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Preface
If you are a developer building an application today, then you know how important 
a good search experience is. Apache Solr, built on Apache Lucene, is a wildly popular 
open source enterprise search server that easily delivers the powerful search and 
faceted navigation features that are elusive with databases. Solr supports complex 
search criteria, faceting, result highlighting, query-completion, query spellcheck, 
relevancy tuning, and more.

Apache Solr Enterprise Search Server, Third Edition is a comprehensive resource to almost 
everything Solr has to offer. It serves the reader right from initiation to development to 
deployment. It also comes with complete running examples to demonstrate its use and 
show how to integrate Solr with other languages and frameworks—even Hadoop.

By using a large set of metadata, including artists, releases, and tracks, courtesy of 
the MusicBrainz.org project, you will have a testing ground for Solr and will learn 
how to import this data in various ways. You will then learn how to search this data 
in different ways, including Solr's rich query syntax and boosting match scores based 
on record data. Finally, we'll cover various deployment considerations to include 
indexing strategies and performance-oriented configuration that will enable you to 
scale Solr to meet the needs of a high-volume site.

Solr 4 or Solr 5?
See the What you need for this book section further below.

What this book covers
Chapter 1, Quick Starting Solr, introduces Solr to you so that you understand its unique 
role in your application stack. You'll get started quickly by indexing example data and 
searching it with Solr's sample / browse UI. This chapter is oriented to Solr 5, but the 
majority of content applies to Solr 4 too.
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Chapter 2, Schema Design, guides you through an approach to modeling your 
data within Solr into one or more Solr indices and schemas. It covers the schema 
thoroughly and explores some of Solr's field types.

Chapter 3, Text Analysis, covers how to customize text tokenization, stemming, 
synonyms, and related matters to have fine control over keyword search matching.  
It also covers multilingual strategies.

Chapter 4, Indexing Data, explores all of the options Solr offers for importing data, such 
as XML, CSV, databases (SQL), and text extraction from common documents. This 
includes important information on commits, atomic updates, and real-time search.

Chapter 5, Searching, covers the query syntax, from the basics to Boolean options to 
more advanced wildcard and fuzzy searches, join queries, and geospatial search.

Chapter 6, Search Relevancy, explains how Solr scores documents for relevancy ranking. 
We'll review different options to influence the score, called boosting, and apply it to 
common examples such as boosting recent documents and boosting by a user vote.

Chapter 7, Faceting, shows you how to use Solr's killer feature—faceting. You'll 
learn about the different types of facets and how to build filter queries for a faceted 
navigation interface.

Chapter 8, Search Components, explores how to use a variety of valuable search 
features implemented as Solr search components. This includes result highlighting, 
query spellcheck, query suggest / complete, result grouping / collapsing, and more.

Chapter 9, Integrating Solr, explores some external integration options to interface 
with Solr. This includes some language-specific frameworks for Java, JavaScript, 
Ruby, and PHP, as well as a web crawler, Hadoop, a quick prototyping option,  
and more.

Chapter 10, Scaling Solr, covers how to tune Solr to get the most out of it. Then we'll 
introduce how to scale beyond one instance with SolrCloud.

Chapter 11, Deployment, guides you through deployment considerations to include 
deploying Solr to Apache Tomcat, to logging, and to security, and setting up Apache 
ZooKeeper.

Appendix, Quick Reference, serves as a small parameter quick-reference guide you can 
print to have within reach when you need it.
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What you need for this book
The Getting started section in Chapter 1, Quick Starting Solr, explains what you need in 
detail. In summary, you should obtain:

•	 Java 8, a JDK release. Java 7 is fine too. Support for Java 6 was last available 
in Solr 4.7. More information on this is in Chapter 1, Quick Starting Solr.

•	 Apache Solr 4.8.1 is officially the version of Solr this book was written for. 
Nonetheless, some of the features are discussed or referenced in the later 
versions of Solr as far as 5.0. In fact, Chapter 1, Quick Starting Solr, orients 
you to Solr 5, which has a different first-impression experience than its 
predecessor. Once you get Solr running, you should be able to follow along 
easily with Solr 5. In Chapter 10, Scaling Solr, there are some SolrCloud startup 
commands that are a little different, and we've pointed out how they change. 
The only substantial topic not covered in this book that evolved through the 
Solr 4 point releases is data-driven schemaless mode, and HTTP API calls to 
make schema changes.

•	 The code supplement to the book. It's not essential, but you'll want it to try 
some of the examples or to experiment with a sizable amount of real data. 
See the Downloading the example code section.

Who this book is for
This book is primarily for developers who want to learn how to use Apache Solr in 
their applications. Only basic programming skills are assumed, although the vast 
majority of content should be useful to those with a solid technical foundation that 
have not yet programmed.

Conventions
In this book, you will find a number of styles of text that distinguish between 
different kinds of information. Here are some examples of these styles, and an 
explanation of their meaning.

Code words in text, database table names, folder names, filenames, file extensions, 
pathnames, dummy URLs, user input, and Twitter handles are shown as follows: 
"Typing java –version at a command line will tell you exactly which version of 
Java you are using, if any."

A block of code is set as follows:

"responseHeader": {
    "status": 0,
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    "QTime": 1,
    "params": {
      "q": "lcd",
      "indent": "true",
      "wt": "json"
    }
  }
…

When we wish to draw your attention to a particular part of a code block, the relevant 
lines or items are set in bold:

{
        "id": "9885A004",
        "name": "Canon PowerShot SD500",
        "manu": "Canon Inc.",
        "manu_id_s": "canon",
        "cat": [
          "electronics",
          "camera"
        ],
        "features": [
          "3x zoop, 7.1 megapixel Digital ELPH",
          "movie clips up to 640x480 @30 fps",
          "2.0\" TFT LCD, 118,000 pixels",
          "built in flash, red-eye reduction"
        ],
        "includes": "32MB SD card, USB cable, AV cable, battery",
        "weight": 6.4,
        "price": 329.95,
        "price_c": "329.95,USD",
        "popularity": 7,
        "inStock": true,
        "manufacturedate_dt": "2006-02-13T15:26:37Z",
        "store": "45.19614,-93.90341",
        "_version_": 1500358264225792000
      },
...

Any command-line input or output is written as follows:

>> cd example/exampledocs
>> java –Dc=techproducts -jar post.jar *.xml
SimplePostTool version 5.0.0
Posting files to [base] url  
http://localhost:8983/solr/techproducts/update using  
content-type application/xml...
POSTing file gb18030-example.xml



Preface

[ xv ]

POSTing file hd.xml
etc.
14 files indexed.
COMMITting Solr index changes to http://localhost:8983/solr/techproducts/
update...

New terms and important words are shown in bold. Words that you see on  
the screen, in menus or dialog boxes for example, appear in the text like this:  
"Click on the Core Selector drop-down menu and select the techproducts link."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about 
this book—what you liked or may have disliked. Reader feedback is important for  
us to develop titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com, 
and mention the book title via the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing 
or contributing to a book, see our author guide on www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to 
help you to get the most from your purchase.

Downloading the example code
You can download the example code files for all Packt books you have purchased 
from your account at http://www.packtpub.com. If you purchased this book 
elsewhere, you can visit http://www.packtpub.com/support and register to have 
the files e-mailed directly to you.

www.packtpub.com/authors
http://www.packtpub.com
http://www.packtpub.com/support
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A copy of the code bundle and possibly other information will also be available at 
http://www.solrenterprisesearchserver.com.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes do 
happen. If you find a mistake in one of our books—maybe a mistake in the text or the 
code—we would be grateful if you could report this to us. By doing so, you can save 
other readers from frustration and help us improve subsequent versions of this book. 
If you find any errata, please report them by visiting http://www.packtpub.com/
submit-errata, selecting your book, clicking on the Errata Submission Form link, 
and entering the details of your errata. Once your errata are verified, your submission 
will be accepted and the errata will be uploaded to our website or added to any list of 
existing errata under the Errata section of that title.

To view the previously submitted errata, go to https://www.packtpub.com/books/
content/support and enter the name of the book in the search field. The required 
information will appear under the Errata section.

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media. 
At Packt, we take the protection of our copyright and licenses very seriously. If you 
come across any illegal copies of our works, in any form, on the Internet, please 
provide us with the location address or website name immediately so that we can 
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected  
pirated material.

We appreciate your help in protecting our authors, and our ability to bring you 
valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with 
any aspect of the book, and we will do our best to address it.

http://www.solrenterprisesearchserver.com
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
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Quick Starting Solr
Welcome to Solr! You've made an excellent choice to power your search needs.  
In this chapter, we're going to cover the following topics:

•	 An overview of what Solr and Lucene are all about
•	 What makes Solr different from databases?
•	 How to get Solr, what's included, and what is where?
•	 Running Solr and importing sample data
•	 A quick tour of the admin interface and key configuration files
•	 A brief guide on how to get started quickly

An introduction to Solr
Solr is an open source enterprise search server. It is a mature product powering 
search for public sites such as CNET, Yelp, Zappos, and Netflix, as well as countless 
other government and corporate intranet sites. It is written in Java, and that language 
is used to further extend and modify Solr through various extension points. 
However, being a server that communicates using standards such as HTTP, XML, 
and JSON, knowledge of Java is useful but not a requirement. In addition to the 
standard ability to return a list of search results based on a full text search, Solr has 
numerous other features such as result highlighting, faceted navigation (as seen on 
most e-commerce sites), query spellcheck, query completion, and a "more-like-this" 
feature for finding similar documents.
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You will see many references in this book to the term faceting, also 
known as faceted navigation. It's a killer feature of Solr that most 
people have experienced at major e-commerce sites without realizing it. 
Faceting enhances search results with aggregated information over all 
of the documents found in the search. Faceting information is typically 
used as dynamic navigational filters, such as a product category, date 
and price groupings, and so on. Faceting can also be used to power 
analytics. Chapter 7, Faceting, is dedicated to this technology.

Lucene – the underlying engine
Before describing Solr, it is best to start with Apache Lucene, the core technology 
underlying it. Lucene is an open source, high-performance text search engine library. 
Lucene was developed and open sourced by Doug Cutting in 2000 and has evolved 
and matured since then with a strong online community. It is the most widely 
deployed search technology today. Being just a code library, Lucene is not a server 
and certainly isn't a web crawler either. This is an important fact. There aren't even 
any configuration files.

In order to use Lucene, you write your own search code using its API, starting with 
indexing documents that you supply to it. A document in Lucene is merely a collection 
of fields, which are name-value pairs containing text or numbers. You configure 
Lucene with a text analyzer that will tokenize a field's text from a single string into a 
series of tokens (words) and further transform them by reducing them to their stems, 
called stemming, substitute synonyms, and/or perform other processing. The final 
indexed tokens are said to be the terms. The aforementioned process starting with the 
analyzer is referred to as text analysis. Lucene indexes each document into its index 
stored on a disk. The index is an inverted index, which means it stores a mapping of  
a field's terms to associated documents, along with the ordinal word position from the 
original text. Finally, you search for documents with a user-provided query string that 
Lucene parses according to its syntax. Lucene assigns a numeric relevancy score to 
each matching document and only the top scoring documents are returned.

This brief description of Lucene internals is what makes Solr work at 
its core. You will see these important vocabulary words throughout 
this book—they will be explained further at appropriate times.
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Lucene's major features are:

•	 An inverted index for efficient retrieval of documents by indexed terms.  
The same technology supports numeric data with range- and time-based 
queries too.

•	 A rich set of chainable text analysis components, such as tokenizers and 
language-specific stemmers that transform a text string into a series of  
terms (words).

•	 A query syntax with a parser and a variety of query types, from a simple  
term lookup to exotic fuzzy matching.

•	 A good scoring algorithm based on sound Information Retrieval (IR) 
principles to produce the best matches first, with flexible means to affect  
the scoring.

•	 Search enhancing features. There are many, but here are some notable ones:

°° A highlighter feature to show matching query terms found in context.
°° A query spellchecker based on indexed content or a  

supplied dictionary.
°° Multiple suggesters for completing query strings.
°° Analysis components for various languages, faceting, spatial-search, 

and grouping and joining queries too.

To learn more about Lucene, read Lucene In Action, 
Second Edition, Michael McCandless, Erik Hatcher, and 
Otis Gospodneti, Manning Publications.

Solr – a Lucene-based search server
Apache Solr is an enterprise search server that is based on Lucene. Lucene is such 
a big part of what defines Solr that you'll see many references to Lucene directly 
throughout this book. Developing a high-performance, feature-rich application 
that uses Lucene directly is difficult and it's limited to Java applications. Solr solves 
this by exposing the wealth of power in Lucene via configuration files and HTTP 
parameters, while adding some features of its own. Some of Solr's most notable 
features beyond Lucene are as follows:

•	 A server that communicates over HTTP via multiple formats, including XML 
and JSON

•	 Configuration files, most notably for the index's schema, which defines the 
fields and configuration of their text analysis
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•	 Several types of caches for faster search responses
•	 A web-based administrative interface, including the following:

°° Runtime search and cache performance statistics
°° A schema browser with index statistics on each field
°° A diagnostic tool for debugging text analysis
°° Support for dynamic core (indices) administration

•	 Faceting of search results (note: distinct from Lucene's faceting)
•	 A query parser called eDisMax that is more usable for parsing end user 

queries than Lucene's native query parser
•	 Distributed search support, index replication, and fail-over for scaling Solr
•	 Cluster configuration and coordination using ZooKeeper
•	 Solritas—a sample generic web search UI for prototyping and demonstrating 

many of Solr's search features

Also, there are two contrib modules that ship with Solr that really stand out, which 
are as follows:

•	 DataImportHandler (DIH): A database, e-mail, and file crawling data import 
capability. It includes a debugger tool.

•	 Solr Cell: An adapter to the Apache Tika open source project, which can 
extract text from numerous file types.

As of the 3.1 release, there is a tight relationship between the Solr and Lucene projects. 
The source code repository, committers, and developer mailing list are the same, and 
they are released together using the same version number. Since Solr is always based 
on the latest version of Lucene, most improvements in Lucene are available in Solr 
immediately.

Comparison to database technology
There's a good chance that you are unfamiliar with Lucene or Solr and you might  
be wondering what the fundamental differences are between it and a database.  
You might also wonder if you use Solr, do you need a database.

The most important comparison to make is with respect to the data model—the 
organizational structure of the data. The most popular category of databases is 
relational databases—RDBMS. A defining characteristic of relational databases is 
a data model, based on multiple tables with lookup keys between them and a join 
capability for querying across them. That approach has proven to be versatile,  
being able to satisfy nearly any information-retrieval task in one query.
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However, it is hard and expensive to scale them to meet the requirements of a typical 
search application consisting of many millions of documents and low-latency response. 
Instead, Lucene has a much more limiting document-oriented data model, which is 
analogous to a single table. Document-oriented databases such as MongoDB are similar 
in this respect, but their documents can be nested, similar to XML or JSON. Lucene's 
document structure is flat like a table, but it does support multivalued fields—a field 
with an array of values. It can also be very sparse such that the actual fields used from 
one document to the next vary; there is no space or penalty for a document to not use  
a field.

Lucene and Solr have limited support for join queries, but they are 
used sparingly as it significantly reduces the scalability characteristics 
of Lucene and Solr.

Taking a look at the Solr feature list naturally reveals plenty of search-oriented 
technology that databases generally either don't have, or don't do well. The notable 
features are relevancy score ordering, result highlighting, query spellcheck, and 
query-completion. These features are what drew you to Solr, no doubt. And let's not 
forget faceting. This is possible with a database, but it's hard to figure out how, and it's 
difficult to scale. Solr, on the other hand, makes it incredibly easy, and it does scale.

Can Solr be a substitute for your database? You can add data to it and get it back out 
efficiently with indexes; so on the surface, it seems plausible. The answer is that you 
are almost always better off using Solr in addition to a database. Databases, particularly 
RDBMSes, generally excel at ACID transactions, insert/update efficiency, in-place 
schema changes, multiuser access control, bulk data retrieval, and they have second-
to-none integration with application software stacks and reporting tools. And let's 
not forget that they have a versatile data model. Solr falls short in these areas.

For more on this subject, see our article, Text Search, your Database or Solr, 
at http://bit.ly/uwF1ps, which although it's slightly outdated now, 
is a clear and useful explanation of the issues. If you want to use Solr as 
a document-oriented or key-value NoSQL database, Chapter 4, Indexing 
Data, will tell you how and when it's appropriate.

http://bit.ly/uwF1ps
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A few differences between Solr 4 and 
Solr 5
The biggest change that users will see in Solr 5 from Solr 4 is that Solr is now 
deployed as its own server process. It is no longer a WAR file that is deployed  
into an existing Servlet container such as Tomcat or Jetty. The argument for this 
boiled down to "you don't deploy your MySQL database in a Servlet container; 
neither should you deploy your Search engine". By owning the network stack  
and deployment model, Solr can evolve faster; for example, there are patches  
for adding HTTP/2 support and pluggable authentication mechanisms being 
worked on. While internally Solr is still using Jetty, that should be considered  
an implementation detail. That said, if you really want a WAR file version, and 
you're familiar with Java and previous Solr releases, you can probably figure out 
how to build one.

As part of Solr 5 being it's own server process, it includes a set of scripts for starting, 
stopping, and managing Solr collections, as well as running as a service on Linux.

The next most obvious difference is that the distribution directory structure is 
different, particularly related to the old example and new server directory.

The rest of this chapter refers to Solr 5, however the remainder 
of the book was updated for Solr 4, and applies to Solr 5.

Getting started
We will get started by downloading Solr, examining its directory structure, and then 
finally run it.

This will set you up for the next section, which tours a running Solr 5 server.

1.	 Get Solr: You can download Solr from its website http://lucene.apache.
org/solr/. This book assumes that you downloaded one of the binary 
releases (not the src (source) based distribution). In general, we recommend 
using the latest release since Solr and Lucene's code are extensively tested. 
For downloadable example source code, and book errata describing how 
future Solr releases affect the book content, visit our website http://www.
solrenterprisesearchserver.com/.

http://lucene.apache.org/solr/
http://lucene.apache.org/solr/
http://www.solrenterprisesearchserver.com/
http://www.solrenterprisesearchserver.com/
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2.	 Get Java: The only prerequisite software needed to run Solr is Java 7  
(that is, Java Version 1.7). But the latest version is Java 8, and you should  
use that. Typing java –version at a command line will tell you exactly 
which version of Java you are using, if any.
Java is available on all major platforms, including Windows, Solaris, Linux, 
and Mac OS X. Visit http://www.java.com to download the distribution for 
your platform. Java always comes with the Java Runtime Environment (JRE) 
and that's all Solr requires. The Java Development Kit (JDK) includes the 
JRE plus the Java compiler and various diagnostic utility programs. One such 
useful program is JConsole, which we'll discuss in Chapter 11, Deployment, 
and Chapter 10, Scaling Solr and so the JDK distribution is recommended.

Solr is a Java-based web application, but you don't need to 
be particularly familiar with Java in order to use it. This book 
assumes no such knowledge on your part.

3.	 Get the book supplement: This book includes a code supplement available at 
our website http://www.solrenterprisesearchserver.com/; you can also 
find it on Packt Publishing's website at http://www.packtpub.com/books/
content/support. The software includes a Solr installation configured for 
data from MusicBrainz.org, a script to download, and indexes that data into 
Solr—about 8 million documents in total, and of course various sample code 
and material organized by chapter. This supplement is not required to follow 
any of the material in the book. It will be useful if you want to experiment with 
searches using the same data used for the book's searches or if you want to 
see the code referenced in a chapter. The majority of the code is for Chapter 9, 
Integrating Solr.

Solr's installation directory structure
When you unzip Solr after downloading it, you should find a relatively 
straightforward directory structure (differences between Solr 4 and 5 are  
briefly explained here):

•	 contrib: The Solr contrib modules are extensions to Solr:
°° analysis-extras: This directory includes a few text analysis 

components that have large dependencies. There are some 
International Components for Unicode (ICU) unicode classes for 
multilingual support—a Chinese stemmer and a Polish stemmer. 
You'll learn more about text analysis in the next chapter.

http://www.java.com
http://www.solrenterprisesearchserver.com
http://www.packtpub.com/books/content/support
http://www.packtpub.com/books/content/support
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°° clustering: This directory will have an engine for clustering search 
results. There is a one-page overview in Chapter 8, Search Components.

°° dataimporthandler: The DataImportHandler (DIH) is a very 
popular contrib module that imports data into Solr from a  
database and some other sources. See Chapter 4, Indexing Data.

°° extraction: Integration with Apache Tika—a framework for 
extracting text from common file formats. This module is also called 
SolrCell and Tika is also used by the DIH's TikaEntityProcessor—
both are discussed in Chapter 4, Indexing Data.

°° langid: This directory contains a contrib module that provides  
the ability to detect the language of a document before it's indexed. 
More information can be found on the Solr's Language Detection wiki 
page at http://wiki.apache.org/solr/LanguageDetection.

°° map-reduce: This directory has utilities for working with Solr from 
Hadoop Map-Reduce. This is discussed in Chapter 9, Integrating Solr.

°° morphlines-core: This directory contains Kite Morphlines,  
a document ingestion framework that has support for Solr.  
The morphlines-cell directory has components related to text 
extraction. Morphlines is mentioned in Chapter 9, Integrating Solr.

°° uima: This directory contains library for Integration with Apache 
UIMA—a framework for extracting metadata out of text. There are 
modules that identify proper names in text and identify the language, 
for example. To learn more, see Solr's UIMA integration wiki at 
http://wiki.apache.org/solr/SolrUIMA.

°° velocity: This directory will have a simple search UI framework 
based on the Velocity templating language. See Chapter 9, Integrating 
Solr.

•	 dist: In this directory, you will see Solr's core and contrib JAR files. In 
previous Solr versions, the WAR file was found here as well. The core JAR 
file is what you would use if you're embedding Solr within an application. 
The Solr test framework JAR and /test-framework directory contain the 
libraries needed in testing Solr extensions. The SolrJ JAR and /solrj-lib  
are what you need to build Java based clients for Solr.

•	 docs: This directory contains documentation and "Javadocs" for the related 
assets for the public Solr website, a quick tutorial, and of course Solr's API.

http://wiki.apache.org/solr/LanguageDetection
http://wiki.apache.org/solr/SolrUIMA
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If you are looking for documentation outside of this book, 
you are best served by the Solr Reference Guide. The docs 
directory isn't very useful.

•	 example: Pre Solr 5, this was the complete Solr server, meant to be  
an example layout for deployment. It included the Jetty servlet engine  
(a Java web server), Solr, some sample data and sample Solr configurations. 
With the introduction of Solr 5, only the example-DIH and exampledocs are 
kept, the rest was moved to a new server directory.

°° example/example-DIH: These are DataImportHandler configuration 
files for the example Solr setup. If you plan on importing with DIH, 
some of these files may serve as good starting points.

°° example/exampledocs: These are sample documents to be indexed 
into the default Solr configuration, along with the post.jar program 
for sending the documents to Solr.

•	 server: The files required to run Solr as a server process are located here. 
The interesting child directories are as follows:

°° server/contexts: This is Jetty's WebApp configuration for the  
Solr setup.

°° server/etc: This is Jetty's configuration. Among other things, here 
you can change the web port used from the presupplied 8983 to 80 
(HTTP default).

°° server/logs: Logs are by default output here. Introduced in Solr 5 
was collecting JVM metrics, which are output to solr_gc.log.  
When you are trying to size your Solr setup they are a good source  
of information.

°° server/resources: The configuration file for Log4j lives here. Edit 
it to change the behavior of the Solr logging, (though you can also 
changes levels of debugging at runtime through the Admin console).

°° server/solr: The configuration files for running Solr are stored 
here. The solr.xml file, which provides overall configuration of  
Solr lives here, as well as zoo.cfg which is required by SolrCloud. 
The subdirectory /configsets stores example configurations that 
ship with Solr.

°° example/webapps: This is where Jetty expects to deploy Solr from.  
A copy of Solr's WAR file is here, which contains Solr's compiled 
code and all the dependent JAR files needed to run it.

°° example/solr-webapp: This is where Jetty deploys the unpacked 
WAR file.
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Running Solr
Solr ships with a number of example collection configurations. We're going to  
run one called techproducts. This example will create a collection and insert some 
sample data.

The addition of scripts for running Solr is one of the best 
enhancements in Solr 5. Previously, to start Solr, you directly 
invoked Java via java –jar start.jar. Deploying to 
production meant figuring out how to migrate into an existing 
Servlet environment, and was the source of much frustration.

First, go to the bin directory, and then run the main Solr command. On Windows, 
it will be solr.cmd, on *nix systems it will be just solr. Jetty's start.jar file by 
typing the following command:

>>cd bin
>>./solr start –e techproducts

The >> notation is the command prompt and is not part of the command. You'll see a 
few lines of output as Solr is started, and then the techproducts collection is created 
via an API call. Then the sample data is loaded into Solr. When it's done, you'll be 
directed to the Solr admin at http://localhost:8983/solr.

To stop Solr, use the same Solr command script:

>>./solr stop

A quick tour of Solr
Point your browser to Solr's administrative interface at http://localhost:8983/. 
The admin site is a single-page application that provides access to some of the more 
important aspects of a running Solr instance.

The administrative interface is currently being completely 
revamped, and the below interface may be deprecated.
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This tour will help you get your bearings in navigating around Solr.

In the preceding screenshot, the navigation is on the left while the main content is on 
the right. The left navigation is present on every page of the admin site and is divided 
into two sections. The primary section contains choices related to higher-level Solr and 
Java features, while the secondary section lists all of the running Solr cores.

The default page for the admin site is Dashboard. This gives you a snapshot  
of some basic configuration settings and stats, for Solr, the JVM, and the server.  
The Dashboard page is divided into the following subareas:

•	 Instance: This area displays when Solr started.
•	 Versions: This area displays various Lucene and Solr version numbers.
•	 JVM: This area displays the Java implementation, version, and processor 

count. The various Java system properties are also listed here.
•	 System: This area displays the overview of memory settings and usage;  

this is essential information for debugging and optimizing memory settings.
•	 JVM-Memory: This meter shows the allocation of JVM memory, and is  

key to understanding if garbage collection is happening properly. If the  
dark gray band occupies the entire meter, you will see all sorts of memory 
related exceptions!
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The rest of the primary navigation choices include the following:

•	 Logging: This page is a real-time view of logging, showing the time, level, 
logger, and message. This section also allows you to adjust the logging levels 
for different parts of Solr at runtime. For Jetty, as we're running it, this output 
goes to the console and nowhere else. See Chapter 11, Deployment, for more 
information on configuring logging.

•	 Core Admin: This section is for information and controls for managing  
Solr cores. Here, you can unload, reload, rename, swap, and optimize the 
selected core. There is also an option for adding a new core.

•	 Java Properties: This lists Java system properties, which are basically  
Java-oriented global environment variables. Including the command  
used to start the Solr Java process.

•	 Thread Dump: This displays a Java thread dump, useful for experienced 
Java developers in diagnosing problems.

Below the primary navigation is a list of running Solr cores. Click on the Core Selector 
drop-down menu and select the techproducts link. You should see something very 
similar to the following screenshot:

The default page labeled Overview for each core shows core statistics, information 
about replication, an Admin Extra area. Some other options such as details about 
Healthcheck are grayed out and made visible if the feature is enabled.
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You probably noticed the subchoice menu that appeared below techproducts. Here 
is an overview of what those subchoices provide:

•	 Analysis: This is used for diagnosing query and indexing problems related  
to text analysis. This is an advanced screen and will be discussed later.

•	 Data Import: Provides information about the DataImport handler (the DIH). 
Like replication, it is only useful when DIH is enabled. The DataImport 
handler will be discussed in more detail in Chapter 4, Indexing Data.

•	 Documents: Provides a simple interface for creating a document to index 
into Solr via the browser. This includes a Document Builder that walks you 
through adding individual fields of data.

•	 Files: Exposes all the files that make up the core's configuration. Everything 
from core files such as schema.xml and solrconfig.xml to stopwords.txt.

•	 Ping: Clicking on this sends a ping request to Solr, displaying the latency. 
The primary purpose of the ping response is to provide a health status to 
other services, such as a load balancer. The ping response is a formatted 
status document and it is designed to fail if Solr can't perform a search  
query that you provide.

•	 Plugins / Stats: Here you will find statistics such as timing and cache  
hit ratios. In Chapter 10, Scaling Solr, we will visit this screen to evaluate  
Solr's performance.

•	 Query: This brings you to a search form with many options. With or without 
this search form, you will soon end up directly manipulating the URL using 
this book as a reference. There's no data in Solr yet, so there's no point in 
using the form right now.

•	 Replication: This contains index replication status information, and  
the controls for disabling. It is only useful when replication is enabled.  
More information on this is available in Chapter 10, Scaling Solr.

•	 Schema Browser: This is an analytical view of the schema that reflects various 
statistics of the actual data in the index. We'll come back to this later.

•	 Segments Info: Segments are the underlying files that make up the Lucene 
data structure. As you index information, they expand and compress.  
This allows you to monitor them, and was newly added to Solr 5.

You can partially customize the admin view by editing a few 
templates that are provided. The template filenames are prefixed 
with admin-extra, and are located in the conf directory.
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Loading sample data
Solr comes with some sample data found at example/exampledocs. We saw  
this data loaded as part of creating the techproducts Solr core when we started Solr. 
We're going to use that for the remainder of this chapter so that we can explore  
Solr more, without getting into schema design and deeper data loading options.  
For the rest of the book, we'll base the examples on the digital supplement to the 
book—more on that later.

We're going to re-index the example data by using the post.jar Java program, 
officially called SimplePostTool. Most JAR files aren't executable, but this one 
is. This simple program takes a Java system variable to specify the collection: 
-Dc=techproducts, iterates over a list of Solr-formatted XML input files, and  
HTTP posts it to Solr running on the current machine —http://localhost:8983/
solr/techproducts/update. Finally, it will send a commit command, which  
will cause documents that were posted prior to the commit to be saved and made 
visible. Obviously, Solr must be running for this to work. Here is the command  
and its output:

>> cd example/exampledocs
>> java –Dc=techproducts -jar post.jar *.xml
SimplePostTool version 5.0.0
Posting files to [base] url http://localhost:8983/solr/techproducts/
update using  
content-type application/xml...
POSTing file gb18030-example.xml
POSTing file hd.xml
etc.
14 files indexed.
COMMITting Solr index changes to http://localhost:8983/solr/techproducts/
update...

If you are using a Unix-like environment, you have an alternate option of using the  
/bin/post shell script, which wraps the SimplePostTool.

The post.sh and post.jar programs could be used 
in a production scenario, but they are intended just as a 
demonstration of the technology with the example data.
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Let's take a look at one of these XML files we just posted to Solr, monitor.xml:

<add>
  <doc>
    <field name="id">3007WFP</field>
    <field name="name">Dell Widescreen UltraSharp 3007WFP</field>
    <field name="manu">Dell, Inc.</field>
    <!-- Join -->
    <field name="manu_id_s">dell</field>
    <field name="cat">electronics</field>
    <field name="cat">monitor</field>
    <field name="features">30" TFT active matrix LCD, 2560 x 1600,  
    .25mm dot pitch, 700:1 contrast</field>
    <field name="includes">USB cable</field>
    <field name="weight">401.6</field>
    <field name="price">2199</field>
    <field name="popularity">6</field>
    <field name="inStock">true</field>
    <!-- Buffalo store -->
    <field name="store">43.17614,-90.57341</field>
  </doc>
</add>

The XML schema for files that can be posted to Solr is very simple. This file doesn't 
demonstrate all of the elements and attributes, but it shows the essentials. Multiple 
documents, represented by the <doc> tag, can be present in series within the <add> 
tag, which is recommended for bulk data loading scenarios. This subset may very 
well be all that you use. More about these options and other data loading choices  
will be discussed in Chapter 4, Indexing Data.

A simple query
Point your browser to http://localhost:8983/solr/#/techproducts/query—
this is the query form described in the previous section. The search box is labeled q. 
This form is a standard HTML form, albeit enhanced by JavaScript. When the form is 
submitted, the form inputs become URL parameters to an HTTP GET request to Solr. 
That URL and Solr's search response is displayed to the right. It is convenient to use 
the form as a starting point for developing a search, but then subsequently refine the 
URL directly in the browser instead of returning to the form.
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Run a query by replacing the *:* in the q field with the word lcd, then clicking on 
the Execute Query button. At the top of the main content area, you will see a URL 
like this http://localhost:8983/solr/techproducts/select?q=monitor&wt=j
son&indent=true. The URL specifies that you want to query for the word lcd, and 
that the output should be in indented JSON format.

Below this URL, you will see the search result; this result is the response of that URL.

By default, Solr responds in XML, however the query interface specifies JSON by 
default. Most modern browsers, such as Firefox, provide a good JSON view with 
syntax coloring and hierarchical controls. All response formats have the same basic 
structure as the JSON you're about to see. More information on these formats can be 
found in Chapter 4, Indexing Data.

The JSON response consists of a two main elements: responseHeader and response. 
Here is what the header element looks like:

"responseHeader": {
    "status": 0,
    "QTime": 1,
    "params": {
      "q": "lcd",
      "indent": "true",
      "wt": "json"
    }
  }
…

The following are the elements from the preceding code snippet:

•	 status: This is always zero, unless there was a serious problem.
•	 QTime: This is the duration of time in milliseconds that Solr took to process 

the search. It does not include streaming back the response. Due to multiple 
layers of caching, you will find that your searches will often complete in a 
millisecond or less if you've run the query before.

•	 params: This lists the request parameters. By default, it only lists parameters 
explicitly in the URL; there are usually more parameters specified in a 
<requestHandler/> in solrconfig.xml. You can see all of the applied 
parameters in the response by setting the echoParams parameter to true.

More information on these parameters and many more is 
available in Chapter 5, Searching.

http://localhost:8983/solr/techproducts/select?q=monitor&wt=json&indent=true
http://localhost:8983/solr/techproducts/select?q=monitor&wt=json&indent=true
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Next up is the most important part, the results:

"response": {
    "numFound": 5,
    "start": 0,

The numFound value is the number of documents matching the query in the entire 
index. The start parameter is the index offset into those matching (ordered) 
documents that are returned in the response below.

Often, you'll want to see the score of each matching document. The document score 
is a number that represents how relevant the document is to the search query. This 
search response doesn't refer to scores because it needs to be explicitly requested in 
the fl parameter—a comma-separated field list. A search that requests the score via 
fl=*,score will have a maxScore attribute in the "response" element, which is the 
maximum score of all documents that matched the search. It's independent of the 
sort order or result paging parameters.

The content of the result element is a list of documents that matched the query. The 
default sort is by descending score. Later, we'll do some sorting by specified fields.

{
        "id": "9885A004",
        "name": "Canon PowerShot SD500",
        "manu": "Canon Inc.",
        "manu_id_s": "canon",
        "cat": [
          "electronics",
          "camera"
        ],
        "features": [
          "3x zoop, 7.1 megapixel Digital ELPH",
          "movie clips up to 640x480 @30 fps",
          "2.0\" TFT LCD, 118,000 pixels",
          "built in flash, red-eye reduction"
        ],
        "includes": "32MB SD card, USB cable, AV cable, battery",
        "weight": 6.4,
        "price": 329.95,
        "price_c": "329.95,USD",
        "popularity": 7,
        "inStock": true,
        "manufacturedate_dt": "2006-02-13T15:26:37Z",
        "store": "45.19614,-93.90341",
        "_version_": 1500358264225792000
      },
...


