

Apache Solr Enterprise
Search Server
Third Edition

Enhance your searches with faceted navigation, result
highlighting, relevancy-ranked sorting, and much more
with this comprehensive guide to Apache Solr 4

David Smiley
Eric Pugh
Kranti Parisa
Matt Mitchell

BIRMINGHAM - MUMBAI

Apache Solr Enterprise Search Server
Third Edition

Copyright © 2015 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the authors, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: August 2009
Second edition: November 2011
Third edition: May 2015

Production reference: 1200515

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78216-136-3

www.packtpub.com

Cover image by Sylvia Smiley (sylvie.zajac@gmail.com)

www.packtpub.com

Credits

Authors
David Smiley

Eric Pugh

Kranti Parisa

Matt Mitchell

Reviewers
Edd Grant

Aamir Hussain

Dmitry Kan

Acquisition Editors
Nikhil Karkal

Rebecca Youé

Content Development Editor
Shubhangi Dhamgaye

Technical Editor
Pankaj Kadam

Copy Editors
Puja Lalwani

Laxmi Subramanian

Project Coordinator
Harshal Ved

Proofreaders
Stephen Copestake

Safis Editing

Indexer
Tejal Soni

Graphics
Jason Monteiro

Production Coordinator
Manu Joseph

Cover Work
Manu Joseph

About the Authors

Born to code, David Smiley is a software engineer who's passionate about search,
Lucene, spatial, and open source. He has a great deal of expertise with Lucene and
Solr, which started in 2008 at MITRE. In 2009, as the lead author, along with the
coauthor Eric Pugh, he wrote Solr 1.4 Enterprise Search Server, the first book on Solr,
published by Packt Publishing. It was updated in 2011, Apache Solr 3 Enterprise Search
Server, Packt Publishing, and again for this third edition.

After the first book, he developed 1- and 2-day Solr training courses, delivered half a
dozen times within MITRE, and he has also delivered training on LucidWorks once.
Most of his excitement and energy relating to Lucene is centered on Lucene's spatial
module to include Spatial4j, which he is largely responsible for. He has presented
his progress on this at Lucene Revolution and other conferences several times. He
currently holds the status of committer & Project Management Committee (PMC)
member with the Lucene/Solr open source project. Over the years, David has staked
his career on search, working exclusively on such projects, formerly for MITRE
and now as an independent consultant for various clients. You can reach him at
dsmiley@apache.org and view his LinkedIn profile here: http://www.linkedin.
com/in/davidwsmiley.

Writing a book is the biggest project I've ever worked on, where
I've put time outside of employed working hours; it requires an
inordinate amount of time. I have a great deal of respect for the
other authors who undertake such projects.

I'm deeply appreciative of my wife, Sylvie, for enduring this time
commitment and for taking care of our young daughters, Camille
and Adeline. I also thank my coauthors, Eric, Kranti, and Matt, for
their share of this herculean effort—it is too much for anyone of us.
And finally, I am most appreciative of the compliments I've received
from readers about the previous editions. It helps make the effort
worthwhile.

http://www.linkedin.com/in/davidwsmiley
http://www.linkedin.com/in/davidwsmiley

Fascinated by the "craft" of software development, Eric Pugh has been involved
in the open source world as a developer, committer, and user for the past decade.
He is an emeritus member of the Apache Software Foundation.

In biotech, financial services, and defense IT, he has helped European and American
companies develop coherent strategies to embrace open source software. As a speaker,
he has advocated the advantages of Agile practices in search, discovery, and analytics
projects.

Eric became involved in Solr when he submitted the patch SOLR-284 to parse rich
document types, such as PDF and MS Office formats, that became the single-most
popular patch, as measured by votes! The patch was subsequently cleaned up
and enhanced by three other individuals, demonstrating the power of the free /
open source models to build great code collaboratively. SOLR-284 was eventually
refactored into Solr Cell.

He blogs at http://www.opensourceconnections.com/blog/.

Someone once told me the best business card you can have is a book,
and I've discovered over the past three editions of this book that
this is a very true thing. Of course, I've also learned that printing
out 500 business cards is a much easier job than updating a book.
Additionally, we wanted some fresh voices in this edition of the
book. I'd like to thank Matt and Kranti for jumping feet first into this
project. I'd like to thank David for putting so much passion into this
book and being our fearless leader through all the twists and turns.
I also want to thank Erik Hatcher once again for his continuing
support and mentorship over the past 10 years. Without his
encouragement, I wouldn't have spoken at Euro Lucene or
become involved in the Solr community.
I also want to thank all of my colleagues at OpenSource Connections.
We've come a long way as a company, and I'm excited about
SlopBucket, our very own conference this fall! Matt Overstreet, your
creativity that you contributed to the content on SolrCloud was critical
to my finishing Chapter 10.
My darling wife, Kate, who says, "It can't be that hard to finish, just
do it!", I know life continues to be busy, but I couldn't be happier
sharing my life with you, Morgan, and Asher. I love you.

Lastly, I want to thank all the adopters of Solr and Lucene! Without
you, I wouldn't have this wonderful open source project to be so
incredibly proud of! I look forward to meeting more of you at the
next conference.

http://www.opensourceconnections.com/blog/

Kranti Parisa has more than a decade of software development expertise and a
deep understanding of open source, enterprise software, and the execution required
to build successful products.

He has fallen in love with enterprise search technologies, especially Lucene and
Solr, after his initial implementations and customizations carried out in early 2008
to build a legal search engine for bankruptcy court documents, docket entries, and
cases. He is an active contributor to the Apache Solr community. One of his recent
contributions, along with Joel Bernstein, SOLR-4787, includes scalable and nested
join implementations.

Kranti is currently working at Apple. Prior to that, he worked as a lead engineer
and search architect at Comcast Labs, building and supporting a highly scalable
search and discovery engine for the X1/X2 platform—the world's first entertainment
operating system.

An entrepreneur by DNA, he is the cofounder and technical advisor of multiple
start-ups focusing on cloud computing, SaaS, big data, and enterprise search
based products and services. He holds a master's degree in computer integrated
manufacturing from the National Institute of Technology, Warangal, India.

You can reach him on LinkedIn: http://www.linkedin.com/in/krantiparisa.

First and foremost, many thanks to Albert Einstein for his
extraordinary innovations and one of his many inspirational quotes:
I have no special talent. I am only passionately curious. I'd like to thank
and acknowledge all the contributors to the Apache Lucene and Solr
projects. You're totally awesome! Completing this work would have
been all the more difficult were it not for the support and friendship
provided by my coauthors—David, Eric, and Matt. I am indebted to
them for their help.

Thanks to my family and friends for believing in me; I couldn't have
done this without you. A very special thanks to my darling mother,
Nagarani, and my beautiful wife, Pallavi, for their unconditional
love, support, and patience as I spent countless weekends working
on this book.

And, of course, I want to thank the team at Packt Publishing for their
tremendous support in all ways, large and small. There are many
more people I would like to thank, but time, space, and modesty
compel me to stop here.

http://www.linkedin.com/in/krantiparisa

Matt Mitchell studied music synthesis and performance at Boston's Berklee College
of Music, but his experiences with computers and programming in his younger years
inspired him to pursue a career in software engineering. A passionate technologist, he
has worked in many areas of software development, is active in several open source
communities, and now has over 15 years of professional experience. He had his first
experiences with Lucene and Solr in 2008 at the University of Virginia Library, where
he became a core contributor to an open source search platform called Backlight. Matt
is the author of many open source projects, including a Solr client library called RSolr,
which has had over 1 million downloads from rubygems.org. He has been responsible
for the design and implementation of search systems at several tech companies, and
he is currently a senior member of the engineering team at LucidWorks, where he's
working on a next generation search, discovery, and analytics platform.

You can contact Matt on LinkedIn at https://www.linkedin.com/in/
mattmitchell4.

I'd like to thank my amazing wife, Jenny, and our kids, Henry and
Dorothy, for their unbelievable patience and support during this
journey. My parents, thank you for making my fantastic life possible.
Eric, Kranti, and David, for all the blood, sweat, and tears you've put
into this book, along with all the time you've spent helping me. My
good friend, Anthony Fox, who never seems to stop encouraging and
inspiring me. Erik Hatcher and Bess Sadler, for getting me started
with all of this search stuff in the first place. The Lucene and Solr
communities and committers, for all of their amazing work. Packt
Publishing, for their endless patience and exceptional guidance. And,
of course, the readers and reviewers of this book—thank you all!

www.rubygems.org
https://www.linkedin.com/in/mattmitchell4
https://www.linkedin.com/in/mattmitchell4

About the Reviewers

Edd Grant is a freelance software engineer who has been building software
professionally since 2003. He is passionate about designing first-class, maintainable
systems by leveraging agile and TDD principles and has helped his clients adopt
and excel at these practices.

Edd is an experienced implementor of cloud-scale web applications and services,
continuous delivery, and infrastructure automation. As an open source advocate,
he has helped many clients take advantage of a diverse range of such products.

Edd has a website, which he updates when he gets the time (http://www.eddgrant.
com), and has a passion for mountain biking and tea.

Aamir Hussain is an experienced customer- and business-focused technology
leader with rich hands-on engineering, business and management experience. He has
over 6 years of experience in software engineering and complex systems design with
focus on the Cloud software architecture and design, Software as a Service (SaaS),
Platform as a Service (PaaS), monitoring and tools infrastructure, network design,
and data center operations.

Starting the journey of his career from the world's most disturbed and heavily
militarized zone, Aamir had also been honored and awarded multiple times in the
application development programs conducted by Health2con and WHO in USA.
He is currently working with one of India's largest e-commerce logistics company
(Delhivery) as a senior architect.

Aamir had also managed to get his name on multiple books of Apache Solr and
Python published by Packt Publishing.

http://www.eddgrant.com
http://www.eddgrant.com

Dmitry Kan leads the search technology development at AlphaSense, the
one-stop financial search engine company. In parallel, he is the founder and
CEO of the language intelligence company SemanticAnalyzer. Dmitry enjoys
building and blogging about software, in particular, search (Solr/Lucene), machine
learning (sentiment detection and machine translation), and tools that make a
programmer's life easier. You can find his blogs at dmitrykan.blogspot.com and
semanticanalyzer.info/blog. He developed his fully blown search engine back
in 2003 as a university project. The main achievements were beating MySQL full-
text search engine in speed by over 5 million records. This is when he introduced
himself to the world of skip lists and balanced hash tables. In 2010, Dmitry learned
about Lucene and Solr, and since then, he has been an active community member,
occasionally taking part (and winning!) in the famous Stump the Chump sessions.
Dmitry holds a PhD in CS from the Saint Petersburg State University (Russia) and
a master's degree in CS from the University of Kuopio (Finland). In his free time,
Dmitry enjoys answering questions on Stack Overflow, building models on kaggle,
and cycling.

He is the maintainer and developer of Lucene Luke, which can be found at
https://github.com/dmitrykey/luke. You can reach him on Twitter at
twitter.com/dmitrykan.

I am immensely grateful to my parents for giving me the support and
hunger for knowledge. My wife, Tatiana, is my first kind listener to
all the ideas I get around IT, apart from being a loving and supporting
wife. She knows how hard it is to be around a programming geek like
me. Big thanks to all Luke fans, you help me learn new things around
Apache Lucene and search in general.

www.dmitrykan.blogspot.com
www.semanticanalyzer.info/blog
https://github.com/dmitrykey/luke
twitter.com/dmitrykan

www.PacktPub.com

Support files, eBooks, discount offers, and more
For support files and downloads related to your book, please visit www.PacktPub.com.

Did you know that Packt offers eBook versions of every book published, with PDF
and ePub files available? You can upgrade to the eBook version at www.PacktPub.
com and as a print book customer, you are entitled to a discount on the eBook copy.
Get in touch with us at service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles,
sign up for a range of free newsletters and receive exclusive discounts and offers
on Packt books and eBooks.

TM

https://www2.packtpub.com/books/subscription/packtlib

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital
book library. Here, you can search, access, and read Packt's entire library of books.

Why subscribe?
•	 Fully searchable across every book published by Packt
•	 Copy and paste, print, and bookmark content
•	 On demand and accessible via a web browser

Free access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view 9 entirely free books. Simply use your login credentials for
immediate access.

www.PacktPub.com
www.PacktPub.com
www.PacktPub.com
www.PacktPub.com
https://www2.packtpub.com/books/subscription/packtlib
www.PacktPub.com

[i]

Table of Contents
Preface	 xi
Chapter 1: Quick Starting Solr	 1

An introduction to Solr	 1
Lucene – the underlying engine	 2
Solr – a Lucene-based search server	 3
Comparison to database technology	 4

A few differences between Solr 4 and Solr 5	 6
Getting started	 6

Solr's installation directory structure	 7
Running Solr	 10

A quick tour of Solr	 10
Loading sample data	 14
A simple query	 15
Some statistics	 18
The sample browse interface	 19

Configuration files	 20
What's next?	 22

Schema design and indexing	 22
Text analysis	 23
Searching	 24
Integration	 25

Resources outside this book	 25
Summary	 26

Table of Contents

[ii]

Chapter 2: Schema Design	 27
Is Solr schemaless?	 28
MusicBrainz.org	 29
One combined index or separate indices	 30

One combined index	 31
Problems with using a single combined index	 32

Separate indices	 33
Schema design	 33

Step 1 – determine which searches are going to be powered by Solr	 34
Step 2 – determine the entities returned from each search	 35
Step 3 – denormalize related data	 35

Denormalizing – one-to-one associated data	 36
Denormalizing – one-to-many associated data	 36

Step 4 – omit the inclusion of fields only used in search
results (optional)	 38

The schema.xml file	 39
Field definitions	 40

Dynamic field definitions	 41
Advanced field options for indexed fields	 41
The unique key	 43
The default search field and query operator	 43
Copying fields	 44
Our MusicBrainz field definitions	 44
Defining field types	 47
Built-in field type classes	 48

Numbers and dates	 48
Some other field types	 49

Summary	 50
Chapter 3: Text Analysis	 51

Configuring field types	 52
Experimenting with text analysis	 55

Character filters	 57
Tokenization	 58
Filtering	 60

Stemming	 62
Correcting and augmenting stemming	 63

Processing synonyms	 64
Synonym expansion at index time versus query time	 65

Working with stop words	 66
Phonetic analysis	 67
Substring indexing and wildcards	 69

ReversedWildcardFilter	 70

Table of Contents

[iii]

N-gram analysis	 70
N-gram costs	 71

Sorting text	 72
Miscellaneous token filters	 73

The multilingual search	 75
The multifield approach	 75
The multicore approach	 76
The single field approach	 76

Summary	 77
Chapter 4: Indexing Data	 79

Communicating with Solr	 80
Using direct HTTP or a convenient client API	 80
Pushing data to Solr or have Solr pull it	 81
Data formats	 81
Solr's HTTP POST options	 82
Remote streaming	 84

Solr's Update-XML format	 85
Deleting documents	 86

Commit, optimize, and rollback the transaction log	 86
Don't overlap commits	 88
Index optimization	 88
Rolling back an uncommitted change	 89
The transaction log	 89

Atomic updates and optimistic concurrency	 90
Sending CSV-formatted data to Solr	 91

Configuration options	 93
The DataImportHandler framework	 94

Configuring the DataImportHandler framework	 95
The development console	 96
Writing a DIH configuration file	 97

Data sources	 97
Entity processors	 98
Fields and transformers	 99

Example DIH configurations	 101
Importing from databases	 101
Importing XML from a file with XSLT	 103
Importing multiple rich document files – crawling	 104

Importing commands	 105
Delta imports	 106

Indexing documents with Solr Cell	 107
Extracting text and metadata from files	 107
Configuring Solr	 108

Table of Contents

[iv]

Solr Cell parameters	 109
Update request processors	 111
Summary	 115

Chapter 5: Searching	 117
Your first search – a walk-through	 118

A note on response format types	 120
Solr's generic XML structured data representation	 121
Solr's XML response format	 121

Parsing the URL	 122
Understanding request handlers	 123
Query parameters	 125

Search criteria related parameters	 126
Result pagination related parameters	 126
Output-related parameters	 127

More about the fl parameter	 127
Diagnostic parameters	 129

Query parsers and local-params	 130
Query syntax (the lucene query parser)	 131

Matching all the documents	 132
Mandatory, prohibited, and optional clauses	 132

Boolean operators	 133
Subqueries	 134

Limitations of prohibited clauses in subqueries	 135
Querying specific fields	 136
Phrase queries and term proximity	 136
Wildcard queries	 137

Fuzzy queries	 138
Regular expression queries	 139

Range queries	 139
Date math	 140

Score boosting	 141
Existence and nonexistence queries	 141
Escaping special characters	 142

The DisMax query parser – part 1	 143
Searching multiple fields	 144
Limited query syntax	 145
Min-should-match	 146

Basic rules	 146
Multiple rules	 147
What to choose	 147

A default query	 148
The uf parameter	 148

Table of Contents

[v]

Filtering	 149
Sorting	 150
Joining	 151

The join query parser	 151
Block-join query parsers	 153

The block-join-children parser	 154
The block-join-parent parser	 154

Spatial search	 155
Spatial in Solr 3 – LatLonType and friends	 156

Configuration	 157
Spatial in Solr 4 – SpatialRecursivePrefixTreeFieldType	 157

Configuration – basic	 159
Indexing points	 160
Filtering by distance or rectangle	 161
Sorting by distance	 162

Returning the distance	 163
Boosting by distance	 163
Memory and performance of distance sorting and boosting	 163

Advanced spatial	 164
Summary	 165

Chapter 6: Search Relevancy	 167
Scoring	 167

Alternative scoring models	 169
Query-time and index-time boosting	 170
Troubleshooting queries and scoring	 170

Tools – Splainer and Quepid	 172
The DisMax query parser – part 2	 173

Lucene's DisjunctionMaxQuery	 173
Boosting – automatic phrase boosting	 174

Configuring automatic phrase boosting	 174
Phrase slop configuration	 175
Partial phrase boosting	 175

Boosting – boost queries	 176
Boosting – boost functions	 177

Add or multiply boosts	 178
Functions and function queries	 179

Field references	 180
Function references	 181

Mathematical primitives	 182
Other math	 182
Boolean functions	 183
Relevancy statistics functions	 183
Ord and rord	 184

Table of Contents

[vi]

Miscellaneous functions	 184
External field values	 185
Function query boosting	 186

Formula – logarithm	 186
Formula – inverse reciprocal	 188
Formula – reciprocal	 189
Formula – linear	 190

How to boost based on an increasing numeric field	 190
Step by step…	 191

How to boost based on recent dates	 192
Step by step…	 193

Summary	 194
Chapter 7: Faceting	 195

A quick example – faceting release types	 196
Field requirements	 197
Types of faceting	 198
Faceting field values	 198

Alphabetic range bucketing	 200
Faceting numeric and date ranges	 202

Range facet parameters	 204
Facet queries	 206
Building a filter query from a facet	 207

Field value filter queries	 208
Facet range filter queries	 208

Pivot faceting	 209
Hierarchical faceting	 211

Excluding filters – multiselect faceting	 212
Summary	 215

Chapter 8: Search Components	 217
About components	 218
The highlight component	 220

A highlighting example	 220
Choose the Standard, FastVector, or Postings highlighter	 222

The Standard (default) highlighter	 222
The FastVector highlighter	 223
The Postings highlighter	 223

Highlighting configuration	 224
The SpellCheck component	 225

The schema configuration	 227
Configuration in solrconfig.xml	 228

Configuring spellcheckers – dictionaries	 229
Processing the q parameter	 233

Table of Contents

[vii]

Processing the spellcheck.q parameter	 234
Building index- and file-based spellcheckers	 234
Issuing spellcheck requests	 235
Example usage for a misspelled query	 238

Query complete/suggest	 240
Instant-search via edge n-grams	 242
Query term completion via facet.prefix	 243
Query term completion via the Suggester	 245
Query term completion via the Terms component	 248
Field-value completion via the Suggester	 248

The QueryElevation component	 250
Configuration	 251

The MoreLikeThis component	 252
Configuration parameters	 253

Parameters specific to the MLT search component	 254
Parameters specific to the MLT request handler	 254
Common MLT parameters	 255

The MLT results example	 257
The Stats component	 259

Configuring the stats component	 260
Statistics on track durations	 260

The Clustering component	 261
Collapsing and expanding	 262

The Collapse query parser	 262
The Expand component	 263
An example	 263
Compared to Result grouping	 265

The TermVector component	 267
Summary	 267

Chapter 9: Integrating Solr	 269
Working with the included examples	 270

Inventory of examples	 270
Solritas – the integrated search UI	 271

The pros and cons of Solritas	 273
SolrJ – Solr's Java client API	 274

The sample code – BrainzSolrClient	 275
Dependencies and Maven	 275

Declaring logging dependencies	 276
The SolrServer class	 277

Using javabin instead of XML for efficiency	 278
Searching with SolrJ	 278

Table of Contents

[viii]

Indexing with SolrJ	 279
Deleting documents	 280

Annotating your JavaBean – an alternative	 280
Embedding Solr	 281

When should you use embedded Solr? Tests!	 282
Using JavaScript/AJAX with Solr	 283

Wait, what about security?	 285
Building a Solr-powered artists autocomplete widget with jQuery
and JSONP	 285
AJAX Solr	 289

Using XSLT to transform XML search results	 291
Accessing Solr from PHP applications	 292

solr-php-client	 293
Drupal options	 295

The Apache Solr Search integration module	 295
Hosted Solr by Acquia	 296

Ruby on Rails integrations	 297
Solr's Ruby response writer	 297
The sunspot_rails gem	 298

Setting up the myFaves project	 298
Populating the myFaves relational database from Solr	 299
Building Solr indexes from a relational database	 301
Completing the myFaves website	 303

Which Rails/Ruby library should I use?	 305
Nutch for crawling web pages	 306
Solr and Hadoop	 308

HDFS	 308
Indexing via MapReduce	 309

Morphlines	 310
Running a Solr build using Hadoop	 310

Looking at the storage	 310
The data ingestion process	 313

ManifoldCF – a connector framework	 315
Connectors	 316
Putting ManifoldCF to use	 316

Document-level security	 318
Summary	 319

Chapter 10: Scaling Solr	 321
Tuning complex systems is hard	 322
Use SolrMeter to test Solr performance	 323
Optimizing a single Solr server – scale up	 325

Configuring JVM settings to improve memory usage	 326
Using MMapDirectoryFactory to leverage additional virtual memory	 327

Table of Contents

[ix]

Enabling downstream HTTP caching to reduce load	 327
Solr caching	 329

Tuning caches	 331
Indexing performance	 332

Designing the schema	 332
Sending data to Solr in bulk	 333
Disabling unique key checking	 333
Index optimization and mergeFactor settings	 334

Enhancing faceting performance	 335
Using term vectors	 335
Improving phrase search performance	 336

Configuring Solr for near real-time search	 338
Use SolrCloud to go big – scale wide	 339

SolrCloud glossary	 341
Launching Solr in SolrCloud mode	 342
Managing collections and configurations	 343

Stand up SolrCloud for our MusicBrainz artists index	 344
Choosing the replication factor and number of shards	 346
Creating and deleting collections	 348
Replicas and leaders	 349
Document routing	 349
Shard splitting	 350
Dealing with long running collection tasks	 351
Adding nodes	 352

Summary	 352
Chapter 11: Deployment	 353

Deployment methodology for Solr	 353
Questions to ask	 354

Installing Solr into a Servlet container	 355
Differences between Servlet containers	 355

Defining the solr.home property	 356
Configuring logging	 357

HTTP server request access logs	 358
Solr application logging	 359

Configuring logging output	 360
Jetty startup integration	 361
Managing log levels at runtime	 361

A RequestHandler per search interface	 362
Leveraging Solr cores	 363

Configuring solr.xml	 364
Property substitution	 366
Include fragments of XML with XInclude	 366

Managing cores	 367
Some uses of multiple cores	 368

Table of Contents

[x]

Setting up ZooKeeper for SolrCloud	 369
Installing ZooKeeper	 370
Administering Data in ZooKeeper	 371

Monitoring Solr performance	 372
Stats Admin interface	 372
Monitoring Solr via JMX	 374

Starting Solr with JMX	 375
Securing Solr from prying eyes	 376

Limiting server access	 376
Put Solr behind a Proxy	 379
Securing public searches	 379
Controlling JMX access	 380

Securing index data	 380
Controlling document access	 380
Other things to look at	 381

Summary	 382
Appendix: Quick Reference	 383

Core search	 383
Diagnostic	 384
The Lucene query parser	 384
The DisMax query parser	 384
The Lucene query syntax	 385
Faceting	 385
Highlighting	 386
Spell checking	 386
Miscellaneous nonsearch	 386

Index	 387

[xi]

Preface
If you are a developer building an application today, then you know how important
a good search experience is. Apache Solr, built on Apache Lucene, is a wildly popular
open source enterprise search server that easily delivers the powerful search and
faceted navigation features that are elusive with databases. Solr supports complex
search criteria, faceting, result highlighting, query-completion, query spellcheck,
relevancy tuning, and more.

Apache Solr Enterprise Search Server, Third Edition is a comprehensive resource to almost
everything Solr has to offer. It serves the reader right from initiation to development to
deployment. It also comes with complete running examples to demonstrate its use and
show how to integrate Solr with other languages and frameworks—even Hadoop.

By using a large set of metadata, including artists, releases, and tracks, courtesy of
the MusicBrainz.org project, you will have a testing ground for Solr and will learn
how to import this data in various ways. You will then learn how to search this data
in different ways, including Solr's rich query syntax and boosting match scores based
on record data. Finally, we'll cover various deployment considerations to include
indexing strategies and performance-oriented configuration that will enable you to
scale Solr to meet the needs of a high-volume site.

Solr 4 or Solr 5?
See the What you need for this book section further below.

What this book covers
Chapter 1, Quick Starting Solr, introduces Solr to you so that you understand its unique
role in your application stack. You'll get started quickly by indexing example data and
searching it with Solr's sample / browse UI. This chapter is oriented to Solr 5, but the
majority of content applies to Solr 4 too.

Preface

[xii]

Chapter 2, Schema Design, guides you through an approach to modeling your
data within Solr into one or more Solr indices and schemas. It covers the schema
thoroughly and explores some of Solr's field types.

Chapter 3, Text Analysis, covers how to customize text tokenization, stemming,
synonyms, and related matters to have fine control over keyword search matching.
It also covers multilingual strategies.

Chapter 4, Indexing Data, explores all of the options Solr offers for importing data, such
as XML, CSV, databases (SQL), and text extraction from common documents. This
includes important information on commits, atomic updates, and real-time search.

Chapter 5, Searching, covers the query syntax, from the basics to Boolean options to
more advanced wildcard and fuzzy searches, join queries, and geospatial search.

Chapter 6, Search Relevancy, explains how Solr scores documents for relevancy ranking.
We'll review different options to influence the score, called boosting, and apply it to
common examples such as boosting recent documents and boosting by a user vote.

Chapter 7, Faceting, shows you how to use Solr's killer feature—faceting. You'll
learn about the different types of facets and how to build filter queries for a faceted
navigation interface.

Chapter 8, Search Components, explores how to use a variety of valuable search
features implemented as Solr search components. This includes result highlighting,
query spellcheck, query suggest / complete, result grouping / collapsing, and more.

Chapter 9, Integrating Solr, explores some external integration options to interface
with Solr. This includes some language-specific frameworks for Java, JavaScript,
Ruby, and PHP, as well as a web crawler, Hadoop, a quick prototyping option,
and more.

Chapter 10, Scaling Solr, covers how to tune Solr to get the most out of it. Then we'll
introduce how to scale beyond one instance with SolrCloud.

Chapter 11, Deployment, guides you through deployment considerations to include
deploying Solr to Apache Tomcat, to logging, and to security, and setting up Apache
ZooKeeper.

Appendix, Quick Reference, serves as a small parameter quick-reference guide you can
print to have within reach when you need it.

Preface

[xiii]

What you need for this book
The Getting started section in Chapter 1, Quick Starting Solr, explains what you need in
detail. In summary, you should obtain:

•	 Java 8, a JDK release. Java 7 is fine too. Support for Java 6 was last available
in Solr 4.7. More information on this is in Chapter 1, Quick Starting Solr.

•	 Apache Solr 4.8.1 is officially the version of Solr this book was written for.
Nonetheless, some of the features are discussed or referenced in the later
versions of Solr as far as 5.0. In fact, Chapter 1, Quick Starting Solr, orients
you to Solr 5, which has a different first-impression experience than its
predecessor. Once you get Solr running, you should be able to follow along
easily with Solr 5. In Chapter 10, Scaling Solr, there are some SolrCloud startup
commands that are a little different, and we've pointed out how they change.
The only substantial topic not covered in this book that evolved through the
Solr 4 point releases is data-driven schemaless mode, and HTTP API calls to
make schema changes.

•	 The code supplement to the book. It's not essential, but you'll want it to try
some of the examples or to experiment with a sizable amount of real data.
See the Downloading the example code section.

Who this book is for
This book is primarily for developers who want to learn how to use Apache Solr in
their applications. Only basic programming skills are assumed, although the vast
majority of content should be useful to those with a solid technical foundation that
have not yet programmed.

Conventions
In this book, you will find a number of styles of text that distinguish between
different kinds of information. Here are some examples of these styles, and an
explanation of their meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows:
"Typing java –version at a command line will tell you exactly which version of
Java you are using, if any."

A block of code is set as follows:

"responseHeader": {
 "status": 0,

Preface

[xiv]

 "QTime": 1,
 "params": {
 "q": "lcd",
 "indent": "true",
 "wt": "json"
 }
 }
…

When we wish to draw your attention to a particular part of a code block, the relevant
lines or items are set in bold:

{
 "id": "9885A004",
 "name": "Canon PowerShot SD500",
 "manu": "Canon Inc.",
 "manu_id_s": "canon",
 "cat": [
 "electronics",
 "camera"
],
 "features": [
 "3x zoop, 7.1 megapixel Digital ELPH",
 "movie clips up to 640x480 @30 fps",
 "2.0\" TFT LCD, 118,000 pixels",
 "built in flash, red-eye reduction"
],
 "includes": "32MB SD card, USB cable, AV cable, battery",
 "weight": 6.4,
 "price": 329.95,
 "price_c": "329.95,USD",
 "popularity": 7,
 "inStock": true,
 "manufacturedate_dt": "2006-02-13T15:26:37Z",
 "store": "45.19614,-93.90341",
 "_version_": 1500358264225792000
 },
...

Any command-line input or output is written as follows:

>> cd example/exampledocs
>> java –Dc=techproducts -jar post.jar *.xml
SimplePostTool version 5.0.0
Posting files to [base] url
http://localhost:8983/solr/techproducts/update using
content-type application/xml...
POSTing file gb18030-example.xml

Preface

[xv]

POSTing file hd.xml
etc.
14 files indexed.
COMMITting Solr index changes to http://localhost:8983/solr/techproducts/
update...

New terms and important words are shown in bold. Words that you see on
the screen, in menus or dialog boxes for example, appear in the text like this:
"Click on the Core Selector drop-down menu and select the techproducts link."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or may have disliked. Reader feedback is important for
us to develop titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com,
and mention the book title via the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide on www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Downloading the example code
You can download the example code files for all Packt books you have purchased
from your account at http://www.packtpub.com. If you purchased this book
elsewhere, you can visit http://www.packtpub.com/support and register to have
the files e-mailed directly to you.

www.packtpub.com/authors
http://www.packtpub.com
http://www.packtpub.com/support

Preface

[xvi]

A copy of the code bundle and possibly other information will also be available at
http://www.solrenterprisesearchserver.com.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes do
happen. If you find a mistake in one of our books—maybe a mistake in the text or the
code—we would be grateful if you could report this to us. By doing so, you can save
other readers from frustration and help us improve subsequent versions of this book.
If you find any errata, please report them by visiting http://www.packtpub.com/
submit-errata, selecting your book, clicking on the Errata Submission Form link,
and entering the details of your errata. Once your errata are verified, your submission
will be accepted and the errata will be uploaded to our website or added to any list of
existing errata under the Errata section of that title.

To view the previously submitted errata, go to https://www.packtpub.com/books/
content/support and enter the name of the book in the search field. The required
information will appear under the Errata section.

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media.
At Packt, we take the protection of our copyright and licenses very seriously. If you
come across any illegal copies of our works, in any form, on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors, and our ability to bring you
valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with
any aspect of the book, and we will do our best to address it.

http://www.solrenterprisesearchserver.com
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support

[1]

Quick Starting Solr
Welcome to Solr! You've made an excellent choice to power your search needs.
In this chapter, we're going to cover the following topics:

•	 An overview of what Solr and Lucene are all about
•	 What makes Solr different from databases?
•	 How to get Solr, what's included, and what is where?
•	 Running Solr and importing sample data
•	 A quick tour of the admin interface and key configuration files
•	 A brief guide on how to get started quickly

An introduction to Solr
Solr is an open source enterprise search server. It is a mature product powering
search for public sites such as CNET, Yelp, Zappos, and Netflix, as well as countless
other government and corporate intranet sites. It is written in Java, and that language
is used to further extend and modify Solr through various extension points.
However, being a server that communicates using standards such as HTTP, XML,
and JSON, knowledge of Java is useful but not a requirement. In addition to the
standard ability to return a list of search results based on a full text search, Solr has
numerous other features such as result highlighting, faceted navigation (as seen on
most e-commerce sites), query spellcheck, query completion, and a "more-like-this"
feature for finding similar documents.

Quick Starting Solr

[2]

You will see many references in this book to the term faceting, also
known as faceted navigation. It's a killer feature of Solr that most
people have experienced at major e-commerce sites without realizing it.
Faceting enhances search results with aggregated information over all
of the documents found in the search. Faceting information is typically
used as dynamic navigational filters, such as a product category, date
and price groupings, and so on. Faceting can also be used to power
analytics. Chapter 7, Faceting, is dedicated to this technology.

Lucene – the underlying engine
Before describing Solr, it is best to start with Apache Lucene, the core technology
underlying it. Lucene is an open source, high-performance text search engine library.
Lucene was developed and open sourced by Doug Cutting in 2000 and has evolved
and matured since then with a strong online community. It is the most widely
deployed search technology today. Being just a code library, Lucene is not a server
and certainly isn't a web crawler either. This is an important fact. There aren't even
any configuration files.

In order to use Lucene, you write your own search code using its API, starting with
indexing documents that you supply to it. A document in Lucene is merely a collection
of fields, which are name-value pairs containing text or numbers. You configure
Lucene with a text analyzer that will tokenize a field's text from a single string into a
series of tokens (words) and further transform them by reducing them to their stems,
called stemming, substitute synonyms, and/or perform other processing. The final
indexed tokens are said to be the terms. The aforementioned process starting with the
analyzer is referred to as text analysis. Lucene indexes each document into its index
stored on a disk. The index is an inverted index, which means it stores a mapping of
a field's terms to associated documents, along with the ordinal word position from the
original text. Finally, you search for documents with a user-provided query string that
Lucene parses according to its syntax. Lucene assigns a numeric relevancy score to
each matching document and only the top scoring documents are returned.

This brief description of Lucene internals is what makes Solr work at
its core. You will see these important vocabulary words throughout
this book—they will be explained further at appropriate times.

Chapter 1

[3]

Lucene's major features are:

•	 An inverted index for efficient retrieval of documents by indexed terms.
The same technology supports numeric data with range- and time-based
queries too.

•	 A rich set of chainable text analysis components, such as tokenizers and
language-specific stemmers that transform a text string into a series of
terms (words).

•	 A query syntax with a parser and a variety of query types, from a simple
term lookup to exotic fuzzy matching.

•	 A good scoring algorithm based on sound Information Retrieval (IR)
principles to produce the best matches first, with flexible means to affect
the scoring.

•	 Search enhancing features. There are many, but here are some notable ones:

°° A highlighter feature to show matching query terms found in context.
°° A query spellchecker based on indexed content or a

supplied dictionary.
°° Multiple suggesters for completing query strings.
°° Analysis components for various languages, faceting, spatial-search,

and grouping and joining queries too.

To learn more about Lucene, read Lucene In Action,
Second Edition, Michael McCandless, Erik Hatcher, and
Otis Gospodneti, Manning Publications.

Solr – a Lucene-based search server
Apache Solr is an enterprise search server that is based on Lucene. Lucene is such
a big part of what defines Solr that you'll see many references to Lucene directly
throughout this book. Developing a high-performance, feature-rich application
that uses Lucene directly is difficult and it's limited to Java applications. Solr solves
this by exposing the wealth of power in Lucene via configuration files and HTTP
parameters, while adding some features of its own. Some of Solr's most notable
features beyond Lucene are as follows:

•	 A server that communicates over HTTP via multiple formats, including XML
and JSON

•	 Configuration files, most notably for the index's schema, which defines the
fields and configuration of their text analysis

Quick Starting Solr

[4]

•	 Several types of caches for faster search responses
•	 A web-based administrative interface, including the following:

°° Runtime search and cache performance statistics
°° A schema browser with index statistics on each field
°° A diagnostic tool for debugging text analysis
°° Support for dynamic core (indices) administration

•	 Faceting of search results (note: distinct from Lucene's faceting)
•	 A query parser called eDisMax that is more usable for parsing end user

queries than Lucene's native query parser
•	 Distributed search support, index replication, and fail-over for scaling Solr
•	 Cluster configuration and coordination using ZooKeeper
•	 Solritas—a sample generic web search UI for prototyping and demonstrating

many of Solr's search features

Also, there are two contrib modules that ship with Solr that really stand out, which
are as follows:

•	 DataImportHandler (DIH): A database, e-mail, and file crawling data import
capability. It includes a debugger tool.

•	 Solr Cell: An adapter to the Apache Tika open source project, which can
extract text from numerous file types.

As of the 3.1 release, there is a tight relationship between the Solr and Lucene projects.
The source code repository, committers, and developer mailing list are the same, and
they are released together using the same version number. Since Solr is always based
on the latest version of Lucene, most improvements in Lucene are available in Solr
immediately.

Comparison to database technology
There's a good chance that you are unfamiliar with Lucene or Solr and you might
be wondering what the fundamental differences are between it and a database.
You might also wonder if you use Solr, do you need a database.

The most important comparison to make is with respect to the data model—the
organizational structure of the data. The most popular category of databases is
relational databases—RDBMS. A defining characteristic of relational databases is
a data model, based on multiple tables with lookup keys between them and a join
capability for querying across them. That approach has proven to be versatile,
being able to satisfy nearly any information-retrieval task in one query.

Chapter 1

[5]

However, it is hard and expensive to scale them to meet the requirements of a typical
search application consisting of many millions of documents and low-latency response.
Instead, Lucene has a much more limiting document-oriented data model, which is
analogous to a single table. Document-oriented databases such as MongoDB are similar
in this respect, but their documents can be nested, similar to XML or JSON. Lucene's
document structure is flat like a table, but it does support multivalued fields—a field
with an array of values. It can also be very sparse such that the actual fields used from
one document to the next vary; there is no space or penalty for a document to not use
a field.

Lucene and Solr have limited support for join queries, but they are
used sparingly as it significantly reduces the scalability characteristics
of Lucene and Solr.

Taking a look at the Solr feature list naturally reveals plenty of search-oriented
technology that databases generally either don't have, or don't do well. The notable
features are relevancy score ordering, result highlighting, query spellcheck, and
query-completion. These features are what drew you to Solr, no doubt. And let's not
forget faceting. This is possible with a database, but it's hard to figure out how, and it's
difficult to scale. Solr, on the other hand, makes it incredibly easy, and it does scale.

Can Solr be a substitute for your database? You can add data to it and get it back out
efficiently with indexes; so on the surface, it seems plausible. The answer is that you
are almost always better off using Solr in addition to a database. Databases, particularly
RDBMSes, generally excel at ACID transactions, insert/update efficiency, in-place
schema changes, multiuser access control, bulk data retrieval, and they have second-
to-none integration with application software stacks and reporting tools. And let's
not forget that they have a versatile data model. Solr falls short in these areas.

For more on this subject, see our article, Text Search, your Database or Solr,
at http://bit.ly/uwF1ps, which although it's slightly outdated now,
is a clear and useful explanation of the issues. If you want to use Solr as
a document-oriented or key-value NoSQL database, Chapter 4, Indexing
Data, will tell you how and when it's appropriate.

http://bit.ly/uwF1ps

Quick Starting Solr

[6]

A few differences between Solr 4 and
Solr 5
The biggest change that users will see in Solr 5 from Solr 4 is that Solr is now
deployed as its own server process. It is no longer a WAR file that is deployed
into an existing Servlet container such as Tomcat or Jetty. The argument for this
boiled down to "you don't deploy your MySQL database in a Servlet container;
neither should you deploy your Search engine". By owning the network stack
and deployment model, Solr can evolve faster; for example, there are patches
for adding HTTP/2 support and pluggable authentication mechanisms being
worked on. While internally Solr is still using Jetty, that should be considered
an implementation detail. That said, if you really want a WAR file version, and
you're familiar with Java and previous Solr releases, you can probably figure out
how to build one.

As part of Solr 5 being it's own server process, it includes a set of scripts for starting,
stopping, and managing Solr collections, as well as running as a service on Linux.

The next most obvious difference is that the distribution directory structure is
different, particularly related to the old example and new server directory.

The rest of this chapter refers to Solr 5, however the remainder
of the book was updated for Solr 4, and applies to Solr 5.

Getting started
We will get started by downloading Solr, examining its directory structure, and then
finally run it.

This will set you up for the next section, which tours a running Solr 5 server.

1.	 Get Solr: You can download Solr from its website http://lucene.apache.
org/solr/. This book assumes that you downloaded one of the binary
releases (not the src (source) based distribution). In general, we recommend
using the latest release since Solr and Lucene's code are extensively tested.
For downloadable example source code, and book errata describing how
future Solr releases affect the book content, visit our website http://www.
solrenterprisesearchserver.com/.

http://lucene.apache.org/solr/
http://lucene.apache.org/solr/
http://www.solrenterprisesearchserver.com/
http://www.solrenterprisesearchserver.com/

Chapter 1

[7]

2.	 Get Java: The only prerequisite software needed to run Solr is Java 7
(that is, Java Version 1.7). But the latest version is Java 8, and you should
use that. Typing java –version at a command line will tell you exactly
which version of Java you are using, if any.
Java is available on all major platforms, including Windows, Solaris, Linux,
and Mac OS X. Visit http://www.java.com to download the distribution for
your platform. Java always comes with the Java Runtime Environment (JRE)
and that's all Solr requires. The Java Development Kit (JDK) includes the
JRE plus the Java compiler and various diagnostic utility programs. One such
useful program is JConsole, which we'll discuss in Chapter 11, Deployment,
and Chapter 10, Scaling Solr and so the JDK distribution is recommended.

Solr is a Java-based web application, but you don't need to
be particularly familiar with Java in order to use it. This book
assumes no such knowledge on your part.

3.	 Get the book supplement: This book includes a code supplement available at
our website http://www.solrenterprisesearchserver.com/; you can also
find it on Packt Publishing's website at http://www.packtpub.com/books/
content/support. The software includes a Solr installation configured for
data from MusicBrainz.org, a script to download, and indexes that data into
Solr—about 8 million documents in total, and of course various sample code
and material organized by chapter. This supplement is not required to follow
any of the material in the book. It will be useful if you want to experiment with
searches using the same data used for the book's searches or if you want to
see the code referenced in a chapter. The majority of the code is for Chapter 9,
Integrating Solr.

Solr's installation directory structure
When you unzip Solr after downloading it, you should find a relatively
straightforward directory structure (differences between Solr 4 and 5 are
briefly explained here):

•	 contrib: The Solr contrib modules are extensions to Solr:
°° analysis-extras: This directory includes a few text analysis

components that have large dependencies. There are some
International Components for Unicode (ICU) unicode classes for
multilingual support—a Chinese stemmer and a Polish stemmer.
You'll learn more about text analysis in the next chapter.

http://www.java.com
http://www.solrenterprisesearchserver.com
http://www.packtpub.com/books/content/support
http://www.packtpub.com/books/content/support

Quick Starting Solr

[8]

°° clustering: This directory will have an engine for clustering search
results. There is a one-page overview in Chapter 8, Search Components.

°° dataimporthandler: The DataImportHandler (DIH) is a very
popular contrib module that imports data into Solr from a
database and some other sources. See Chapter 4, Indexing Data.

°° extraction: Integration with Apache Tika—a framework for
extracting text from common file formats. This module is also called
SolrCell and Tika is also used by the DIH's TikaEntityProcessor—
both are discussed in Chapter 4, Indexing Data.

°° langid: This directory contains a contrib module that provides
the ability to detect the language of a document before it's indexed.
More information can be found on the Solr's Language Detection wiki
page at http://wiki.apache.org/solr/LanguageDetection.

°° map-reduce: This directory has utilities for working with Solr from
Hadoop Map-Reduce. This is discussed in Chapter 9, Integrating Solr.

°° morphlines-core: This directory contains Kite Morphlines,
a document ingestion framework that has support for Solr.
The morphlines-cell directory has components related to text
extraction. Morphlines is mentioned in Chapter 9, Integrating Solr.

°° uima: This directory contains library for Integration with Apache
UIMA—a framework for extracting metadata out of text. There are
modules that identify proper names in text and identify the language,
for example. To learn more, see Solr's UIMA integration wiki at
http://wiki.apache.org/solr/SolrUIMA.

°° velocity: This directory will have a simple search UI framework
based on the Velocity templating language. See Chapter 9, Integrating
Solr.

•	 dist: In this directory, you will see Solr's core and contrib JAR files. In
previous Solr versions, the WAR file was found here as well. The core JAR
file is what you would use if you're embedding Solr within an application.
The Solr test framework JAR and /test-framework directory contain the
libraries needed in testing Solr extensions. The SolrJ JAR and /solrj-lib
are what you need to build Java based clients for Solr.

•	 docs: This directory contains documentation and "Javadocs" for the related
assets for the public Solr website, a quick tutorial, and of course Solr's API.

http://wiki.apache.org/solr/LanguageDetection
http://wiki.apache.org/solr/SolrUIMA

Chapter 1

[9]

If you are looking for documentation outside of this book,
you are best served by the Solr Reference Guide. The docs
directory isn't very useful.

•	 example: Pre Solr 5, this was the complete Solr server, meant to be
an example layout for deployment. It included the Jetty servlet engine
(a Java web server), Solr, some sample data and sample Solr configurations.
With the introduction of Solr 5, only the example-DIH and exampledocs are
kept, the rest was moved to a new server directory.

°° example/example-DIH: These are DataImportHandler configuration
files for the example Solr setup. If you plan on importing with DIH,
some of these files may serve as good starting points.

°° example/exampledocs: These are sample documents to be indexed
into the default Solr configuration, along with the post.jar program
for sending the documents to Solr.

•	 server: The files required to run Solr as a server process are located here.
The interesting child directories are as follows:

°° server/contexts: This is Jetty's WebApp configuration for the
Solr setup.

°° server/etc: This is Jetty's configuration. Among other things, here
you can change the web port used from the presupplied 8983 to 80
(HTTP default).

°° server/logs: Logs are by default output here. Introduced in Solr 5
was collecting JVM metrics, which are output to solr_gc.log.
When you are trying to size your Solr setup they are a good source
of information.

°° server/resources: The configuration file for Log4j lives here. Edit
it to change the behavior of the Solr logging, (though you can also
changes levels of debugging at runtime through the Admin console).

°° server/solr: The configuration files for running Solr are stored
here. The solr.xml file, which provides overall configuration of
Solr lives here, as well as zoo.cfg which is required by SolrCloud.
The subdirectory /configsets stores example configurations that
ship with Solr.

°° example/webapps: This is where Jetty expects to deploy Solr from.
A copy of Solr's WAR file is here, which contains Solr's compiled
code and all the dependent JAR files needed to run it.

°° example/solr-webapp: This is where Jetty deploys the unpacked
WAR file.

Quick Starting Solr

[10]

Running Solr
Solr ships with a number of example collection configurations. We're going to
run one called techproducts. This example will create a collection and insert some
sample data.

The addition of scripts for running Solr is one of the best
enhancements in Solr 5. Previously, to start Solr, you directly
invoked Java via java –jar start.jar. Deploying to
production meant figuring out how to migrate into an existing
Servlet environment, and was the source of much frustration.

First, go to the bin directory, and then run the main Solr command. On Windows,
it will be solr.cmd, on *nix systems it will be just solr. Jetty's start.jar file by
typing the following command:

>>cd bin
>>./solr start –e techproducts

The >> notation is the command prompt and is not part of the command. You'll see a
few lines of output as Solr is started, and then the techproducts collection is created
via an API call. Then the sample data is loaded into Solr. When it's done, you'll be
directed to the Solr admin at http://localhost:8983/solr.

To stop Solr, use the same Solr command script:

>>./solr stop

A quick tour of Solr
Point your browser to Solr's administrative interface at http://localhost:8983/.
The admin site is a single-page application that provides access to some of the more
important aspects of a running Solr instance.

The administrative interface is currently being completely
revamped, and the below interface may be deprecated.

Chapter 1

[11]

This tour will help you get your bearings in navigating around Solr.

In the preceding screenshot, the navigation is on the left while the main content is on
the right. The left navigation is present on every page of the admin site and is divided
into two sections. The primary section contains choices related to higher-level Solr and
Java features, while the secondary section lists all of the running Solr cores.

The default page for the admin site is Dashboard. This gives you a snapshot
of some basic configuration settings and stats, for Solr, the JVM, and the server.
The Dashboard page is divided into the following subareas:

•	 Instance: This area displays when Solr started.
•	 Versions: This area displays various Lucene and Solr version numbers.
•	 JVM: This area displays the Java implementation, version, and processor

count. The various Java system properties are also listed here.
•	 System: This area displays the overview of memory settings and usage;

this is essential information for debugging and optimizing memory settings.
•	 JVM-Memory: This meter shows the allocation of JVM memory, and is

key to understanding if garbage collection is happening properly. If the
dark gray band occupies the entire meter, you will see all sorts of memory
related exceptions!

Quick Starting Solr

[12]

The rest of the primary navigation choices include the following:

•	 Logging: This page is a real-time view of logging, showing the time, level,
logger, and message. This section also allows you to adjust the logging levels
for different parts of Solr at runtime. For Jetty, as we're running it, this output
goes to the console and nowhere else. See Chapter 11, Deployment, for more
information on configuring logging.

•	 Core Admin: This section is for information and controls for managing
Solr cores. Here, you can unload, reload, rename, swap, and optimize the
selected core. There is also an option for adding a new core.

•	 Java Properties: This lists Java system properties, which are basically
Java-oriented global environment variables. Including the command
used to start the Solr Java process.

•	 Thread Dump: This displays a Java thread dump, useful for experienced
Java developers in diagnosing problems.

Below the primary navigation is a list of running Solr cores. Click on the Core Selector
drop-down menu and select the techproducts link. You should see something very
similar to the following screenshot:

The default page labeled Overview for each core shows core statistics, information
about replication, an Admin Extra area. Some other options such as details about
Healthcheck are grayed out and made visible if the feature is enabled.

Chapter 1

[13]

You probably noticed the subchoice menu that appeared below techproducts. Here
is an overview of what those subchoices provide:

•	 Analysis: This is used for diagnosing query and indexing problems related
to text analysis. This is an advanced screen and will be discussed later.

•	 Data Import: Provides information about the DataImport handler (the DIH).
Like replication, it is only useful when DIH is enabled. The DataImport
handler will be discussed in more detail in Chapter 4, Indexing Data.

•	 Documents: Provides a simple interface for creating a document to index
into Solr via the browser. This includes a Document Builder that walks you
through adding individual fields of data.

•	 Files: Exposes all the files that make up the core's configuration. Everything
from core files such as schema.xml and solrconfig.xml to stopwords.txt.

•	 Ping: Clicking on this sends a ping request to Solr, displaying the latency.
The primary purpose of the ping response is to provide a health status to
other services, such as a load balancer. The ping response is a formatted
status document and it is designed to fail if Solr can't perform a search
query that you provide.

•	 Plugins / Stats: Here you will find statistics such as timing and cache
hit ratios. In Chapter 10, Scaling Solr, we will visit this screen to evaluate
Solr's performance.

•	 Query: This brings you to a search form with many options. With or without
this search form, you will soon end up directly manipulating the URL using
this book as a reference. There's no data in Solr yet, so there's no point in
using the form right now.

•	 Replication: This contains index replication status information, and
the controls for disabling. It is only useful when replication is enabled.
More information on this is available in Chapter 10, Scaling Solr.

•	 Schema Browser: This is an analytical view of the schema that reflects various
statistics of the actual data in the index. We'll come back to this later.

•	 Segments Info: Segments are the underlying files that make up the Lucene
data structure. As you index information, they expand and compress.
This allows you to monitor them, and was newly added to Solr 5.

You can partially customize the admin view by editing a few
templates that are provided. The template filenames are prefixed
with admin-extra, and are located in the conf directory.

Quick Starting Solr

[14]

Loading sample data
Solr comes with some sample data found at example/exampledocs. We saw
this data loaded as part of creating the techproducts Solr core when we started Solr.
We're going to use that for the remainder of this chapter so that we can explore
Solr more, without getting into schema design and deeper data loading options.
For the rest of the book, we'll base the examples on the digital supplement to the
book—more on that later.

We're going to re-index the example data by using the post.jar Java program,
officially called SimplePostTool. Most JAR files aren't executable, but this one
is. This simple program takes a Java system variable to specify the collection:
-Dc=techproducts, iterates over a list of Solr-formatted XML input files, and
HTTP posts it to Solr running on the current machine —http://localhost:8983/
solr/techproducts/update. Finally, it will send a commit command, which
will cause documents that were posted prior to the commit to be saved and made
visible. Obviously, Solr must be running for this to work. Here is the command
and its output:

>> cd example/exampledocs
>> java –Dc=techproducts -jar post.jar *.xml
SimplePostTool version 5.0.0
Posting files to [base] url http://localhost:8983/solr/techproducts/
update using
content-type application/xml...
POSTing file gb18030-example.xml
POSTing file hd.xml
etc.
14 files indexed.
COMMITting Solr index changes to http://localhost:8983/solr/techproducts/
update...

If you are using a Unix-like environment, you have an alternate option of using the
/bin/post shell script, which wraps the SimplePostTool.

The post.sh and post.jar programs could be used
in a production scenario, but they are intended just as a
demonstration of the technology with the example data.

Chapter 1

[15]

Let's take a look at one of these XML files we just posted to Solr, monitor.xml:

<add>
 <doc>
 <field name="id">3007WFP</field>
 <field name="name">Dell Widescreen UltraSharp 3007WFP</field>
 <field name="manu">Dell, Inc.</field>
 <!-- Join -->
 <field name="manu_id_s">dell</field>
 <field name="cat">electronics</field>
 <field name="cat">monitor</field>
 <field name="features">30" TFT active matrix LCD, 2560 x 1600,
 .25mm dot pitch, 700:1 contrast</field>
 <field name="includes">USB cable</field>
 <field name="weight">401.6</field>
 <field name="price">2199</field>
 <field name="popularity">6</field>
 <field name="inStock">true</field>
 <!-- Buffalo store -->
 <field name="store">43.17614,-90.57341</field>
 </doc>
</add>

The XML schema for files that can be posted to Solr is very simple. This file doesn't
demonstrate all of the elements and attributes, but it shows the essentials. Multiple
documents, represented by the <doc> tag, can be present in series within the <add>
tag, which is recommended for bulk data loading scenarios. This subset may very
well be all that you use. More about these options and other data loading choices
will be discussed in Chapter 4, Indexing Data.

A simple query
Point your browser to http://localhost:8983/solr/#/techproducts/query—
this is the query form described in the previous section. The search box is labeled q.
This form is a standard HTML form, albeit enhanced by JavaScript. When the form is
submitted, the form inputs become URL parameters to an HTTP GET request to Solr.
That URL and Solr's search response is displayed to the right. It is convenient to use
the form as a starting point for developing a search, but then subsequently refine the
URL directly in the browser instead of returning to the form.

Quick Starting Solr

[16]

Run a query by replacing the *:* in the q field with the word lcd, then clicking on
the Execute Query button. At the top of the main content area, you will see a URL
like this http://localhost:8983/solr/techproducts/select?q=monitor&wt=j
son&indent=true. The URL specifies that you want to query for the word lcd, and
that the output should be in indented JSON format.

Below this URL, you will see the search result; this result is the response of that URL.

By default, Solr responds in XML, however the query interface specifies JSON by
default. Most modern browsers, such as Firefox, provide a good JSON view with
syntax coloring and hierarchical controls. All response formats have the same basic
structure as the JSON you're about to see. More information on these formats can be
found in Chapter 4, Indexing Data.

The JSON response consists of a two main elements: responseHeader and response.
Here is what the header element looks like:

"responseHeader": {
 "status": 0,
 "QTime": 1,
 "params": {
 "q": "lcd",
 "indent": "true",
 "wt": "json"
 }
 }
…

The following are the elements from the preceding code snippet:

•	 status: This is always zero, unless there was a serious problem.
•	 QTime: This is the duration of time in milliseconds that Solr took to process

the search. It does not include streaming back the response. Due to multiple
layers of caching, you will find that your searches will often complete in a
millisecond or less if you've run the query before.

•	 params: This lists the request parameters. By default, it only lists parameters
explicitly in the URL; there are usually more parameters specified in a
<requestHandler/> in solrconfig.xml. You can see all of the applied
parameters in the response by setting the echoParams parameter to true.

More information on these parameters and many more is
available in Chapter 5, Searching.

http://localhost:8983/solr/techproducts/select?q=monitor&wt=json&indent=true
http://localhost:8983/solr/techproducts/select?q=monitor&wt=json&indent=true

Chapter 1

[17]

Next up is the most important part, the results:

"response": {
 "numFound": 5,
 "start": 0,

The numFound value is the number of documents matching the query in the entire
index. The start parameter is the index offset into those matching (ordered)
documents that are returned in the response below.

Often, you'll want to see the score of each matching document. The document score
is a number that represents how relevant the document is to the search query. This
search response doesn't refer to scores because it needs to be explicitly requested in
the fl parameter—a comma-separated field list. A search that requests the score via
fl=*,score will have a maxScore attribute in the "response" element, which is the
maximum score of all documents that matched the search. It's independent of the
sort order or result paging parameters.

The content of the result element is a list of documents that matched the query. The
default sort is by descending score. Later, we'll do some sorting by specified fields.

{
 "id": "9885A004",
 "name": "Canon PowerShot SD500",
 "manu": "Canon Inc.",
 "manu_id_s": "canon",
 "cat": [
 "electronics",
 "camera"
],
 "features": [
 "3x zoop, 7.1 megapixel Digital ELPH",
 "movie clips up to 640x480 @30 fps",
 "2.0\" TFT LCD, 118,000 pixels",
 "built in flash, red-eye reduction"
],
 "includes": "32MB SD card, USB cable, AV cable, battery",
 "weight": 6.4,
 "price": 329.95,
 "price_c": "329.95,USD",
 "popularity": 7,
 "inStock": true,
 "manufacturedate_dt": "2006-02-13T15:26:37Z",
 "store": "45.19614,-93.90341",
 "_version_": 1500358264225792000
 },
...

