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Preface
If you do web development, chances are you've at least heard of CoffeeScript. Though 
it's less than five years old, this little language has received a lot of attention, and 
it's getting harder to ignore. Maybe you've already worked with it a little bit, or 
maybe you're just wondering what the fuss is all about. Good news! CoffeeScript is a 
delightful language that can help you write better code and have fun doing it. In this 
book, we will explore the language itself, and find out first-hand how it can help us 
build beautiful web applications.

What is CoffeeScript?
CoffeeScript is a programming language. Like most programming languages,  
it offers control structures to describe the logic of our application, simple data  
types to store and manipulate information, and functions to encapsulate sections  
of program execution.

What makes CoffeeScript special is the way it is compiled. When most languages 
are compiled, they are translated into machine code—low-level instructions to the 
computer's processor. CoffeeScript is different: when compiled, it is instead translated 
into JavaScript. We write CoffeeScript code, give it to the CoffeeScript compiler and 
receive JavaScript code as output. This output can then be passed to anything that 
consumes JavaScript, such as a browser, or a standalone JavaScript interpreter.

This technique, dubbed transcompilation, allows us to use an alternative language 
on platforms that only directly support JavaScript. Client-side web development is 
the most prominent example, since JavaScript is the only supported general-purpose 
scripting solution on most web browsers. Other platforms such as Node.js and Rhino 
also offer useful features, but expect JavaScript input. JavaScript is nothing if not 
prolific, and CoffeeScript allows us to make use of all that existing tooling, but to 
write our code in a different language.
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Why CoffeeScript?
CoffeeScript was certainly not the first (or last) language to target JavaScript 
platforms. Many established languages, such as Ruby, Python, C, and Java have 
one or more projects focused on compiling that language to JavaScript. And other 
languages have been developed specifically to target JavaScript—notably Dart, 
TypeScript, and Coco.

The CoffeeScript wiki itself maintains an extensive list of 
other languages that compile to JavaScript. You can find it at 
https://github.com/jashkenas/coffee-script/
wiki/List-of-languages-that-compile-to-JS.

While it's not alone in its approach, CoffeeScript has seen the most success of any 
language that compiles to JavaScript. It is the tenth most popular language on 
GitHub, it ships by default with Ruby on Rails, and it has large followings in both 
client-side and server-side developer communities.

So what makes CoffeeScript special? Just like Goldilocks and her pilfered porridge, 
CoffeeScript derives its strength from being just right. It is a marked improvement 
over JavaScript; we'll spend much of this book learning how CoffeeScript can help 
us write code that is more concise, easier to read, and less prone to bugs. However, 
CoffeeScript does not overreach on features. CoffeeScript has little to no runtime of 
its own—there is no extra metadata to track, no extra memory management, no  
non-standard data structures. Instead, CoffeeScript compiles directly to  
ordinary-looking JavaScript, much like what an experienced JavaScript  
developer might write. In fact, CoffeeScript is less a new language than it  
is a shorthand for easily expressing the best practices of JavaScript.

CoffeeScript is an eminently pragmatic language, and this is the secret to its 
success. It's easy for JavaScript developers to learn, and most expertise carries  
over. It doesn't incur performance penalties over plain JavaScript. CoffeeScript  
and JavaScript can coexist peacefully, so it's easy to introduce CoffeeScript into 
existing JavaScript projects. Perhaps most importantly, CoffeeScript avoids the 
"magic" that is so often a source of bugs when the developer's assumptions don't 
match the language designer's assumptions. With CoffeeScript, it's very easy to 
understand what the resulting JavaScript will do and how it will behave.

It might also help that CoffeeScript is fun.
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What this book covers
Chapter 1, Running a CoffeeScript Program, will cover installing the CoffeeScript tools 
and running a simple CoffeeScript program in both the console and a web browser.

Chapter 2, Writing Your First Lines of CoffeeScript, will explore the syntax of 
CoffeeScript and how it compiles to JavaScript.

In Chapter 3, Building a Simple Application, we will build an interactive web 
application and learn a few more CoffeeScript features along the way.

Chapter 4, Improving Our Application, will add more features to our web application, 
and explore more powerful CoffeeScript syntax.

Chapter 5, Using Classes, will teach us all about classes in CoffeeScript. It will 
also cover how to use them, how they work, and how to integrate with popular 
JavaScript frameworks.

In Chapter 6, Refactoring with Classes, we will use the new skills from previous chapter 
to refactor our web application using class-based structures.

In Chapter 7, Advanced CoffeeScript Features, we will learn advanced CoffeeScript 
features and idioms that reduce errors and make our code easier to understand.  
We will use them to add more features to our web application.

Chapter 8, Going Asynchronous, will show how CoffeeScript can help us deal with 
asynchronous operations, and integrate a third-party JavaScript library into our 
CoffeeScript application.

In Chapter 9, Debugging, we will learn how to use source maps to track problems in 
our application all the way back to the CoffeeScript source.

Chapter 10, Using CoffeeScript in More Places, will cover how to integrate CoffeeScript 
compilation into several popular web application frameworks.

In Chapter 11, CoffeeScript on the Server, we will run CoffeeScript on the server with 
Node.js, and learn how to integrate it with standard JavaScript Node modules.



Preface

[ 4 ]

What you need for this book
All you need for this book is a text editor and a working CoffeeScript compiler, 
and don't worry about the compiler—we'll cover installation and use of that tool 
in the first chapter! We provide instructions for using the tools on Windows, Mac 
OS X, and Linux. We'll be spending a lot of the book working on a client-side web 
application, so if you have any favorite development tools, feel free to bring those 
along. You'll also need a modern browser. The most recent version of Firefox or 
Chrome is ideal, but any other up-to-date browser such as Safari, Opera, or a recent 
Internet Explorer will also work fine.

Who this book is for
Some familiarity with the JavaScript language will help—CoffeeScript is a close 
relative, so it's useful to understand what the compiler's output is doing. It's also 
helpful, though not necessary, to have some experience with client-side web 
development. We'll be building a web application with a lot of CoffeeScript, plus  
a little HTML and CSS.

No experience with CoffeeScript is necessary. We'll cater to everyone from the total 
newbie to the person who has hacked together some CoffeeScript already but wants 
a better grasp of what's going on and how to best utilize the language.

Conventions
In this book, you will find a number of styles of text that distinguish between 
different kinds of information. Here are some examples of these styles, and an 
explanation of their meaning.

Code words in text are shown as follows: "We can pull in another module by  
using the require function."

A block of code is set as follows:

fibonacci = (n) ->
  if n is 0 or n is 1
    n
  else
    fibonacci(n-1) + fibonacci(n-2)
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When we wish to draw your attention to a particular part of a code block, the 
relevant lines or items are set in bold:

fibonacci = (n) ->
  if n is 0 or n is 1
    n
  else
    fibonacci(n-1) + fibonacci(n-2)

Any command-line input or output is written as follows:

coffee --compile --watch *.coffee

New terms and important words are shown in bold. Words that you see on the 
screen, in menus or dialog boxes for example, appear in the text like this: "clicking 
the Next button moves you to the next screen".

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about 
this book—what you liked or may have disliked. Reader feedback is important for  
us to develop titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com, 
and mention the book title via the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing 
or contributing to a book, see our author guide on www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to 
help you to get the most from your purchase.
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Downloading the example code
You can download the example code files for all Packt books you have purchased 
from your account at http://www.packtpub.com. If you purchased this book 
elsewhere, you can visit http://www.packtpub.com/support and register to  
have the files e-mailed directly to you.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes 
do happen. If you find a mistake in one of our books—maybe a mistake in the text or 
the code—we would be grateful if you would report this to us. By doing so, you can 
save other readers from frustration and help us improve subsequent versions of this 
book. If you find any errata, please report them by visiting http://www.packtpub.
com/submit-errata, selecting your book, clicking on the errata submission form link, 
and entering the details of your errata. Once your errata are verified, your submission 
will be accepted and the errata will be uploaded on our website, or added to any list of 
existing errata, under the Errata section of that title. Any existing errata can be viewed 
by selecting your title from http://www.packtpub.com/support.

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media. 
At Packt, we take the protection of our copyright and licenses very seriously. If you 
come across any illegal copies of our works, in any form, on the Internet, please 
provide us with the location address or website name immediately so that we can 
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected  
pirated material.

We appreciate your help in protecting our authors, and our ability to bring you 
valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with 
any aspect of the book, and we will do our best to address it.



Running a CoffeeScript 
Program

The very first thing we need to do in order to start using CoffeeScript is to install 
CoffeeScript itself. This will give us access to the CoffeeScript compiler, which  
we'll use to compile our beautiful CoffeeScript code into JavaScript that can be run 
in a browser (or other JavaScript environment). By the end of this chapter we'll be 
completely set up and ready to work.

There are a couple of steps involved in installing CoffeeScript. I know you're 
impatient to dive right into this great new language—who can blame you? But  
we'll have to stick it out through a little bit of system configuration. If we do so,  
we'll be rewarded with a stable CoffeeScript setup that works flawlessly and  
doesn't take any more of our attention.

In this chapter we will:

•	 Install the software that you need to run CoffeeScript code
•	 Learn how to use the software to run CoffeeScript, both from the command 

line and in a browser
•	 Use our new abilities to write a simple web application using CoffeeScript

Installing Node.js
To run CoffeeScript, first you'll need to install Node.js. Don't worry! If you don't 
want to learn Node.js, you won't need to. We just need to have the platform installed 
because the CoffeeScript compiler uses it.
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If you get stuck at any point while installing or using Node.js,  
the IRC channel is a great place to look for help. You can use 
your IRC client of choice to connect to the #node.js room in irc.
freenode.net, or you can connect through a web browser by visiting 
http://webchat.freenode.net/?channels=node.js.

Node.js (or simply Node) is a platform for running JavaScript at a low level, using 
the powerful and fast V8 engine. It's primarily used for web development, allowing 
developers to write the server side components of web applications in JavaScript. 
Node's most notable innovation is that it's highly non-blocking. Any system call that 
needs to wait for a result (such as network requests and disk reads) uses a callback, so 
Node can service another request while it waits for an operation to finish. This way of 
thinking meshes nicely with web applications which do a lot of network interaction, 
and it provides a lot of bang for your hardware buck. While we'll be using CoffeeScript 
to build a client side application, it works great with Node as well. We'll show you 
more about that in Chapter 11, CoffeeScript on the Server. The CoffeeScript compiler is 
written entirely in CoffeeScript and runs on Node. If you're curious, you can find the 
annotated CoffeeScript source on http://coffeescript.org/.

Installing Node.js on OS X
The Node project provides several options for installation on Mac OS X. The 
simplest method is the universal installer. If you don't already use a package 
management system for your development tools, you should use the installer. If 
you use Homebrew or MacPorts to manage your system and would like to install 
Node through those, follow the instructions for your package manager instead.

If for some reason none of these methods work for you, see the Compiling 
Node.js manually section. However, this is more difficult and not 
recommended unless you really need it.

Using the installer
The Node project provides a universal installer for Mac OS X. Visit  
http://nodejs.org/download/, and look for Macintosh Installer.
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Download that file and double-click on it. Follow the prompts to install Node on 
your system.

Using Homebrew
Homebrew is a popular package management system for OS X. It maintains installed 
packages in a completely separate directory from the OS X system files, and offers 
easy package management from the command line. Homebrew offers an easy-to-use 
formula system to create new package definitions, and as a result offers a very large 
collection of user-contributed recipes.

Early versions of the Node package on Homebrew suffered from 
numerous bugs. Recent versions have received far fewer complaints 
and should be acceptable for our needs. Still, if you encounter 
serious problems using Node from Homebrew, consider uninstalling 
it and using the universal installer instead.
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To install Node using Homebrew, simply use the command-line installer as follows:

brew install node

For help with Homebrew, visit the official site at  
http://mxcl.github.com/homebrew/.

Using Macports
MacPorts is another package management system for OS X. Like Homebrew, it 
maintains installed packages separately from the OS X system files. MacPorts is an 
older project, and is modeled on the BSD ports system. While it has been waning in 
popularity in recent years, it still has a large user base.

To install Node using MacPorts, simply use the command-line installer as follows:

sudo port install nodejs

For help with MacPorts, visit the official site at 
https://www.macports.org/.

Installing Node.js on Windows
There are several convenient installation options for Node on Windows. The method 
recommended for most people is to use the installer. If you cannot install software on 
your machine, or for other reasons wish to isolate Node, you can use the standalone 
executable instead. Finally, if you are already using the third-party package manager 
Chocolatey to manage packages on your machine, you may install Node through 
that system.
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Using the installer
The Node project provides an install file for Windows systems. Visit http://nodejs.
org/download/, and look for Windows Installer:

Download that file and double-click on it. Follow the prompts to install Node on 
your system.


