

Learning ROS for Robotics
Programming

A practical, instructive, and comprehensive guide
to introduce yourself to ROS, the top-notch, leading
robotics framework

Aaron Martinez
Enrique Fernández

 BIRMINGHAM - MUMBAI

Learning ROS for Robotics Programming

Copyright © 2013 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the authors, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: September 2013

Production Reference: 1190913

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78216-144-8

www.packtpub.com

Cover Image by Duraid Fatouhi (duraidfatouhi@yahoo.com)

Credits

Authors
Aaron Martinez

Enrique Fernández

Reviewers
Luis Sánchez Crespo

Matthieu Keller

Damian Melniczuk

Acquisition Editors
Kartikey Pandey

Rubal Kaur

Lead Technical Editor
Susmita Panda

Technical Editors
Jalasha D'costa

Amit Ramadas

Project Coordinator
Abhijit Suvarna

Proofreader
Joanna McMahon

Copy Editors
Alfida Paiva

Mradula Hegde

Gladson Monteiro

Sayanee Mukherjee

Adithi Shetty

Indexers
Hemangini Bari

Rekha Nair

Graphics
Ronak Dhruv

Production Coordinator
Manu Joseph

Cover Work
Manu Joseph

About the Authors

Aaron Martinez is a computer engineer, entrepreneur, and expert in digital
fabrication. He did his Master's thesis in 2010 at the IUCTC (Instituto Universitario
de Ciencias y Tecnologias Ciberneticas) in the University of Las Palmas de Gran
Canaria. He prepared his Master's thesis in the field of telepresence using immersive
devices and robotic platforms. After completing his academic career, he attended an
internship program at The Institute for Robotics in the Johannes Kepler University in
Linz, Austria. During his internship program, he worked as part of a development
team of a mobile platform using ROS and the navigation stack. After that, he was
involved in some projects related to robotics, one of them is the AVORA project
in the University of Las Palmas de Gran Canaria. In this project, he worked on the
creation of an AUV (Autonomous Underwater Vehicle) to participate in the Student
Autonomous Underwater Challenge-Europe (SAUC-E) in Italy. In 2012, he was
responsible for manufacturing this project; in 2013, he helped to adapt the navigation
stack and other algorithms from ROS to the robotic platform.

Recently, Aaron created his own company called Biomecan. This company works
with projects related to robotics, manufacturing of prototypes, and engineering
tissue. The company manufactures devices for other companies and research and
development institutes. For the past two years, he has been working on engineering
tissue projects, creating a new device to help researchers of cell culture.

Aaron has experience in many fields such as programming, robotics, mechatronics,
and digital fabrication, many devices such as Arduino, BeagleBone, Servers, and
LIDAR, servomotors, and robotic platforms such as Wifibot, Nao Aldebaran, and
Pioneer P3AT.

I would like to thank my girlfriend who has supported me while
writing this book and gave me motivation to continue growing
professionally. I also want to thank Donato Monopoli, Head of
Biomedical Engineering Department at ITC (Canary-Islands Institute
of Technology), and all the staff there. Thanks for teaching me all
I know about digital fabrication, machinery, and engineering tissue.
I spent the best years of my life in your workshop.

Thanks to my colleagues in the university, especially Alexis Quesada,
who gave me the opportunity to create my first robot in my Master's
thesis. I have learned a lot about robotics working with them.

Finally, thanks to my family and friends for their help and support.

Enrique Fernández is a computer engineer and roboticist. He did his Master's
Thesis in 2009 at the University Institute of Intelligent Systems and Computational
Engineering in the University of Las Palmas de Gran Canaria. There he has been
working on his Ph.D for the last four years; he is expected to become a Doctor in
Computer Science by September 2013. His Ph.D addresses the problem of Path
Planning for Autonomous Underwater Gliders, but he has also worked on other
robotic projects. He participated in the Student Autonomous Underwater
Challenge-Europe (SAUC-E) in 2012, and collaborated for the 2013 edition. In 2012,
he was awarded a prize for the development of an underwater pan-tilt vision system.

Now, Enrique is working for Pal-Robotics as a SLAM engineer. He completed his
internship in 2012 at the Center of Underwater Robotics Research in the University
of Girona, where he developed SLAM and INS modules for the Autonomous
Underwater Vehicles of the research group using ROS. He joined Pal-Robotics
in June 2013, where he is working with REEM robots using the ROS software
intensively and developing new navigation algorithms for wheeled and biped
humanoid robots, such as the REEM-H3 and REEM-C.

During his Ph.D, Enrique has published several conference papers and publications.
Two of these were sent to the International Conference of Robotics and Automation
(ICRA) in 2011. He is the co-author of some chapters of this book, and his Master's
Thesis was about the FastSLAM algorithm for indoor robots using a SICK laser
scanner and the odometry of a Pioneer differential platform. He also has experience
with electronics and embedded systems, such as PC104 and Arduino. His background
covers SLAM, Computer Vision, Path Planning, Optimization, and Robotics and
Artificial Intelligence in general.

I would like to thank my colleagues in the AVORA team, which
participated in the SAUC-E competition, for their strong collaboration
and all the things we learned. I also want to thank the members of
my research group at the University Institute of Intelligent Systems
and Computational Engineering and the people of the Center
of Underwater Robotics Research in Girona. During that time, I
expended some of the most productive days of my life; I have learned
a lot about robotics and had the chance to learn player/stage/Gazebo
and start with ROS. Also, thanks to my colleagues in Pal-Robotics,
who have received me with open arms, and have given me the
opportunity to learn even more about ROS and (humanoid) robots.
Finally, thanks to my family and friends for their help and support.

About the Reviewers

Luis Sánchez Crespo has completed his dual Master's degree in Electronics and
Telecommunication Engineering at the University of Las Palmas de Gran Canaria.
He has collaborated with different research groups as the Institute for Technological
Development and Innovation (IDETIC), the Oceanic Platform of Canary Islands
(PLOCAN), and the Institute of Applied Microelectronics (IUMA) where he actually
researches on imaging super-resolution algorithms.

His professional interests lie in computer vision, signal processing, and electronic
design applied on robotics systems. For this reason, he joined the AVORA team, a
group of young engineers and students working on the development of Underwater
Autonomous Vehicles (AUV) from scratch. Inside this project, Luis has started
developing acoustic and computer vision systems, extracting information from
different sensors such as hydrophones, SONAR, or camera. He has also been
involved in the electronic design of the vehicle. Finally, he has played the Team
Leader role during the preparation of the SAUC-E'13 challenge.

With a strong background gained in marine technology, Luis joined Biomecan, a
young startup, where he works on developing remotely operated and autonomous
vehicles for aquatic environments.

He is very enthusiastic and an engineer in multiple disciplines. He is responsible for
his work. He can manage himself and can take up responsibilities as a Team Leader, as
demonstrated at the SAUC-E competition directing the AVORA team. His background
in electronics and telecommunications allows him to cover a wide range of expertise
from signal processing and software, to electronic design and fabrication.

He has focused his career in 2D and 3D signal processing, with the development
of a system for tracking and detecting signs of exhaustion and the risk of falling
asleep in drivers. After this successful research, he started working on two different
projects at the same time. The first of these projects focused mainly on achieving
video sequences enhancement applying super-resolution. The second project, and
one of his most important achievements, was participating in the development
of an autonomous underwater vehicle for the Students Autonomous Underwater
Challenge-Europe (SAUC-E) in which his team achieved great recognition with
the fourth most important prize. In his second year, he took up the mantle of
Team Leader, again being recognized by his work during competition.

I would like to thank my family for supporting me since my
first step, Guaxara for lighting my path, and my teammates for
supporting me. I would also like to thank Dario Sosa Cabrera
and Anil Motilal Mahtani Mirchandani.

Matthieu Keller is a French student who has completed several internships in
development, system administration, and cyber security. His education is mainly
in Computer Science and Robotics, but he enjoys all kinds of scientific topics.

Damian Melniczuk graduated with Physics from the Wrocław University of
Technology, where he currently works in the quantum cryptography laboratory.
Apart from using photons for transporting encryption keys, he is also involved
in hacker culture and open source movement. His current projects are: setting up
Wroclaw Hackerspace (http://hswro.org/) and building an open source modular
home automation system (http://openhomeautomation.blogspot.com/).

www.PacktPub.com

Support files, eBooks, discount offers and more
You might want to visit www.PacktPub.com for support files and downloads related
to your book.

Did you know that Packt offers eBook versions of every book published, with PDF
and ePub files available? You can upgrade to the eBook version at www.PacktPub.
com and as a print book customer, you are entitled to a discount on the eBook copy.
Get in touch with us at service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign
up for a range of free newsletters and receive exclusive discounts and offers on Packt
books and eBooks.

TM

http://PacktLib.PacktPub.com

Do you need instant solutions to your IT questions? PacktLib is Packt's online
digital book library. Here, you can access, read and search across Packt's entire
library of books.

Why Subscribe?
•	 Fully searchable across every book published by Packt
•	 Copy and paste, print and bookmark content
•	 On demand and accessible via web browser

Free Access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view nine entirely free books. Simply use your login credentials
for immediate access.

Table of Contents
Preface	 1
Chapter 1: Getting Started with ROS	 7

Installing ROS Electric – using repositories	 10
Adding repositories to your sources.list file	 12
Setting up your keys	 12
Installation	 12
The environment setup	 13

Installing ROS Fuerte – using repositories	 14
Configuring your Ubuntu repositories	 14
Setting up your source.list file	 15
Setting up your keys	 15
Installation	 15
The environment setup	 17
Standalone tools	 18

How to install VirtualBox and Ubuntu	 18
Downloading VirtualBox	 19
Creating the virtual machine	 19

Summary	 23
Chapter 2: The ROS Architecture with Examples	 25

Understanding the ROS Filesystem level	 26
Packages	 27
Stacks	 29
Messages	 29
Services	 31

Understanding the ROS Computation Graph level	 32
Nodes	 34
Topics	 35
Services	 36

Table of Contents

[ii]

Messages	 37
Bags	 37
Master	 38
Parameter Server	 38

Understanding the ROS Community level	 39
Some tutorials to practice with ROS	 39

Navigating through the ROS filesystem	 39
Creating our own workspace	 40
Creating an ROS package	 41
Building an ROS package	 42
Playing with ROS nodes	 42
Learning how to interact with topics	 45
Learning how to use services	 49
Using the Parameter Server	 51
Creating nodes	 52
Building the node	 55
Creating msg and srv files	 57
Using the new srv and msg files	 58

Summary	 62
Chapter 3: Debugging and Visualization	 63

Debugging ROS nodes	 66
Using the GDB debugger with ROS nodes	 66
Attaching a node to GDB while launching ROS	 67
Enabling core dumps for ROS nodes	 68

Debugging messages	 69
Outputting a debug message	 69
Setting the debug message level	 70
Configuring the debugging level of a particular node	 71
Giving names to messages	 72
Conditional and filtered messages	 73
More messages – once, throttle, and combinations	 74
Using rosconsole and rxconsole to modify the debugging level on the fly	 75

Inspecting what is going on	 80
Listing nodes, topics, and services	 80
Inspecting the node's graph online with rxgraph	 80

When something weird happens – roswtf!	 83
Plotting scalar data	 83

Creating a time series plot with rxplot	 84
Other plotting utilities – rxtools	 86

Table of Contents

[iii]

Visualization of images	 87
Visualizing a single image	 87
FireWire cameras	 88
Working with stereo vision	 90

3D visualization	 91
Visualizing data on a 3D world using rviz	 92
The relationship between topics and frames	 94
Visualizing frame transformations	 94

Saving and playing back data	 96
What is a bag file?	 97
Recording data in a bag file with rosbag	 98
Playing back a bag file	 99
Inspecting all the topics and messages in a bag file using rxbag	 100

rqt plugins versus rx applications	 102
Summary	 102

Chapter 4: Using Sensors and Actuators with ROS	 103
Using a joystick or gamepad	 104

How does joy_node send joystick movements?	 105
Using joystick data to move a turtle in turtlesim	 106

Using a laser rangefinder – Hokuyo URG-04lx	 110
Understanding how the laser sends data in ROS	 111
Accessing the laser data and modifying it	 113

Creating a launch file	 115
Using the Kinect sensor to view in 3D	 116

How does Kinect send data from the sensors and how to see it?	 117
Creating an example to use Kinect	 119

Using servomotors – Dynamixel	 121
How does Dynamixel send and receive commands for the movements?	 123
Creating an example to use the servomotor	 124

Using Arduino to add more sensors and actuators	 125
Creating an example to use Arduino	 126

Using the IMU – Xsens MTi	 129
How does Xsens send data in ROS?	 130
Creating an example to use Xsens	 131

Using a low-cost IMU – 10 degrees of freedom	 133
Downloading the library for the accelerometer	 135
Programming Arduino Nano and the 10DOF sensor	 135
Creating a ROS node to use data from the 10DOF sensor	 138

Summary	 140

Table of Contents

[iv]

Chapter 5: 3D Modeling and Simulation	 141
A 3D model of our robot in ROS	 141
Creating our first URDF file	 142

Explaining the file format	 144
Watching the 3D model on rviz	 145
Loading meshes to our models	 147
Making our robot model movable	 148
Physical and collision properties	 149

Xacro – a better way to write our robot models	 150
Using constants	 151
Using math	 151
Using macros	 151
Moving the robot with code	 152
3D modeling with SketchUp	 156

Simulation in ROS	 158
Using our URDF 3D model in Gazebo	 159
Adding sensors to Gazebo	 162
Loading and using a map in Gazebo	 163
Moving the robot in Gazebo	 165

Summary	 168
Chapter 6: Computer Vision	 171

Connecting and running the camera	 173
FireWire IEEE1394 cameras	 174
USB cameras	 178

Making your own USB camera driver with OpenCV	 180
Creating the USB camera driver package	 181
Using the ImageTransport API to publish the camera frames	 182
Dealing with OpenCV and ROS images using cv_bridge	 186
Publishing images with ImageTransport	 187
Using OpenCV in ROS	 188
Visualizing the camera input images	 188

How to calibrate the camera	 188
Stereo calibration	 193

The ROS image pipeline	 198
Image pipeline for stereo cameras	 201

ROS packages useful for computer vision tasks	 204
Performing visual odometry with viso2	 205

Camera pose calibration	 206

Table of Contents

[v]

Running the viso2 online demo	 210
Running viso2 with our low-cost stereo camera	 213

Summary	 214
Chapter 7: Navigation Stack – Robot Setups	 215

The navigation stack in ROS	 216
Creating transforms	 217

Creating a broadcaster	 218
Creating a listener	 218
Watching the transformation tree	 221

Publishing sensor information	 222
Creating the laser node	 223

Publishing odometry information	 226
How Gazebo creates the odometry	 227
Creating our own odometry	 230

Creating a base controller	 234
Using Gazebo to create the odometry	 236
Creating our base controller	 238

Creating a map with ROS	 241
Saving the map using map_server	 243
Loading the map using map_server	 244

Summary	 245
Chapter 8: Navigation Stack – Beyond Setups	 247

Creating a package	 248
Creating a robot configuration	 248
Configuring the costmaps (global_costmap) and (local_costmap)	 251

Configuring the common parameters	 251
Configuring the global costmap	 253
Configuring the local costmap	 253

Base local planner configuration	 254
Creating a launch file for the navigation stack	 255
Setting up rviz for the navigation stack	 256

2D pose estimate	 257
2D nav goal	 258
Static map	 258
Particle cloud	 259
Robot footprint	 260
Obstacles	 261
Inflated obstacles	 262

Table of Contents

[vi]

Global plan	 262
Local plan	 263
Planner plan	 264
Current goal	 264

Adaptive Monte Carlo Localization (AMCL)	 266
Avoiding obstacles	 268
Sending goals	 269
Summary	 273

Chapter 9: Combining Everything – Learn by Doing	 275
REEM – the humanoid of PAL Robotics	 276

Installing REEM from the official repository	 278
Running REEM using the Gazebo simulator	 282

PR2 – the Willow Garage robot	 284
Installing the PR2 simulator	 285
Running PR2 in simulation	 285
Localization and mapping	 289
Running the demos of the PR2 simulator	 292

Robonaut 2 – the dexterous humanoid of NASA	 293
Installing the Robonaut 2 from the sources	 293
Running Robonaut 2 in the ISS fixed pedestal	 294

Controlling the Robonaut 2 arms	 295
Controlling the robot easily with interactive markers	 295
Giving legs to Robonaut 2	 297
Loading the ISS environment	 298

Husky – the rover of Clearpath Robotics	 299
Installing the Husky simulator	 300
Running Husky on simulation	 300

TurtleBot – the low-cost mobile robot	 302
Installing the TurtleBot simulation	 302
Running TurtleBot on simulation	 303

Summary	 303
Index	 305

Preface
Learning ROS for Robotics Programming gives you a comprehensive review of ROS
tools. ROS is the Robot Operating System framework, which is used nowadays by
hundreds of research groups and companies in the robotics industry. But it is also
the painless entry point to robotics for nonprofessional people. You will see how
to install ROS, start playing with its basic tools, and you will end up working with
state-of-the-art computer vision and navigation tools.

The content of the book can be followed without any special devices, and each
chapter comes with a series of source code examples and tutorials that you can
run on your own computer. This is the only thing you need to follow in the book.
However, we also show you how to work with hardware, so that you can connect
your algorithms with the real world. Special care has been taken in choosing
devices which are affordable for amateur users, but at the same time the most
typical sensors or actuators in robotics research are covered.

Finally, the potential of ROS is illustrated with the ability to work with whole
robots in a simulated environment. You will learn how to create your own robot
and integrate it with the powerful navigation stack. Moreover, you will be able to
run everything in simulation, using the Gazebo simulator. We will end the book
by providing a list of real robots available for simulation in ROS. At the end of the
book, you will see that you can work directly with them and understand what is
going on under the hood.

Preface

[2]

What this book covers
Chapter 1, Getting Started with ROS, shows the easiest way you must follow in
order to have a working installation of ROS. You will see how to install different
distributions of ROS, and you will use ROS Fuerte in the rest of the book. How to
make an installation from Debian packages or compiling the sources, as well as
making installations in virtual machines, have been described in this chapter.

Chapter 2, The ROS Architecture with Examples, is concerned with the concepts and tools
provided by the ROS framework. We will introduce you to nodes, topics, and services,
and you will also learn how to use them. Through a series of examples, we will
illustrate how to debug a node or visualize the messages published through a topic.

Chapter 3, Debugging and Visualization, goes a step further in order to show you
powerful tools for debugging your nodes and visualize the information that goes
through the node's graph along with the topics. ROS provides a logging API which
allows you to diagnose node problems easily. In fact, we will see some powerful
graphical tools such as rxconsole and rxgraph, as well as visualization interfaces
such as rxplot and rviz. Finally, this chapter explains how to record and playback
messages using rosbag and rxbag.

Chapter 4, Using Sensors and Actuators with ROS, literally connects ROS with the
real world. This chapter goes through a number of common sensors and actuators
that are supported in ROS, such as range lasers, servo motors, cameras, RGB-D
sensors, and much more. Moreover, we explain how to use embedded systems
with microcontrollers, similar to the widely known Arduino boards.

Chapter 5, 3D Modeling and Simulation, constitutes one of the first steps in order to
implement our own robot in ROS. It shows you how to model a robot from scratch
and run it in simulation using the Gazebo simulator. This will later allow you to use
the whole navigation stack provided by ROS and other tools.

Chapter 6, Computer Vision, shows the support for cameras and computer vision tasks
in ROS. This chapter starts with drivers available for FireWire and USB cameras, so
that you can connect them to your computer and capture images. You will then be
able to calibrate your camera using ROS calibration tools. Later, you will be able to use
the image pipeline, which is explained in detail. Then, you will see how to use several
APIs for vision and integrate OpenCV. Finally, the installation and usage of a visual
odometry software is described.

Chapter 7, Navigation Stack – Robot Setups, is the first of two chapters concerned with
the ROS navigation stack. This chapter describes how to configure your robot so
that it can be used with the navigation stack. In the same way, the stack is explained,
along with several examples.

Preface

[3]

Chapter 8, Navigation Stack – Beyond Setups, continues the discussion of the previous
chapter by showing how we can effectively make our robot navigate autonomously. It
will use the navigation stack intensively for that. This chapter shows the great potential
of ROS using the Gazebo simulator and rviz to create a virtual environment in which
we can build a map, localize our robot, and do path planning with obstacle avoidance.

Chapter 9, Combining Everything – Learn by Doing, builds from the previous chapters
and shows a number of robots which are supported in ROS using the Gazebo
simulator. In this chapter you will see how to run these robots in simulation and
perform several of the tasks learned in the rest of the book, especially those related
to the navigation stack.

What you need for this book
This book was written with the intention that almost everybody can follow it and
run the source code examples provided with it. Basically, you need a computer with a
Linux distribution. Although any Linux distribution should be fine, it is recommended
that you use a recent version of Ubuntu. Then you will use ROS Fuerte, which is
installed according to the instructions given in Chapter 1, Getting Started with ROS.
For this distribution of ROS, you will need a version of Ubuntu prior to 12.10
because since this version Fuerte is no longer supported.

Regarding the hardware requirements of your computer, in general any computer
or laptop is enough. However, it is advisable to use a dedicated graphic card in
order to run the Gazebo simulator. Also, it will be good to have a good number
of peripherals, so that you can connect several sensors and actuators, including
cameras and Arduino boards.

You will also need Git (the git-core Debian package) in order to clone the repository
with the source code provided with this book. Similarly, you are expected to have
a basic knowledge of the Bash command line, GNU/Linux tools, and some C/C++
programming skills.

Who this book is for
This book is targeted at all robotics developers, from amateurs to professionals. It
covers all the aspects involved in a whole robotic system and shows how ROS helps
with the task of making a robot really autonomous. Anyone who is learning robotics
and has heard about ROS but has never tried it will benefit from this book. Also, ROS
beginners will learn advance concepts and tools of this framework. Indeed, even
regular users may learn something new from some particular chapters. Certainly,
only the first three chapters are intended for new users; so those who already use
ROS may skip these ones and go directly to the rest.

Preface

[4]

Conventions
In this book, you will find a number of styles of text that distinguish between
different kinds of information. Here are some examples of these styles, and an
explanation of their meanings.

Code words in text are shown as follows: "The *-ros-pkg contributed packages
are licensed under a variety of open source licenses."

A block of code is set as follows:

<package>
 <description brief="short description">
 long description,
 </description>
 <author>Aaron Martinez, Enrique Fernandez</author>
 <license>BSD</license>
 <url>http://example.com/</url>

 <depend package="roscpp"/>
 <depend package="common"/>
 <depend package="otherPackage"/>
 <versioncontrol type="svn" url="https://urlofpackage/trunk"/>
 <export>
 <cpp cflags="-I${prefix}/include" lflags="-L${prefix}/lib -lros"/>
</package>

When we wish to draw your attention to a particular part of a code block,
the relevant lines or items are set in bold:

<launch>
<node pkg="chapter3_tutorials" type="example1"
 name="example1" output="screen"
 launch-prefix="xterm -e gdb --args"/>
</launch>

Any command-line input or output is written as follows:

$ rosrun book_tutorials tutorialX _param:=9.0

New terms and important words are shown in bold. Words that you see on the screen,
in menus, or dialog boxes for example, appear in the text like this: "We must have
clicked on the Play button at least once."

Preface

[5]

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or may have disliked. Reader feedback is important for
us to develop titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com,
and mention the book title via the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide on www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Downloading the example code
You can download the example code files for all Packt books you have purchased
from your account at http://www.packtpub.com. If you purchased this book
elsewhere, you can visit http://www.packtpub.com/support and register to
have the files e-mailed directly to you. You can also download these code files from
https://github.com/AaronMR/Learning_ROS_for_Robotics_Programming.

Downloading the color images of this book
We also provide you a PDF file that has color images of the screenshots/diagrams
used in this book. The color images will help you better understand the changes in
the output. You can download this file from http://www.packtpub.com/sites/
default/files/downloads/1448OS_Graphics.pdf.

Preface

[6]

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in the text or
the code—we would be grateful if you would report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
book. If you find any errata, please report them by visiting http://www.packtpub.
com/submit-errata, selecting your book, clicking on the errata submission form link,
and entering the details of your errata. Once your errata are verified, your submission
will be accepted and the errata will be uploaded on our website, or added to any list of
existing errata, under the Errata section of that title. Any existing errata can be viewed
by selecting your title from http://www.packtpub.com/support.

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media.
At Packt, we take the protection of our copyright and licenses very seriously. If you
come across any illegal copies of our works, in any form, on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors, and our ability to bring
you valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with
any aspect of the book, and we will do our best to address it.

Getting Started with ROS
Welcome to the first chapter of this book where you will learn how to install ROS,
the new standard software framework in robotics. With ROS, you will start to
program and control your robots the easy way using tons of examples and source
code that will show you how to use sensors and devices or add new functionalities
to your robot, such as autonomous navigation and visual perception. Thanks to
the open source motto and the community that is developing the state-of-the-art
algorithms and providing new functionalities, ROS is growing every day.

In this book you will learn the following:

•	 Installing the ROS framework on a version of Ubuntu
•	 Learning the basic operation of ROS
•	 Debugging and visualizing the data
•	 Programming your robot using this framework
•	 Creating a 3D model to use it in the simulator
•	 Using the navigation stack to make your robot autonomous

In this chapter we are going to install a full version of ROS in Ubuntu. We will
use Ubuntu because it is fully supported by and recommended for ROS. However,
you can use a different operating system instead of Ubuntu, but in these operative
systems, ROS is still experimental and could have some errors. So, for this reason,
we recommend you to use Ubuntu while you follow the samples in this book.

Before starting with the installation, we are going to learn the origin of ROS and
its history.

Getting Started with ROS

[8]

Robot Operating System (ROS) is a framework that is widely used in robotics. The
philosophy is to make a piece of software that could work in other robots by making
little changes in the code. What we get with this idea is to create functionalities that
can be shared and used in other robots without much effort so that we do not reinvent
the wheel.

ROS was originally developed in 2007 by the Stanford Artificial Intelligence
Laboratory (SAIL) with the support of the Stanford AI Robot project. As of 2008,
development continues primarily at Willow Garage, a robotics research institute,
with more than 20 institutions collaborating within a federated development model.

A lot of research institutions have started to develop projects in ROS by adding
hardware and sharing their code samples. Also, the companies have started to adapt
their products to be used in ROS. In the following image, you can see some fully
supported platforms. Normally, these platforms are published with a lot of code,
examples, and simulators to permit the developers to start their work easily.

The sensors and actuators used in robotics have also been adapted to be used with
ROS. Every day an increasing number of devices are supported by this framework.

ROS provides standard operating system facilities such as hardware abstraction,
low-level device control, implementation of commonly used functionalities,
message passing between processes, and package management. It is based on
graph architecture with a centralized topology where processing takes place in
nodes that may receive or post, such as multiplex sensor, control, state, planning,
actuator, and so on. The library is geared towards a Unix-like system (Ubuntu
Linux is listed as supported while other variants such as Fedora and Mac OS X
are considered experimental).

Chapter 1

[9]

The *-ros-pkg package is a community repository for developing high-level
libraries easily. Many of the capabilities frequently associated with ROS, such
as the navigation library and the rviz visualizer, are developed in this repository.
These libraries give a powerful set of tools to work with ROS easily, knowing
what is happening every time. Of these, visualization, simulators, and debugging
tools are the most important ones.

ROS is released under the terms of the BSD (Berkeley Software Distribution) license
and is an open source software. It is free for commercial and research use. The *-ros-
pkg contributed packages are licensed under a variety of open source licenses.

ROS promotes code reutilization so that the robotics developers and scientists do
not have to reinvent the wheel all the time. With ROS, you can do this and more.
You can take the code from the repositories, improve it, and share it again.

ROS has released some versions, the latest one being Groovy. In this book, we are
going to use Fuerte because it is a stable version, and some tutorials and examples
used in this book don't work in the Groovy version.

Getting Started with ROS

[10]

Now we are going to show you how to install ROS Electric and Fuerte. Although
in this book we use Fuerte, you may need to install the Electric version to use some
code that works only in this version or you may need Electric because your robot
doesn't have the latest version of Ubuntu.

As we said before, the operating system used in the book is Ubuntu and we are
going to use it in all tutorials. If you are using another operating system and you
want to follow the book, the best option is to install a virtual machine with an
Ubuntu copy. Later, we will explain how to install a virtual machine in order to
use ROS in it.

Anyway, if you want to try installing it in an operating system other than Ubuntu,
you can find the required instructions in the following link: http://wiki.ros.org/
fuerte/Installation.

Installing ROS Electric – using
repositories
There are a few methods available to install ROS. You can do it directly using
repositories, the way we will do now, or you can use the code files and compile
it. It is more secure to do it using repositories because you have the certainty
that it will work.

In this section, you will see the steps to install ROS Electric on your computer.
The installation process has been explained in detail in the official ROS page:
http://wiki.ros.org/electric/Installation.

We assume that you know what an Ubuntu repository is and how to manage it.
If you have any queries, check the following link to get more information:
https://help.ubuntu.com/community/Repositories/Ubuntu.

Before starting with the installation, we need to configure our repositories.
To do this, the repositories need to allow restricted, universal, and multiversal
repositories. To check whether your version of Ubuntu accepts these repositories,
click on Ubuntu Software Center in the menu on the left of your desktop.

Chapter 1

[11]

Navigate to Edit | Software Sources and you will see the following window on your
screen. Make sure that everything is selected as shown in the following screenshot:

Normally, these options are marked, so you will not have problems with this step.

Getting Started with ROS

[12]

Adding repositories to your sources.list file
In this step, you have to select your Ubuntu version. It is possible to install ROS
Electric in various versions of the operating system. You can use any of them, but
we recommend you to always use the most updated version to avoid problems:

•	 A specific way to install the repositories for an Ubuntu-based distro such
as Ubuntu Lucid Lynx (10.04) is as follows:
$ sudo sh -c 'echo "deb http://packages.ros.org/ros/ubuntu lucid
main" > /etc/apt/sources.list.d/ros-latest.list'

•	 A generic way for installing any distro of Ubuntu relies on the lsb_release
command that is supported on all Linux Debian-based distro:
$ sudo sh -c 'echo "deb http://packages.ros.org/ros/ubuntu `lsb_
release -cs` main" > /etc/apt/sources.list.d/ros-latest.list'

Once you have added the correct repository, your operating system knows where to
download the programs that need to be installed on your system.

Setting up your keys
This step is to confirm that the origin of the code is correct, and nobody has modified
the code or programs without the knowledge of the owner. Normally, when you add
a new repository, you have to add the keys of that repository so that it is added to
your system's trusted list:

$ wget http://packages.ros.org/ros.key -O - | sudo apt-key add –

We can now be sure that the code came from an authorized site.

Installation
Now we are ready to start the installation. Before we start, it would be better to
update the software to avoid problems with libraries or the wrong software version.
We do this with the following command:

$ sudo apt-get update

ROS is huge; sometimes you will install libraries and programs that you will
never use. Normally, it has four different installations depending on the final use;
for example, if you are an advanced user, you may only need basic installation for
a robot without enough space in the hard disk. For this book, we recommend the
use of full installation because it will install everything that's necessary to make
the examples and tutorials work.

Chapter 1

[13]

Don't worry if you don't know what you are installing right now, be it rviz, simulators,
or navigation. You will learn everything in the upcoming chapters:

•	 The easiest (and recommended if you have enough hard disk space)
installation is known as desktop-full. It comes with ROS, the Rx tools, the rviz
visualizer (for 3D), many generic robot libraries, the simulator in 2D (such as
stage) and 3D (usually Gazebo), the navigation stack (to move, localize, do
mapping, and control arms), and also perception libraries using vision, lasers
or RGB-D cameras:
$ sudo apt-get install ros-electric-desktop-full

•	 If you do not have enough disk space, or you prefer to install only a few
stacks, first install only the desktop installation file, which comes only with
ROS, the Rx tools, rviz, and generic robot libraries. Later, you can install the
rest of the stacks when you need them (using aptitude and looking for the
ros-electric-* stacks, for example):
$ sudo apt-get install ros-electric-desktop

•	 If you only want the bare bones, install ROS-base, which is usually
recommended for the robot itself or computers without a screen or just
a TTY. It will install the ROS package with the build and communication
libraries and no GUI tools at all:
$ sudo apt-get install ros-electric-ros-base

•	 Finally, along with whatever option you choose from this list, you can install
individual/specific ROS stacks (for a given stack name):
$ sudo apt-get install ros-electric-STACK

The environment setup
Congratulations! You are in this step because you have an installed version of ROS
on your system. To start using it, the system must know where the executable or
binary files as well as other commands are. To do this, you need to execute the next
script. If you install another ROS distro in addition to your existing version, you can
work with both by calling the script of the one you need every time, since this script
simply sets your environment. Here, we will use the one for ROS Electric, but just
change electric to fuerte or groovy in the following command if you want to try
other distros:

$ source /opt/ros/electric/setup.bash

Getting Started with ROS

[14]

If you type roscore in the shell, you will see that something is starting. This is the
best test to find out whether you have ROS and whether it is installed correctly.

Note that if you open another shell and type roscore or any other ROS command,
it does not work. This is because it is necessary to execute the script again to
configure the global variables and path for the location where ROS is installed.

It is very easy to solve this. You only need to add the script at the end of your
.bashrc file and when you start a new shell, the script will execute and you will
have the environment configured. Use the following command to do this:

$ echo "source /opt/ros/electric/setup.bash" >> ~/.bashrc

$ source ~/.bashrc

If it happens that you have more than a single ROS distribution installed on your
system, your ~/.bashrc file must source only setup.bash of the version you are
currently using. This is because the last call will override the environment set of the
others, as we have mentioned previously, to have several distros living in the same
system and switch among them.

Installing ROS Fuerte – using repositories
In this section, we are going to install ROS Fuerte on our computer. You can have
different versions installed on the same computer without problems; you only need
to select the version that you want to use in the .bashrc file. You will see how to do
this in this section.

If you want to see the official page where this process is explained, you can visit the
following URL: http://wiki.ros.org/fuerte/Installation.

You can install ROS using two methods: using repositories and using source code.
Normal users will only need to make an installation using repositories to get a
functional installation of ROS. You can install ROS using the source code but this
process is for advanced users and we don't recommend it.

Configuring your Ubuntu repositories
First, you must check that your Ubuntu accepts restricted, universal, and multiversal
repositories. Refer to the Installing ROS Electric – using repositories section if you want
to see how to do it.

Normally, Ubuntu is configured to allow these repositories and you won't have
problems with this step.

Chapter 1

[15]

Setting up your source.list file
Now we are going to add the URLs from where we can download the code. Note that
ROS Fuerte doesn't work for Maverick and Natty, so you must have Ubuntu 10.04,
11.10, or 12.04 on your computer.

For this book we have used Ubuntu 12.04 and it works fine. All the examples have
been checked, compiled, and executed in this version of Ubuntu.

Open a new shell and type the following command, as we did before, which should
work for any Ubuntu version you have:

$ sudo sh -c 'echo "deb http://packages.ros.org/ros/ubuntu `lsb_release
-cs` main" > /etc/apt/sources.list.d/ros-latest.list'

Setting up your keys
It is important to add the key because with it we can be sure that we are
downloading the code from the right place and nobody has modified it.

If you have followed the steps to install ROS Electric, you don't need to do this
again as you have already completed this earlier; if not, add the repository using
the following command:

$ wget http://packages.ros.org/ros.key -O - | sudo apt-key add –

Installation
We are ready to install ROS Fuerte at this point. Before doing something,
it is necessary to update all the programs used by ROS. We do it to avoid
incompatibility problems.

Type the following command in a shell and wait:

$ sudo apt-get update

Depending on whether you had the system updated or not, the command will take
more or less time to finish.

ROS has a lot of parts and installing the full system can be heavy in robots without
enough features. For this reason, you can install various versions depending on what
you want to install.

Getting Started with ROS

[16]

For this book, we are going to install the full version. This version will install all
the examples, stacks, and programs. This is a good option for us because in some
chapters of this book, we will need to use tools, and if we don't install it now, we
will have to do it later:

•	 The easiest (and recommended if you have enough hard disk space)
installation is known as desktop-full. It comes with ROS, the Rx tools, the
rviz visualizer (for 3D), many generic robot libraries, the simulator in 2D
(such as stage) and 3D (usually Gazebo), the navigation stack (to move,
localize, do mapping, and control arms), and also perception libraries
using vision, lasers, or RGB-D cameras:
$ sudo apt-get install ros-fuerte-desktop-full

•	 If you do not have enough disk space, or you prefer to install only a few
stacks, first install only the desktop installation file, which comes only with
ROS, the Rx tools, rviz, and generic robot libraries. Later, you can install the
rest of the stacks when you need them (using aptitude and looking for the
ros-electric-* stacks, for example):
$ sudo apt-get install ros-fuerte-desktop

•	 If you only want the bare bones, install ROS-comm, which is usually
recommended for the robot itself or computers without a screen or just
a TTY. It will install the ROS package with the build and communication
libraries and no GUI tools at all:
$ sudo apt-get install ros-fuerte-ros-comm

•	 Finally, along with whatever option you choose from the list, you can
install individual/specific ROS stacks (for a given stack name):
$ sudo apt-get install ros-fuerte-STACK

Do not worry if you are installing things that you do not know. In the upcoming
chapters, you will learn about everything you are installing and how to use it.

When you gain experience with ROS, you can make basic installations in your robots
using only the core of ROS, using less resources, and taking only what you need.

Downloading the example code
You can download the example code files for all Packt books you have
purchased from your account at http://www.packtpub.com. If you
purchased this book elsewhere, you can visit http://www.packtpub.
com/support and register to have the files e-mailed directly to you.
You can also download these code files from https://github.com/
AaronMR/Learning_ROS_for_Robotics_Programming.

Chapter 1

[17]

The environment setup
Now that you have installed ROS, to start using it, you must provide Ubuntu with
the path where ROS is installed. Open a new shell and type the following command:

$ roscore

roscore: command not found

You will see this message because Ubuntu does not know where to search for the
commands. To solve it, type the following command in a shell:

$ source /opt/ros/fuerte/setup.bash

Then, type the roscore command once again, and you will see the following output:

...

started roslaunch server http://localhost:45631/

ros_comm version 1.8.11

SUMMARY

========

PARAMETERS

* /rosdistro

* /rosversion

NODES

auto-starting new master

....

This means that Ubuntu knows where to find the commands to run ROS. Note that
if you open another shell and type roscore, it will not work. This is because it is
necessary to add this script within the .bashrc file. So, every time you start a new
shell, the scripts will run because .bashrc always runs when a shell runs.

Use the following commands to add the script:

$ echo "source /opt/ros/fuerte/setup.bash" >> ~/.bashrc

$ source ~/.bashrc

