the middle pane.

3.	 Select Single View Application.

4.	 Finally, enter MyFirstiOSProject for Solution name and click on OK.  
The following screenshot displays the New Solution window:

That was it. You just created your first iPhone project. You can build and run it; iOS Simulator 
will start, with a blank light-gray screen nevertheless.

The project templates may be different from the ones shown 
in the preceding screenshot.

How it works...
Let's see what goes on behind the scenes.

When Xamarin Studio creates a new iOS project, it creates a series of files. The solution files can 
be viewed in the Solution pad on the left side of Xamarin Studio window. If the Solution pad is 
not visible, it can be activated by checking on View | Pads | Solution from the menu bar.



Chapter 1

15

The files shown in the following screenshot are the essential files that form an iPhone project:

MyFirstiOSProjectViewController.xib
MyFirstiOSProjectViewController.xib is the file that contains the view of the 
application. XIB files are basically XML files with a specific structure that Xcode can read.  
The files contain information about the user interface, such as the type of controls it contains, 
their properties, and Outlets.

If MyFirstiPhoneProjectViewController.xib, or any 
other file with the .xib suffix, is double-clicked, Xamarin Studio 
automatically opens the file in Xcode's Interface Builder.

When we create a new interface with Interface Builder and save it, it is saved in the XIB format.

MyFirstiOSProjectViewController.cs
MyFirstiOSProjectViewController.cs is the file that implements the view's 
functionality. These are the contents of the file when it is created:

using System;
using System.Drawing;
using MonoTouch.Foundation;
using MonoTouch.UIKit;

namespace MyFirstiOSProject
{
    public class MyFirstiOSProjectViewController :  
        UIViewController
    {



Development Tools

16

        public MyFirstiOSProjectViewController () :  
            base ("MyFirstiOSProjectViewController", null)
        {
        }

        public override void DidReceiveMemoryWarning ()
        {
            // Releases the view if it doesn't have a superview. 
            base.DidReceiveMemoryWarning ();
            
            // Release any cached data, images, etc that aren't in  
            use.
        }

        public override void ViewDidLoad ()
        {
            base.ViewDidLoad ();
            
            // Perform any additional setup after loading  
            the view, typically from a nib.
        }
}
}

Xamarin.iOS was formerly known as MonoTouch. For proper 
code compatibility, the namespaces have not been renamed.

The code in this file contains the class which corresponds to the view that will be loaded, 
along with some default method that overrides. These methods are the ones that we will use 
more frequently when we create view controllers. A brief description of each method is listed 
as follows:

ff ViewDidLoad: This method is called when the view of the controller is loaded. This is 
the method we use to initialize any additional component.

ff DidReceiveMemoryWarning: This method is called when the app receives a memory 
warning. This method is responsible for releasing resources that are not needed at 
the time.



Chapter 1

17

MyFirstiOSProjectViewController.designer.cs
MyFirstiOSProjectViewController.designer.cs is the file that holds our main 
window's class information in C# code. Xamarin Studio creates one .designer.cs file for 
every XIB that is added in a project. The file is autogenerated every time we save a change in 
our XIB through Interface Builder. This is taken care of by Xamarin Studio so that the changes 
we make in our interface are reflected right away in our code. We must not make changes to 
this file directly, since when the corresponding XIB is saved with Interface Builder, they will be 
lost. Also, if nothing is saved through Interface Builder and if changes are made to it manually, 
it will most likely result in a compilation error.

These are the contents of the file when a new project is created:

//
// This file has been generated automatically by MonoDevelop to  
  store outlets and
// actions made in the Xcode designer. If it is removed, they will  
  be lost.
// Manual changes to this file may not be handled correctly.
//
using MonoTouch.Foundation;

namespace MyFirstiOSProject
{
    [Register ("MyFirstiOSProjectViewController")]
    partial class MyFirstiOSProjectViewController
    {
        void ReleaseDesignerOutlets ()
        {
        }
    }
}

Downloading the example code

You can download the example code files for all Packt 
books you have purchased from your account at 
http://www.packtpub.com. If you purchased 
this book elsewhere, you can visit http://www.
packtpub.com/support and register to have the 
files e-mailed directly to you.

This file contains the other partial declaration of our MyFirstiOSProjectViewController 
class. It is decorated with the Register attribute.

http://www.packtpub.com
http://www.packtpub.com/support
http://www.packtpub.com/support


Development Tools

18

The Register attribute is used to expose classes to the underlying Objective-C runtime. 
The string parameter declares by what name our class will be exposed to the runtime. It can 
be whatever name we want it to be, but it is a good practice to always set it to our C# class' 
name. The attribute is used heavily in the internals of Xamarin.iOS, since it is what binds all 
the native NSObject classes with their C# counterparts.

NSObject is a root class or base class. It is the equivalent 
of System.Object in the .NET world. The only difference 
between the two is that all .NET objects inherit from 
System.Object, but most, not all, Objective-C objects 
inherit from NSObject in Objective-C. The C# counterparts 
of all native objects that inherit from NSObject also inherit 
from its Xamarin.iOS NSObject counterpart.

AppDelegate.cs
The AppDelegate.cs file contains the AppDelegate class. The contents of the file are 
listed below:

using System;
using System.Collections.Generic;
using System.Linq;
using MonoTouch.Foundation;
using MonoTouch.UIKit;

namespace MyFirstiOSProject
{
    // The UIApplicationDelegate for the application. This class 
    is responsible for launching the
    // User Interface of the application, as well as listening 
    (and optionally responding) to
    // application events from iOS.
    [Register ("AppDelegate")]
    public partial class AppDelegate : UIApplicationDelegate
    {
        // class-level declarations
        UIWindow window;
        MyFirstiOSProjectViewController viewController;
        //
        // This method is invoked when the application has loaded  
        and is ready to run. In this
        // method you should instantiate the window, load the UI  
        into it and then make the window
        // visible.
        //
        // You have 17 seconds to return from this method,  
        or iOS will terminate your application.



Chapter 1

19

        //
        public override bool FinishedLaunching (UIApplication app, 
            NSDictionary options)
        {
            window = new UIWindow (UIScreen.MainScreen.Bounds);
            
            viewController =  
                new MyFirstiOSProjectViewController ();
            window.RootViewController = viewController;
            window.MakeKeyAndVisible ();
            
            return true;
        }
    }
}

The first part is familiar to .NET developers and consists of the appropriate using directives 
that import the required namespaces to use. Consider the following code:

using System;
using System.Collections.Generic;
using System.Linq;
using MonoTouch.Foundation;
using MonoTouch.UIKit;

The first three using directives allow us to use the specific and familiar namespaces from the 
.NET world with Xamarin.iOS.

System, System.Collections.Generic, System.Linq: 
Although the functionality that the three namespaces provide is 
almost identical to their well-known .NET counterparts, they are 
included in assemblies specifically created for use with Xamarin.
iOS and shipped with it, of course. An assembly compiled with 
.NET cannot be directly used in a Xamarin.iOS project.

The MonoTouch.Foundation namespace is a wrapper around the native Objective-C 
Foundation Framework, which contains classes that provide basic functionality. These 
objects' names share the same NS prefix that is found in the native Foundation Framework. 
Some examples are NSObject, NSString, NSValue, and so on. Apart from the NS-prefixed 
objects, the MonoTouch.Foundation namespace contains all of the attributes that are 
used for binding to native objects, such as the Outlet and Register attributes we saw 
earlier. The MonoTouch.UIKit namespace is a wrapper around the native Objective-C UIKit 
Framework. As its name suggests, the namespace contains classes, delegates, and events 
that provide us with interface functionality. Almost all the objects' names share the same UI 
prefix. It should be clear at this point that these two namespaces are essential for all Xamarin.
iOS apps, and their objects will be used quite frequently.



Development Tools

20

The class inherits from the UIApplicationDelegate class, qualifying it as our app's 
delegate object.

The concept of a delegate object in the Objective-C world 
is somewhat different from delegate in C#. It will be 
explained in detail in Chapter 2, User Interface – Views.

The AppDelegate class contains two fields and one method:

UIWindow window; 
MyFirstiOSProjectViewController viewController; 
//..
public override bool FinishedLaunching (UIApplication app,  
    NSDictionary options) {

The UIWindow object defines the main window of our application, while the 
MyFirstiOSProjectViewController object is the variable that will hold the  
app's view controller.

An iOS app typically has only one window of type 
UIWindow. UIWindow is the first control that is displayed 
when an app starts, and every subsequent view is 
hierarchically added below it.

The FinishedLaunching method, as its name suggests, is called when the app has 
completed its initialization process. This is the method where we must present the user 
interface to the user. The implementation of this method must be lightweight; if it does not 
return in time from the moment it is called, iOS will terminate the app. This provides faster user 
interface loading time to the user by preventing developers from performing complex and long-
running tasks upon initialization, such as connecting to a web service to receive data. The app 
parameter is the application's UIApplication object, which is also accessible through the 
static property UIApplication.SharedApplication. The options parameter may or 
may not contain information about the way the app was launched. We do not need it for now.

The default implementation of the FinishedLaunching method for this type of project  
is as follows:

ff The UIWindow object is initialized with the size of the screen as follows:
window = new UIWindow (UIScreen.MainScreen.Bounds);



Chapter 1

21

ff The view controller is initialized and set as the window's root view controller as follows:
viewController = new MyFirstiPhoneProjectViewController();
window.RootViewController = viewController;
window.MakeKeyAndVisible ();
return true;

The window is displayed on the screen with the window.MakeKeyAndVisible() call and 
the method returns. This method must be called inside the FinishedLaunching method, 
otherwise the app's user interface will not be presented as it should be to the user. Last but 
not least, the return true line returns the method by marking its execution completion.

Main.cs
Inside the Main.cs file is where the runtime life cycle of the program starts as shown in the 
following code:

namespace MyFirstiOSProject
{
    public class Application
    {
        // This is the main entry point of the application.
        static void Main (string[] args)
        {
            // if you want to use a different Application  
                Delegate class from "AppDelegate"
            // you can specify it here.
            UIApplication.Main (args, null, "AppDelegate");
        }
    }
}

It is much like the following call in a .NET System.Windows.Forms application:

Application.Run(new Form1());

The UIApplication.Main method starts the message loop or run loop that is responsible for 
dispatching notifications to the app through the AppDelegate class with event handlers that 
we can override. Event handlers such as FinishedLaunching, ReceiveMemoryWarning, 
or DidEnterBackground are only some of these notifications. Apart from the notification 
dispatching mechanism, the UIApplication object holds a list of all UIWindow objects that 
exist, typically one. An iOS app must have one UIApplication object, or a class that inherits 
from it, and this object must have a corresponding UIApplicationDelegate object. This is 
the AppDelegate class implementation we saw earlier.



Development Tools

22

Info.plist
The Info.plist file is basically the app's settings file. It has a simple structure of properties 
with values that define various settings for an iOS app, such as the orientations it supports, 
its icons, supported iOS versions, what devices it can be installed on, and so on. If we double-
click on this file in Xamarin Studio, it will open in the embedded editor specifically designed for 
this file. Our file in a new project looks like the following screenshot:

We can also access Info.plist through the project's options window under iOS Application.

There's more...
Xamarin Studio provides many different project templates for developing iOS apps. Here is a 
list that describes what each project template is for:

ff Empty project: This is an empty project without any views.

ff Utility application: This is a special type of iOS app that provides one screen for 
functionality and, in many cases, another one for configuration.

ff Master-detail application: This type of project creates a template that supports 
navigating through multiple screens. It contains two view controllers.

ff Single view application: This template type is the one we used in this recipe.



Chapter 1

23

ff Tabbed application: This is a template that adds a tab bar controller, which manages 
two view controllers in a tab-like interface.

ff OpenGL application: This is a template for creating OpenGL-powered applications  
or games.

These templates are available for the iPhone, iPad, and Universal (both iPhone and iPad) 
projects. They are also available in Interface Builder's storyboarding app design.

Unless stated, all project templates referring to the iPhone are 
suitable for the iPod Touch as well.

List of Xamarin.iOS assemblies
Xamarin.iOS-supported assemblies can be found at http://ios.xamarin.com/
Documentation/Assemblies.

See also
ff The Creating the UI and Accessing the UI with Outlets recipes

ff The Adding and customizing views recipe in Chapter 2, User Interface – Views

Interface Builder
In this recipe, we will take a look at Xcode's Interface Builder. Since we cannot use Xcode 
to write our code, Xamarin Studio provides a transparent way of communicating with Xcode 
when it comes to user interface files.

How to do it...
Let's take a look at Interface Builder by performing the following steps:

1.	 If you have installed the iOS SDK, then you already have Xcode with Interface 
Builder installed on your computer. Go to Xamarin Studio and open the project 
MyFirstiOSProject we created earlier.

2.	 In the Solution pad on the left, double-click on MyFirstiOSProjectViewController.xib. 
Xamarin Studio starts Xcode with the file loaded in Interface Builder.

3.	 On the top of the Xcode window in the right side of the toolbar, select the appropriate 
editor and viewing options, as shown in the following screenshot:

http://ios.xamarin.com/Documentation/Assemblies
http://ios.xamarin.com/Documentation/Assemblies


Development Tools

24

4.	 The following screenshot demonstrates what Interface Builder looks like with an XIB 
file open:

How it works...
Now that we have loaded Interface Builder with the view controller of our app, let's familiarize 
ourselves with it.

The user interface designer is directly connected to an Xcode project. When we add an object, 
Xcode automatically generates code to reflect the change we made. Xamarin Studio takes 
care of this for us, so that when we double-click on an XIB file, it automatically creates a 
temporary Xcode project. This allows us to make the changes we want in the user interface. 
Therefore, we have nothing more to do than just design the user interface for our app.

Interface Builder is divided into three areas. A brief description of each area is given  
as follows:

ff Navigator area: In this area, we can see the files included in the Xcode project.

ff Editor area: This area is where we design the user interface. The editor area is 
divided into two sections. The one on the left is the designer, and the one on the right 
is the assistant editor. Inside the assistant editor, we see the underlying Objective-C 
source code file that corresponds to the selected item in the designer. Although we do 
not need to edit the Objective-C source, we will need the assistant editor later.

ff Utility area: This area contains the inspector and library panes. The inspector pane is 
where we configure each object, and the library pane is where we find the objects.



Chapter 1

25

There's more...
We saw what an XIB file looks like in Interface Builder, but there is more as far as these files 
are concerned. We mentioned earlier that XIB files are XML files with appropriate information 
readable by Interface Builder. The thing is that when a compilation is done in a project, the 
compiler compiles the XIB file converting it to its binary equivalent, the NIB file. Both XIB and 
NIB files contain the same information. The only difference between them is that XIB files 
are in a human-readable form while the NIB files are not. For example, when we compile 
the project we created, the MyFirstiOSProjectViewController.xib file will become 
MyFirstiOSProjectViewController.nib in the output folder. Apart from the binary 
conversion, the compiler also performs a compression on NIB files. So, NIB files will be 
significantly smaller in size than XIB files.

That's not all about XIB files. The way a developer manages the XIB files in a project is very 
important in an app's performance and stability. It is better to have many small-sized XIB 
files, instead of one or two large ones. This is because of the way iOS manages its memory. 
This can be accomplished by dividing the user interface into many XIB files. It may seem a bit 
difficult, but as we'll see later in this book, it is actually very easy.

When an app starts, iOS loads the NIB files as a whole in memory, and all the objects in it are 
instantiated. So, it is a waste of memory to keep objects in NIB files that are not always going to 
be used. Also, remember that you are developing for a mobile device whose available resources 
are not a match against that of desktop computers, no matter what its capabilities are.

As of iOS 5, Apple introduced storyboarding, which simplifies user interface design.

More information
You may have noticed that in the Attributes tab of the Inspector pane, there is a section 
called Simulated Metrics. Options under this section help us see directly what our interface 
looks like in the designer area with the device's status bar, a toolbar, or a navigation bar. 
Although these options are saved in the XIB files, they have nothing to do with the actual app 
at runtime. For example, if we set the Status Bar option to None, it does not mean that our 
app will start without a status bar.

Status Bar is the bar that is shown on the top portion of the device's 
screen, which displays certain information to the user, such as the 
current time, battery status, and carrier name on the iPhone.



Development Tools

26

See also
ff The Creating the UI, Accessing the UI with Outlets, and Adding Actions to  

controls recipes
ff The Adding and customizing views recipe in Chapter 2, User Interface – Views
ff The Loading a view with a view controller recipe in Chapter 3, User Interface – View 

Controllers

Creating the UI
In this recipe, we will learn how to add and manage controls in the user interface.

Getting ready
Let's add a few controls in an interface. Start by creating a new iPhone single view application 
project in Xamarin Studio. Name the project ButtonInput. When it opens, double-click on 
ButtonInputViewController.xib in the Solution pad to open it with Interface Builder.

How to do it...
Now that we have a new project, and Interface Builder has opened the 
ButtonInputViewController.xib file, we'll add some controls to it.

Adding a label
Perform the following steps:

1.	 Go to the Library pane and select Objects from the drop-down list, if it is not  
already selected.

2.	 Select the Label object. Drag-and-drop Label onto the gray space of the view in the 
designer, somewhere in the top half.

3.	 Select and resize the Label object from both the left and right sides so that it snaps 
to the dashed line that will show up when you reach close to the edges of the view.

4.	 Again, with the Label object selected, go to the Inspector pane, select the Attributes 
tab, and in the Layout section, click on the middle alignment button.

Congratulations, you have just added Label in your app's main view!


