

CoffeeScript Application
Development

Write code that is easy to read, effortless to maintain,
and even more powerful than JavaScript

Ian Young

BIRMINGHAM - MUMBAI

CoffeeScript Application Development

Copyright © 2013 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the author, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: August 2013

Production Reference: 1200813

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78216-266-7

www.packtpub.com

Cover Image by Aniket Sawant (aniket_sawant_photography@hotmail.com)

Credits

Author
Ian Young

Reviewers
Becker

Adam Bronte

Enrique Vidal

Acquisition Editor
Martin Bell

Lead Technical Editor
Ankita Shashi

Technical Editors
Dipika Gaonkar

Aparna K

Pragati Singh

Aniruddha Vanage

Project Coordinator
Kranti Berde

Proofreader
Mario Cecere

Indexer
Tejal Soni

Production Coordinator
Prachali Bhiwandkar

Cover Work
Prachali Bhiwandkar

About the Author

Ian Young wrote his very first program on a TI-89 scientific calculator—an infinite
loop that printed an insulting message to one of his friends. As one might expect,
things could only improve from there. Ian graduated from Grinnell College with a
degree in Computer Science, and since then has been working as a web developer
for small tech companies; first in Minneapolis and now in San Diego. He loves web
technology, small teams, frequent iteration, testing, beautiful ideas, free speech, free
beer, and any tool that reduces cognitive overhead.

Acknowledgements

Katherine, for putting up with my stupid face.

My reviewers and editors, for finding all of my mistakes.

Photos, my favorite part of the book:

•	 Steve Jurvetson (https://flickr.com/photos/jurvetson/2229899)
•	 Rosalia Wilhelm (https://commons.wikimedia.org/wiki/

File:Widderkaninchen.JPG)

Open source software, without which none of this would be possible:

•	 Jeremy Ashkenas, CoffeeScript (http://coffeescript.org/)
•	 Ryan Dahl, Node (http://nodejs.org/)
•	 Isaac Z. Schlueter, npm (https://github.com/isaacs/npm)
•	 Dustin Diaz, reqwest (https://github.com/ded/reqwest)
•	 Tilde, Inc., RSVP.js (https://github.com/tildeio/rsvp.js)
•	 David Heinemeier Hansson, Rails (http://rubyonrails.org/)
•	 Brunch team, Brunch (http://brunch.io/)
•	 TJ Holowaychuk, Express (http://expressjs.com/)
•	 Andrew Dunkman, connect-assets (https://github.com/adunkman/

connect-assets)

About the Reviewers

Adam Bronte is a well-versed software developer expert on web technologies.
He is the co-founder and CTO of the pet services company, Furlocity. With over
six years of experience in the industry, Adam has worked on all aspects of
software development.

Enrique Vidal is a Software Engineer from Tijuana. He has worked on web
development and system administration for many years, he is now focusing
on Ruby and CoffeeScript development.

He has been fortunate to work with great developers such as this book's
author, in different companies in the United States and México. He enjoys the
challenge of coding payment systems, online invoicing, social networking
applications, and so on. He is keen on helping startups at an early stage and
actively supporting a few open source projects.

I'd like to thank Packt and the author for allowing me to be part of
this book's technical reviewer team.

www.PacktPub.com

Support files, eBooks, discount offers and more
You might want to visit www.PacktPub.com for support files and downloads related
to your book.

Did you know that Packt offers eBook versions of every book published, with PDF
and ePub files available? You can upgrade to the eBook version at www.PacktPub.
com and as a print book customer, you are entitled to a discount on the eBook copy.
Get in touch with us at service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign
up for a range of free newsletters and receive exclusive discounts and offers on Packt
books and eBooks.

TM

http://PacktLib.PacktPub.com

Do you need instant solutions to your IT questions? PacktLib is Packt's online
digital book library. Here, you can access, read and search across Packt's entire
library of books.

Why Subscribe?
•	 Fully searchable across every book published by Packt
•	 Copy and paste, print and bookmark content
•	 On demand and accessible via web browser

Free Access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view nine entirely free books. Simply use your login credentials
for immediate access.

http://www.PacktPub.com
http://www.PacktPub.com
http://www.PacktPub.com
http://www.PacktPub.com
mailto:service@packtpub.com
http://www.PacktPub.com
http://PacktLib.PacktPub.com
http://www.packtpub.com/

Table of Contents
Preface	 1
Chapter 1: Running a CoffeeScript Program	 7

Installing Node.js	 7
Installing Node.js on OS X	 8

Using the installer	 8
Using Homebrew	 9
Using Macports	 10

Installing Node.js on Windows	 10
Using the installer	 11

Using the standalone executable	 12
Using Chocolatey	 12
Installing Node.js on Linux	 13

Using a graphical package manager	 13
Using the command line	 14

Compiling Node.js manually	 15
Skipping the Node installation step	 16

Testing our Node installation	 16
Testing npm	 17

Installing CoffeeScript	 18
Our very first CoffeeScript code	 19
Compiling from a CoffeeScript file	 19
CoffeeScript support in the editor	 20

Support in TextMate	 20
Support in Sublime Text 2	 21
Support in Vim	 21
Support in Emacs	 21

Starting our web application	 22
One more thing	 23

Summary	 24

Table of Contents

[ii]

Chapter 2: Writing Your First Lines of CoffeeScript	 25
Following along with the examples	 25

Seeing the compiled JavaScript	 26
CoffeeScript basics	 26

Statements	 27
Variables	 27
Comments	 28

Calling functions	 29
Precedence	 30

Control structures	 31
Using if statements	 31
The else and else if statements	 33
The unless statement	 33
Single-line form	 34

Comparison operators	 35
Arrays	 37

Ranges	 38
Loops	 39

Loop comprehensions	 41
A few more array tricks	 42

Checking array membership	 42
Simple objects	 43

Iterating over objects	 45
Summary	 45

Chapter 3: Building a Simple Application	 47
Building our application	 48
String Interpolation	 52

Using string interpolation in our application	 53
Defining functions	 54

Function naming	 55
Function return behavior	 56

Adding dynamic behavior to our application	 58
Switch statements	 63

Using a switch statement in our application	 65
Summary	 67

Chapter 4: Improving Our Application	 69
Checking if a value exists	 69

Using the existential operator	 70
Null values in chained calls	 71
Assigning new values conditionally when null	 72

Table of Contents

[iii]

Dealing with nulls in our application	 73
Assigning multiple values at once	 77

Using destructuring assignment in our application	 79
Advanced function arguments	 81

Default argument values	 83
Using default arguments in our application	 84

Accepting a variable number of arguments with splats	 87
Invoking functions with splats	 88
Using splats in our application	 89

Summary	 93
Chapter 5: Classes in CoffeeScript	 95

Defining a class in CoffeeScript	 95
Attaching methods to a class	 96
How CoffeeScript builds classes in JavaScript	 97
Maintaining state with object properties	 98
Calling other methods on this object	 98
Attaching a method outside of the class definition	 100

Constructors	 101
CoffeeScript constructors in JavaScript	 102

Calling methods statically on classes	 103
Inheritance	 105

CoffeeScript's inheritance in JavaScript	 107
Using CoffeeScript with other class libraries	 109

Backbone classes in CoffeeScript	 110
Ember classes in CoffeeScript	 111

Summary	 112
Chapter 6: Refactoring with Classes	 113

The refactoring cycle	 113
Structuring our data with classes	 114

Adding business logic	 116
More data modeling	 117
More business logic	 118

Managing display logic with classes	 120
Displaying a collection	 122
The top-level display logic	 124

A final refactoring pass	 125
Using inheritance while refactoring	 128
Getting the green light	 130
Summary	 130

Table of Contents

[iv]

Chapter 7: Advanced CoffeeScript Usage	 131
Getting our context right	 131

Using fat arrows in our project	 134
Saving our work with memoization	 135

Using memoization in our application	 136
A new idiom: options objects	 138

Using options objects in our application	 139
Summary	 144

Chapter 8: Going Asynchronous	 145
Understanding asynchronous operations	 145
Getting to know our remote API	 147
Making an asynchronous request	 148
Using a third-party library	 151

Refactoring	 152
Wrangling multiple asynchronous calls	 153

Requests in a loop	 154
Determining when we're finished	 157

Alternatives for managing asynchronous calls	 158
Promises	 158

Using Promises in our application	 159
An async helper library	 162

Using Async.js in our application	 162
IcedCoffeeScript	 164

Using IcedCoffeeScript in our application	 165
Summary	 167

Chapter 9: Debugging	 169
Discovering a problem	 169
Working with source maps	 170

Source maps in the Firefox developer tools	 171
Inspecting our application state	 172
Using the debugger	 174

Source maps in the Chrome developer tools	 178
Inspecting our application state	 178
Using the debugger	 180

Fixing the problem	 184
Summary	 185

Chapter 10: Using CoffeeScript in More Places	 187
CoffeeScript directly in the browser	 188
CoffeeScript in the browser console	 189

A CoffeeScript console in Firefox	 189
A CoffeeScript console in Chrome	 192

Table of Contents

[v]

Using CoffeeScript with Rails	 194
Setting up the asset pipeline	 195

Creating a new Rails application	 195
Rails 3.0	 195
Rails 3.1 and 3.2	 196
Rails 4	 197

Setting up our application	 198
Adding some CoffeeScript	 199
Precompiling assets	 202

Using CoffeeScript with Brunch	 203
Creating a Brunch project	 203
Filling out our application	 204
Precompiling assets	 207

Using CoffeeScript with Node.js	 208
Creating our project	 208
Keeping the server up-to-date	 209
Adding CoffeeScript compilation	 210
Finishing our application	 211
Cleaning up our script dependencies	 213

Summary	 215
Chapter 11: CoffeeScript on the Server	 217

Running a server with CoffeeScript	 217
Running our application	 219

Adding an endpoint for data	 220
Using a database	 223

Handling errors	 225
Using a Cakefile	 226

Writing a Cake task	 227
More Cake tasks	 227

Making our application interactive	 228
Seeing the results	 231

Summary	 233
Index	 235

Preface
If you do web development, chances are you've at least heard of CoffeeScript. Though
it's less than five years old, this little language has received a lot of attention, and
it's getting harder to ignore. Maybe you've already worked with it a little bit, or
maybe you're just wondering what the fuss is all about. Good news! CoffeeScript is a
delightful language that can help you write better code and have fun doing it. In this
book, we will explore the language itself, and find out first-hand how it can help us
build beautiful web applications.

What is CoffeeScript?
CoffeeScript is a programming language. Like most programming languages,
it offers control structures to describe the logic of our application, simple data
types to store and manipulate information, and functions to encapsulate sections
of program execution.

What makes CoffeeScript special is the way it is compiled. When most languages
are compiled, they are translated into machine code—low-level instructions to the
computer's processor. CoffeeScript is different: when compiled, it is instead translated
into JavaScript. We write CoffeeScript code, give it to the CoffeeScript compiler and
receive JavaScript code as output. This output can then be passed to anything that
consumes JavaScript, such as a browser, or a standalone JavaScript interpreter.

This technique, dubbed transcompilation, allows us to use an alternative language
on platforms that only directly support JavaScript. Client-side web development is
the most prominent example, since JavaScript is the only supported general-purpose
scripting solution on most web browsers. Other platforms such as Node.js and Rhino
also offer useful features, but expect JavaScript input. JavaScript is nothing if not
prolific, and CoffeeScript allows us to make use of all that existing tooling, but to
write our code in a different language.

Preface

[2]

Why CoffeeScript?
CoffeeScript was certainly not the first (or last) language to target JavaScript
platforms. Many established languages, such as Ruby, Python, C, and Java have
one or more projects focused on compiling that language to JavaScript. And other
languages have been developed specifically to target JavaScript—notably Dart,
TypeScript, and Coco.

The CoffeeScript wiki itself maintains an extensive list of
other languages that compile to JavaScript. You can find it at
https://github.com/jashkenas/coffee-script/
wiki/List-of-languages-that-compile-to-JS.

While it's not alone in its approach, CoffeeScript has seen the most success of any
language that compiles to JavaScript. It is the tenth most popular language on
GitHub, it ships by default with Ruby on Rails, and it has large followings in both
client-side and server-side developer communities.

So what makes CoffeeScript special? Just like Goldilocks and her pilfered porridge,
CoffeeScript derives its strength from being just right. It is a marked improvement
over JavaScript; we'll spend much of this book learning how CoffeeScript can help
us write code that is more concise, easier to read, and less prone to bugs. However,
CoffeeScript does not overreach on features. CoffeeScript has little to no runtime of
its own—there is no extra metadata to track, no extra memory management, no
non-standard data structures. Instead, CoffeeScript compiles directly to
ordinary-looking JavaScript, much like what an experienced JavaScript
developer might write. In fact, CoffeeScript is less a new language than it
is a shorthand for easily expressing the best practices of JavaScript.

CoffeeScript is an eminently pragmatic language, and this is the secret to its
success. It's easy for JavaScript developers to learn, and most expertise carries
over. It doesn't incur performance penalties over plain JavaScript. CoffeeScript
and JavaScript can coexist peacefully, so it's easy to introduce CoffeeScript into
existing JavaScript projects. Perhaps most importantly, CoffeeScript avoids the
"magic" that is so often a source of bugs when the developer's assumptions don't
match the language designer's assumptions. With CoffeeScript, it's very easy to
understand what the resulting JavaScript will do and how it will behave.

It might also help that CoffeeScript is fun.

Preface

[3]

What this book covers
Chapter 1, Running a CoffeeScript Program, will cover installing the CoffeeScript tools
and running a simple CoffeeScript program in both the console and a web browser.

Chapter 2, Writing Your First Lines of CoffeeScript, will explore the syntax of
CoffeeScript and how it compiles to JavaScript.

In Chapter 3, Building a Simple Application, we will build an interactive web
application and learn a few more CoffeeScript features along the way.

Chapter 4, Improving Our Application, will add more features to our web application,
and explore more powerful CoffeeScript syntax.

Chapter 5, Using Classes, will teach us all about classes in CoffeeScript. It will
also cover how to use them, how they work, and how to integrate with popular
JavaScript frameworks.

In Chapter 6, Refactoring with Classes, we will use the new skills from previous chapter
to refactor our web application using class-based structures.

In Chapter 7, Advanced CoffeeScript Features, we will learn advanced CoffeeScript
features and idioms that reduce errors and make our code easier to understand.
We will use them to add more features to our web application.

Chapter 8, Going Asynchronous, will show how CoffeeScript can help us deal with
asynchronous operations, and integrate a third-party JavaScript library into our
CoffeeScript application.

In Chapter 9, Debugging, we will learn how to use source maps to track problems in
our application all the way back to the CoffeeScript source.

Chapter 10, Using CoffeeScript in More Places, will cover how to integrate CoffeeScript
compilation into several popular web application frameworks.

In Chapter 11, CoffeeScript on the Server, we will run CoffeeScript on the server with
Node.js, and learn how to integrate it with standard JavaScript Node modules.

Preface

[4]

What you need for this book
All you need for this book is a text editor and a working CoffeeScript compiler,
and don't worry about the compiler—we'll cover installation and use of that tool
in the first chapter! We provide instructions for using the tools on Windows, Mac
OS X, and Linux. We'll be spending a lot of the book working on a client-side web
application, so if you have any favorite development tools, feel free to bring those
along. You'll also need a modern browser. The most recent version of Firefox or
Chrome is ideal, but any other up-to-date browser such as Safari, Opera, or a recent
Internet Explorer will also work fine.

Who this book is for
Some familiarity with the JavaScript language will help—CoffeeScript is a close
relative, so it's useful to understand what the compiler's output is doing. It's also
helpful, though not necessary, to have some experience with client-side web
development. We'll be building a web application with a lot of CoffeeScript, plus
a little HTML and CSS.

No experience with CoffeeScript is necessary. We'll cater to everyone from the total
newbie to the person who has hacked together some CoffeeScript already but wants
a better grasp of what's going on and how to best utilize the language.

Conventions
In this book, you will find a number of styles of text that distinguish between
different kinds of information. Here are some examples of these styles, and an
explanation of their meaning.

Code words in text are shown as follows: "We can pull in another module by
using the require function."

A block of code is set as follows:

fibonacci = (n) ->
 if n is 0 or n is 1
 n
 else
 fibonacci(n-1) + fibonacci(n-2)

Preface

[5]

When we wish to draw your attention to a particular part of a code block, the
relevant lines or items are set in bold:

fibonacci = (n) ->
 if n is 0 or n is 1
 n
 else
 fibonacci(n-1) + fibonacci(n-2)

Any command-line input or output is written as follows:

coffee --compile --watch *.coffee

New terms and important words are shown in bold. Words that you see on the
screen, in menus or dialog boxes for example, appear in the text like this: "clicking
the Next button moves you to the next screen".

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or may have disliked. Reader feedback is important for
us to develop titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com,
and mention the book title via the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide on www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Preface

[6]

Downloading the example code
You can download the example code files for all Packt books you have purchased
from your account at http://www.packtpub.com. If you purchased this book
elsewhere, you can visit http://www.packtpub.com/support and register to
have the files e-mailed directly to you.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in the text or
the code—we would be grateful if you would report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
book. If you find any errata, please report them by visiting http://www.packtpub.
com/submit-errata, selecting your book, clicking on the errata submission form link,
and entering the details of your errata. Once your errata are verified, your submission
will be accepted and the errata will be uploaded on our website, or added to any list of
existing errata, under the Errata section of that title. Any existing errata can be viewed
by selecting your title from http://www.packtpub.com/support.

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media.
At Packt, we take the protection of our copyright and licenses very seriously. If you
come across any illegal copies of our works, in any form, on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors, and our ability to bring you
valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with
any aspect of the book, and we will do our best to address it.

Running a CoffeeScript
Program

The very first thing we need to do in order to start using CoffeeScript is to install
CoffeeScript itself. This will give us access to the CoffeeScript compiler, which
we'll use to compile our beautiful CoffeeScript code into JavaScript that can be run
in a browser (or other JavaScript environment). By the end of this chapter we'll be
completely set up and ready to work.

There are a couple of steps involved in installing CoffeeScript. I know you're
impatient to dive right into this great new language—who can blame you? But
we'll have to stick it out through a little bit of system configuration. If we do so,
we'll be rewarded with a stable CoffeeScript setup that works flawlessly and
doesn't take any more of our attention.

In this chapter we will:

•	 Install the software that you need to run CoffeeScript code
•	 Learn how to use the software to run CoffeeScript, both from the command

line and in a browser
•	 Use our new abilities to write a simple web application using CoffeeScript

Installing Node.js
To run CoffeeScript, first you'll need to install Node.js. Don't worry! If you don't
want to learn Node.js, you won't need to. We just need to have the platform installed
because the CoffeeScript compiler uses it.

Running a CoffeeScript Program

[8]

If you get stuck at any point while installing or using Node.js,
the IRC channel is a great place to look for help. You can use
your IRC client of choice to connect to the #node.js room in irc.
freenode.net, or you can connect through a web browser by visiting
http://webchat.freenode.net/?channels=node.js.

Node.js (or simply Node) is a platform for running JavaScript at a low level, using
the powerful and fast V8 engine. It's primarily used for web development, allowing
developers to write the server side components of web applications in JavaScript.
Node's most notable innovation is that it's highly non-blocking. Any system call that
needs to wait for a result (such as network requests and disk reads) uses a callback, so
Node can service another request while it waits for an operation to finish. This way of
thinking meshes nicely with web applications which do a lot of network interaction,
and it provides a lot of bang for your hardware buck. While we'll be using CoffeeScript
to build a client side application, it works great with Node as well. We'll show you
more about that in Chapter 11, CoffeeScript on the Server. The CoffeeScript compiler is
written entirely in CoffeeScript and runs on Node. If you're curious, you can find the
annotated CoffeeScript source on http://coffeescript.org/.

Installing Node.js on OS X
The Node project provides several options for installation on Mac OS X. The
simplest method is the universal installer. If you don't already use a package
management system for your development tools, you should use the installer. If
you use Homebrew or MacPorts to manage your system and would like to install
Node through those, follow the instructions for your package manager instead.

If for some reason none of these methods work for you, see the Compiling
Node.js manually section. However, this is more difficult and not
recommended unless you really need it.

Using the installer
The Node project provides a universal installer for Mac OS X. Visit
http://nodejs.org/download/, and look for Macintosh Installer.

Chapter 1

[9]

Download that file and double-click on it. Follow the prompts to install Node on
your system.

Using Homebrew
Homebrew is a popular package management system for OS X. It maintains installed
packages in a completely separate directory from the OS X system files, and offers
easy package management from the command line. Homebrew offers an easy-to-use
formula system to create new package definitions, and as a result offers a very large
collection of user-contributed recipes.

Early versions of the Node package on Homebrew suffered from
numerous bugs. Recent versions have received far fewer complaints
and should be acceptable for our needs. Still, if you encounter
serious problems using Node from Homebrew, consider uninstalling
it and using the universal installer instead.

Running a CoffeeScript Program

[10]

To install Node using Homebrew, simply use the command-line installer as follows:

brew install node

For help with Homebrew, visit the official site at
http://mxcl.github.com/homebrew/.

Using Macports
MacPorts is another package management system for OS X. Like Homebrew, it
maintains installed packages separately from the OS X system files. MacPorts is an
older project, and is modeled on the BSD ports system. While it has been waning in
popularity in recent years, it still has a large user base.

To install Node using MacPorts, simply use the command-line installer as follows:

sudo port install nodejs

For help with MacPorts, visit the official site at
https://www.macports.org/.

Installing Node.js on Windows
There are several convenient installation options for Node on Windows. The method
recommended for most people is to use the installer. If you cannot install software on
your machine, or for other reasons wish to isolate Node, you can use the standalone
executable instead. Finally, if you are already using the third-party package manager
Chocolatey to manage packages on your machine, you may install Node through
that system.

Chapter 1

[11]

Using the installer
The Node project provides an install file for Windows systems. Visit http://nodejs.
org/download/, and look for Windows Installer:

Download that file and double-click on it. Follow the prompts to install Node on
your system.

