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Preface
Java Platform, Enterprise Edition (Java EE) 6 is the industry standard for enterprise 
Java computing. Eclipse IDE for Java EE developers is the most commonly used Java 
IDE for Java EE development. Eclipse IDE for Java EE developers supports Java EE 5 
completely and also supports several features from Java EE 6.

The Oracle WebLogic Server product line is the industry's most comprehensive 
platform for developing, deploying, and integrating enterprise applications. Oracle 
Enterprise Pack for Eclipse provides a set of plugins (project facets) for Eclipse 
development with WebLogic Server.

While a number of books are available on Eclipse IDE for Java Developers, none or 
very few are available on Eclipse IDE for Java EE Developers. In this book, we shall 
discuss Java EE development in Eclipse IDE for Java EE developers. While it is not 
feasible to cover all of the more than 30 technologies in the Java EE stack (http://
www.oracle.com/technetwork/java/javaee/tech/index.html), we shall discuss 
the most commonly used Java EE technologies, especially the ones Eclipse IDE 
for Java EE developers (or Oracle Enterprise Pack for Eclipse) provides Project for 
Facets. Oracle Enterprise Pack for Eclipse is just an enhancement of Eclipse IDE for 
Java EE developers with integrated support for Oracle WebLogic Server.
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The objective of the book is to discuss how a developer would develop Java EE 
applications using commonly used Java EE technologies and frameworks in  
Eclipse IDE for Java EE developers. The book covers all aspects of application 
development including:

•	 Setting the environment for an application
•	 Using the Eclipse IDE wizards and the Component Palette
•	 Running a sample application

What this book covers
Chapter 1, EJB 3.0 Database Persistence discusses creating an EJB project using the 
EJB 3.0 Module project facet. To create an entity bean, we add the JPA project facet. 
Subsequently, we generate entity beans from Oracle database tables. We create a 
session bean facade for the entity beans; wrapping an entity bean in a session bean 
facade is a best practice. We create a JSP client for the EJB application. We package 
and deploy the EJB application to Oracle WebLogic Server using an Ant build  
script and run the test client on the WebLogic Server.

Chapter 2, O/X Mapping with JAXB 2.x discusses the Object/XML (O/X) bi-directional 
mapping provided by the JAXB framework. We discuss the advantages of JAXB 2.x 
over JAXB 1.0. We create a JAXB web project using the JAXB project facet. We use  
the EclipseLink 2.4 persistence provider. We create an XML Schema and generate 
JAXB classes from the XML Schema using JAXB schema compilation. Subsequently, 
we marshall an XML document from a Java Document Object Model (DOM) 
document object, and also unmarshall an XML document using the compiled Java 
classes. We map an annotated Java class to an XML document using the annotations 
API. We also demonstrate the support for mapping Java classes to an XML Schema.

Chapter 3, Developing a Web Project for JasperReports demonstrates the use of the 
Oracle Enterprise Pack for Eclipse's integrated support for Oracle WebLogic Server 
to deploy and run any web application that requires an application server. First, we 
configure an Oracle database data source in WebLogic Server. We create and deploy  
a web application for JasperReports to the WebLogic Server, and subsequently run 
the web application to create PDF and Excel reports.
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Chapter 4, Creating a JSF Data Table discusses how to use the JavaServer Faces project 
facet to create a JSF data table. First, we create a web project. Subsequently, we create  
a managed bean, create a JSF page, add a JSF data table to the JSF page, and run the  
JSF web application on the integrated WebLogic Server to create a JSF data table.

Chapter 5, Templating with Facelets discusses templating with Facelets.  
Templating is the use of a common "template", which is just an XHTML page, in 
Facelets' composition pages. Templating makes use of Facelets' header and footer 
pages for describing the common sections of Facelets' composition pages. WebLogic 
Server includes a shared library for JSF 2.0, which we configure first. We create a  
web project for Facelets, and create a managed bean to create a JSF data table. We 
add the 2.0 version of the JavaServer Faces project facet to the web project. For 
templating, we add a Facelets Template in which we configure the default sections 
of a Facelets composition page, a header, a content section, and a footer. We add 
Facelets composition pages for an SQL query input and a JSF Data Table output.  
We add the implicit navigation, a new feature in JSF 2.0. We run the Facelets 
application to demonstrate templating by including the same header and footer 
images in the input and output pages.

Chapter 6, Creating Apache Trinidad User Interfaces discusses the Trinidad project 
facet. Trinidad was formerly Oracle ADF Faces and provides a set of user interface 
components. First, we create a web project and add the Trinidad project facet to it. 
Subsequently, we create JSPs to create and find a catalog entry in Oracle database. 
We add Trinidad components to the JSP pages. We run the Trinidad application in 
the integrated WebLogic Server.

Chapter 7, Creating an AJAX Application discusses how to develop an AJAX 
application to send an asynchronous request to the server and receive a response 
from the server. The JavaScript project facet is enabled by default in a web project. 
The AJAX application is used to create a catalog entry in Oracle database by first 
validating the catalog ID using AJAX. The application is packaged, deployed, and 
run on the WebLogic Server.

Chapter 8, Creating a JAX-WS Web Service discusses how to use the Java API for XML 
web services (JAX-WS) to create a web service. First, we create a web service project, 
which has the Oracle WebLogic web service project facet associated with it. We 
test the web service on the server and generate a WSDL, which we test in the web 
explorer. We create a client class for the web service and package, then deploy and 
test the web service on the WebLogic Server.
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Chapter 9, RESTful Web Services Using the JAX-RS API discusses RESTful web services 
using Java API for RESTful web services (JAX-RS), which are specified in the JSR 
311 specification. We use the JAX-RS project facet for the RESTful web service. We 
create a Resource class, which is exposed as a URI path using the @PATH annotation. 
Subsequently, we create a Jersey Client API to test the web service.

Chapter 10, Spring discusses how to create a Spring framework application using 
the Spring project facet. We discuss method interception with a method interceptor 
and a Spring client. We also discuss Aspect Oriented Programming (AOP) in 
combination with JSF. We discuss creating a Spring bean, a bean  
definition file, and an AOP JavaBean.

What you need for this book
The book is based on Eclipse IDE for Java EE Developers version 3.7. We use  
the Oracle Enterprise Pack for Eclipse packaged Eclipse IDE with integrated  
support for Oracle WebLogic Server 12c, which may be downloaded from  
http://www.oracle.com/technetwork/middleware/ias/downloads/wls-
main-097127.html. We have used the Oracle Database Express Edition 11g  
Release 2, which can be downloaded from http://www.oracle.com/technetwork/
products/express-edition/overview/index.html.

Some other chapter specific software such as JasperReports is also required. We  
have used the Windows version, but if you have Linux installed the book may  
still be used (though the source code and samples have not been tested with Linux). 
Slight modifications may be required with the Linux Install; for example, the 
directory paths on Linux would be different than the Windows directory paths  
used in the book. You need to install J2SE 5.0 or later.

Who this book is for
The target audience of the book is Java EE application developers who want to  
learn about the practical use of Eclipse IDE for application development. This  
book is suitable for professional Java EE developers. The book is also suitable  
for an intermediate/advanced level course in Java EE development. The target 
audience is expected to have prior, albeit beginner's, knowledge about Java EE, 
Enterprise JavaBeans (EJB) 3.0, entity and session EJBs, JavaServer Faces (JSF),  
ADF Faces, AJAX, web services, and Spring framework. The book also requires  
some familiarity with WebLogic Server and Eclipse IDE.
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Conventions
In this book, you will find a number of styles of text that distinguish between 
different kinds of information. Here are some examples of these styles, and an 
explanation of their meaning.

Code words in text are shown as follows: "The catalog.xsd Schema gets parsed  
and compiled."

A block of code is set as follows:

<?xml version="1.0" encoding="UTF-8"?>
<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema"
  targetNamespace="http://www.example.org/catalog" 
xmlns:catalog="http://www.example.org/catalog"
  elementFormDefault="qualified">
  <xsd:element name="catalog" type="catalog:catalogType" />
  <xsd:element name="catalogid" type="xsd:int" />
  <xsd:complexType name="catalogType"> [default]

When we wish to draw your attention to a particular part of a code block, the 
relevant lines or items are set in bold:

<?xml version="1.0" encoding="UTF-8"?>
<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema"

  targetNamespace="http://www.example.org/catalog" 
xmlns:catalog="http://www.example.org/catalog"

  elementFormDefault="qualified">
  <xsd:element name="catalog" type="catalog:catalogType" />

New terms and important words are shown in bold. Words that you see on the 
screen, in menus or dialog boxes for example, appear in the text like this: "clicking 
the Next button moves you to the next screen".

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.
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Reader feedback
Feedback from our readers is always welcome. Let us know what you think about 
this book—what you liked or may have disliked. Reader feedback is important for  
us to develop titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com, 
and mention the book title through the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing 
or contributing to a book, see our author guide on www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to 
help you to get the most from your purchase.

Downloading the example code
You can download the example code files for all Packt books you have purchased 
from your account at http://www.packtpub.com. If you purchased this book 
elsewhere, you can visit http://www.packtpub.com/support and register to have 
the files e-mailed directly to you.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes 
do happen. If you find a mistake in one of our books—maybe a mistake in the text or 
the code—we would be grateful if you would report this to us. By doing so, you can 
save other readers from frustration and help us improve subsequent versions of this 
book. If you find any errata, please report them by visiting http://www.packtpub.
com/support, selecting your book, clicking on the errata submission form link, and 
entering the details of your errata. Once your errata are verified, your submission 
will be accepted and the errata will be uploaded to our website, or added to any list 
of existing errata, under the Errata section of that title.

http://www.packtpub.com
http://www.packtpub.com/support
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Piracy
Piracy of copyright material on the Internet is an ongoing problem across all  
media. At Packt, we take the protection of our copyright and licenses very  
seriously. If you come across any illegal copies of our works, in any form,  
on the Internet, please provide us with the location address or website name 
immediately so that we can pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected  
pirated material.

We appreciate your help in protecting our authors, and our ability to bring you 
valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem  
with any aspect of the book, and we will do our best to address it.

Copyright Credits
Some of the contents of this book were originally published by Oracle Technology 
Network and http://home.java.net/. They are republished with the permission  
of Oracle Corporation.

mailto:copyright@packtpub.com




EJB 3.0 Database 
Persistence

EJB's entity beans are the most common technology for database persistence. 
Developing entity EJBs requires a Java IDE, an application server, and a relational 
database. Eclipse 3.7 provides wizards for developing entity beans and session 
facades. In this chapter, we shall develop EJB 3.0 entity beans including session 
facades. We shall deploy the EJB application to WebLogic Server 12c (12.1.1) and  
test database persistence with the Oracle database 11g XE.  
In this chapter, we shall learn the following:

•	 Configuring a data source in WebLogic Server (WLS) with the  
Oracle database

•	 Creating tables in the Oracle database
•	 Creating an Enterprise JavaBeans (EJB) project 
•	 Adding the Java Persistence API (JPA) project facet
•	 Generating entity beans from database tables
•	 Creating a session bean facade
•	 Creating the application.xml file
•	 Creating a test client
•	 Packaging and deploying the entity bean application
•	 Testing the JavaServer Pages (JSP) client
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Configuring a data source
In this section we shall configure a data source in Oracle WebLogic Server 12c.  
First, download and install the Oracle WebLogic Server from http://www.oracle.
com/technetwork/middleware/ias/downloads/wls-main-097127.html.  
Configure the base_domain structure in the WebLogic Server console. We need  
to create a data source so that when we deploy and run the application in the server, 
the application has access to the database. Log in to the WebLogic Server  
Administration Console server for the base_domain domain using the URL  
http://localhost:7001/Console. In the base_domain domain structure, expand  
the Services tab and select the Data Sources node. In the Data Sources table, click  
on New and select Generic Data Source as shown in the following screenshot:

http://www.oracle.com/technetwork/middleware/ias/downloads/wls-main-097127.html
http://www.oracle.com/technetwork/middleware/ias/downloads/wls-main-097127.html
http://localhost:7001/Console
http://localhost:7001/Console
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In Create a New JDBC Data Source, specify a data source name and JNDI Name 
(for example, jdbc/OracleDS) for the data source. The database shall be accessed 
using JNDI Name lookup in the Creating a session bean facade section. Select  
Database Type as Oracle and click on Next as shown in the following screenshot:
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In JDBC Data Source Properties, select Database Driver as Oracle's Driver (Thin 
XA). Another JDBC driver may also be selected based on requirements. Refer to 
the Selection of the JDBC Driver document available at http://docs.oracle.com/
cd/E14072_01/java.112/e10590/keyprog.htm#i1005587 for selecting a suitable 
JDBC driver. Click on Next as shown in the following screenshot:

By default, an XA JDBC driver supports global transactions and uses the Two-Phase 
Commit global transaction protocol. Global transactions are recommended for EJBs 
using container managed transactions for relation between the JDBC driver (XA or 
non-XA) transactionality and EJB container managed transactions. Click on Next as 
shown in the following screenshot. (for more information on global transactions, refer 
http://docs.oracle.com/cd/E23943_01/web.1111/e13737/transactions.htm):
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Specify Database Name as XE, Host Name as localhost, Port as 1521, Database User 
Name and Password as OE, and click on Next as shown in the following screenshot:
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The Driver Class Name textbox and connection URL textbox get configured. Click 
on the Test Configuration button to test the database connection. If a connection gets 
established the message Connection test succeeded. gets displayed. Click on Next as 
shown in the following screenshot:

In Select targets, select the AdminServer option and click on Finish. A data source 
gets added to the data sources table. The data source configuration may be modified 
by clicking on the data source link as shown in the following screenshot:
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Creating tables in the Oracle database
We need to create database tables for database persistence. Create database tables 
CATALOG, EDITION, SECTION, and ARTICLE with the following SQL script; the script 
can be run from the SQL command line:

CREATE TABLE CATALOG (id INTEGER PRIMARY KEY NOT NULL, 
journal VARCHAR(100));
CREATE TABLE EDITION (id INTEGER PRIMARY KEY NOT NULL, 
edition VARCHAR(100));
CREATE TABLE SECTION (id VARCHAR(100) PRIMARY KEY NOT NULL, 
sectionName VARCHAR(100));
CREATE TABLE ARTICLE(id INTEGER PRIMARY KEY NOT NULL, 
title VARCHAR(100));

As Oracle database does not support the autoincrement of primary keys, we need 
to create sequences for autoincrementing, one for each table. Create sequences 
CATALOG_SEQ, EDITION_SEQ, SECTION_SEQ, and ARTICLE_SEQ with the following 
SQL script.
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CREATE SEQUENCE CATALOG_SEQ MINVALUE 1 START WITH 1 INCREMENT BY 1 
NOCACHE; 
CREATE SEQUENCE EDITION_SEQ MINVALUE 1 START WITH 1 INCREMENT BY 1 
NOCACHE; 
CREATE SEQUENCE SECTION_SEQ MINVALUE 1 START WITH 1 INCREMENT BY 1 
NOCACHE; 
CREATE SEQUENCE ARTICLE_SEQ MINVALUE 1 START WITH 1 INCREMENT BY 1 
NOCACHE;

We also need to create join tables between tables. Create join tables using the 
following SQL script:

CREATE TABLE  CATALOGEDITIONS(catalogId INTEGER, editionId INTEGER);
CREATE TABLE EditionCatalog(editionId INTEGER, catalogId INTEGER);
CREATE TABLE EditionSections (editionId INTEGER, sectionId INTEGER);
CREATE TABLE SectionEdition (sectionId INTEGER, editionId INTEGER);
CREATE TABLE SectionArticles(sectionId INTEGER, articleId INTEGER);
CREATE TABLE ArticleSection(articleId INTEGER, sectionId INTEGER);

Creating an EJB project
Now, we shall create an EJB project to create entity beans.

In Eclipse, go to File | New | Other to create an EJB project. In the New  
wizard, select EJB Project from the EJB folder and click on Next as shown  
in the following screenshot:
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Specify a Project name and click on New Runtime to configure a target runtime  
for Oracle WebLogic Server 12c if not already configured, as shown in the  
following screenshot:

In New Server Runtime Environment, select the Oracle WebLogic Server 12c 
(12.1.1) server, tick Create a new local server checkbox, and then click on  
Next as shown in the following screenshot:
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Select the WebLogic home directory, and the Java home directory also gets  
specified. Click on Next as shown in the following screenshot:

Select Server Type as Local and then select Domain Directory as C:\Oracle\
Middleware\user_project\domains\base_domain. Click on Finish as shown  
in the screenshot:
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The Target runtime server gets configured. Select EJB module version as  
3.1. Select the default Configuration and click on Next as shown in the  
following screenshot:

Select the default Java configuration for Source folders on build path as ejbModule 
and Default output folder as build/classes, and click on Next as shown in the 
following screenshot:
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Select the default EJB module configuration and click on Finish. An EJB project  
gets created. The EJB project does not contain any EJBs, which we shall add in 
subsequent sections.

Right-click on the project node in the Project Explorer tab and select Project 
Properties. Select Project Facets in the Properties window. The EJB project should  
have the EJB Module project facet enabled as shown in the following screenshot:
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Session beans require an EJB project and entity beans require the JPA project facet 
for database persistence. We have created an EJB project but this EJB project does not 
have the JPA project facet enabled by default. In the next section, we shall add the 
JPA facet to the EJB project.
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Adding the JPA facet
We require the JPA project facet to create entity beans. We could have created a 
JPA project to start with, but to create a session bean facade we first created an EJB 
project; session beans require an EJB project by default. To add the JPA project facet, 
right-click on the project in Project Explorer and select Properties. Select the Project 
Facets node and select the JPA 1.0 project facet. Click on the Further configuration 
available link as shown in the screenshot:

In JPA Facet, select Platform as Generic 1.0. Select JPA implementation as Oracle 
TopLink 11g R1. We also need a database connection for JPA. To configure a new 
Connection, click on the Add connection link as shown in the following screenshot:
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In Connection Profile, select the Oracle Database Connection profile, specify a 
connection Name and click on Next as shown in the following screenshot:
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In the Specify a Driver and Connection Details window, select the driver as Oracle 
Database 10g Driver. Specify SID as XE, Host as localhost, Port number as 1521, 
User name as OE, and Password as OE. The Connection URL gets specified. Now, 
click on Test Connection as shown in the following screenshot:

A Ping succeeded message indicates that the connection got established. Click on 
Next and then click on Finish in Summary. A Connection for the JPA Facet gets 
configured. Click on OK as shown in the following screenshot:
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The connection profile we have configured is for the JPA project facet, not to  
run client applications to entity beans. The data source we configured in the 
WebLogic server with JNDI jdbc/OracleDS is for running client applications  
to entity beans. Click on Apply in Properties to install the JPA facet as shown  
in the following screenshot:
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A node for JPA Content gets added to the EJB project. A persistence.xml 
configuration file gets added.

Creating entity beans from tables
In this section, we shall create entities from database tables we created earlier.  
Select the project node in Project Explorer and go to File | New | Other. In the New 
wizard window, select JPA Entites from Tables from the JPA folder as shown in the 
following screenshot. Click on Next. Alternatively, you can right-click on the project 
node in Project Explorer and select Generate Entities from Tables from JPA Tools.
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In Select Tables, select the database connection configured when adding the JPA 
project facet. Select the OE Schema. Select the CATALOG, EDITION, SECTION, 
and ARTICLE tables. Select the checkbox Update class list in persistence.xml and 
click on Next as shown in the following screenshot:
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Defining entity relationships
The entities to be generated have relationships between them. The Catalog entity 
has a one-to-many relationship with the Edition entity. The Edition entity has 
a one-to-many relationship with the Section entity and the Section entity has a 
further one-to-many relationship with the Article entity. In Table Associations,  
we shall define the associations between the tables. Click on the + button to create  
an association as shown in the following screenshot:

In Association Tables, select the tables to create an association between them. We 
will need to create an association for each of the relationships. Click on the button  
for the Table 1 field as shown in the following screenshot:
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Select the CATALOG table and click on OK, as shown in the following screenshot:

Similarly, select EDITION as Table 2. The Association kind is Simple  
association by default, which is what we need. Now, click on Next as shown  
in the following screenshot:
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Specify the join columns between the CATALOG and EDITION tables as ID using 
the Add button and click on Next as shown in the following screenshot:

As the Catalog entity has a one-to-many relation with the Edition entity, in 
Association Cardinality select One to many and click on Finish as shown in the 
following screenshot:

The table association between the CATALOG and EDITION tables gets defined  
and the table join also gets defined.


