

Java EE Development with
Eclipse

Develop Java EE applications with Eclipse and
commonly used technologies and frameworks

Deepak Vohra

 BIRMINGHAM - MUMBAI

Java EE Development with Eclipse

Copyright © 2012 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the author, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: December 2012

Production Reference: 1131212

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78216-096-0

www.packtpub.com

Cover Image by Asher Wishkerman (wishkerman@hotmail.com)

Credits

Author
Deepak Vohra

Reviewers
Filippo Bosi

Frank Nimphius

Federico Tomassetti

Phil Wilkins

Acquisition Editors
Mary Nadar

Dhwani Devater

Lead Technical Editors
Sweny M. Sukumaran

Neeshma Ramakrishnan

Technical Editors
Sharvari Baet

Devdutt Kulkarni

Project Coordinator
Amey Sawant

Proofreader
Maria Gould

Indexer
Tejal R. Soni

Production Coordinator
Conidon Miranda

Cover Work
Conidon Miranda

About the Author

Deepak Vohra is a consultant and a principal member of the NuBean.com
software company. Deepak is a Sun Certified Java Programmer and Web
Component Developer, and has worked in the fields of XML and Java programming
and J2EE for over five years. Deepak is the co-author of the Apress book, Pro XML
Development with Java Technology, and was the technical reviewer for the O'Reilly
book, WebLogic: The Definitive Guide. Deepak was also the technical reviewer for the
Course Technology PTR book, Ruby Programming for the Absolute Beginner, and the
technical editor for the Manning Publications book, Prototype and Scriptaculous in
Action. Deepak is also the author of the Packt Publishing books, JDBC 4.0 and Oracle
JDeveloper for J2EE Development, Processing XML documents with Oracle JDeveloper 11g,
EJB 3.0 Database Persistence with Oracle Fusion Middleware 11g, and Java 7 JAX-WS
Web Services.

About the Reviewers

Filippo Bosi (Twitter @filippobosi) is currently employed at Imola Informatica
(www.imolinfo.it), an Italian consulting company where he works as Senior
Advisor, managing important projects for banking and insurance companies.

He has been working for more than 25 years in the computer programming
field. He started his career as a freelance consultant and writer for some Italian
computer magazines, while at the same time offering freelance consultancies in
the first years that banking and insurance companies were starting to move away
from mainframes in order to implement their business.

In the last four years, he's been involved in redesigning from scratch the entire
information system of a banking institution in an SOA fashion, in studying ways
to apply Semantic Web technologies to address Enterprise Architecture and
Knowledge Management problems for some Italian large banking and insurance
companies, and an European project (Cloud4SOA – www.cloud4soa.eu) that
attempts, through the use of semantics, to address the portability of applications
and data between different PaaS providers.

He is currently interested in Agile and Lean Management (applied), design of SOA
Architectures, Enterprise Architecture, Cloud Computing, and Semantic Web.

He can be contacted at fbosi@imolinfo.it.

Frank Nimphius is a Senior Principal Product Manager in the Oracle Application
Development Tools group at Oracle Corporation, specializing in Oracle JDeveloper
and the Oracle Application Development Framework (ADF).

In his current position, Frank represents and evangelizes the Oracle JDeveloper
and Oracle ADF product worldwide as a speaker at user group and technology
conferences, as well as in various publications. Frank runs the ADF Code Corner
website, the OTN Forum Harvest blog, and is the co-author of the Oracle Fusion
Developer Guide book published in 2009 by McGraw Hill.

Federico Tomassetti is a software engineer and a PhD student in computer
engineering. He is interested mainly in model-driven development and domain
specific languages. He has experience as a technical writer, teacher, and consultant
about these technologies.

He is studying at the Politecnico di Torino. He spent a semester in the Universität
Karlsruhe and one at Fortiss, an Institut of the Technische Universität München.

Phil Wilkins has spent nearly 25 years in the software industry working with both
multinationals and software startups. He started out as a developer and has worked
his way up through technical and development management roles. The last 12 years
have been primarily in Java based environments. He now works as an architect with
an enterprise wide technical remit within the IT group for a global optical healthcare
manufacturer and retailer.

Outside of his work commitments, he has contributed his technical capabilities to
supporting others in a wide range of activities from the development of community
websites to providing input and support to people authoring books, and developing
software ideas and businesses.

When not immersed in work and technology, he spends his down time pursing his
passion for music and time with his wife and two boys.

I'd like to take this opportunity to thank my wife Catherine and
our two sons Christopher and Aaron for their tolerance for the
innumerable hours that I spent in front of a computer contributing
to both my employer and the many other IT related activities that
I've supported over the years.

www.PacktPub.com

Support files, eBooks, discount offers and more
You might want to visit www.PacktPub.com for support files and downloads related
to your book.

Did you know that Packt offers eBook versions of every book published, with PDF and ePub
files available? You can upgrade to the eBook version at www.PacktPub.com and as a print
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at
service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up
for a range of free newsletters and receive exclusive discounts and offers on Packt books
and eBooks.

TM

http://PacktLib.PacktPub.com

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital book
library. Here, you can access, read and search across Packt's entire library of books.

Why Subscribe?
•	 Fully searchable across every book published by Packt
•	 Copy and paste, print and bookmark content
•	 On demand and accessible via web browser

Free Access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view nine entirely free books. Simply use your login credentials
for immediate access.

Instant Updates on New Packt Books
•	 Get notified! Find out when new books are published by following @

PacktEnterprise on Twitter, or the Packt Enterprise Facebook page..

Table of Contents
Preface	 1
Chapter 1: EJB 3.0 Database Persistence	 9

Configuring a data source	 10
Creating tables in the Oracle database	 15
Creating an EJB project	 16
Adding the JPA facet	 22
Creating entity beans from tables	 26

Defining entity relationships	 28
Setting cascade	 31
Generating default entities	 34
Creating the Catalog entity	 38

The Catalog entity class	 40
Creating the Edition entity	 41

The Edition entity class	 42
Creating the Section entity	 44

The Section entity class	 44
Creating the Article entity	 46

The Article entity class	 46
Creating the JPA persistence configuration file	 48

Creating a session bean facade	 49
Creating an EntityManager	 51
Specifying getter methods	 52
Creating test data	 52
The session bean class	 53
The remote business interface	 57

Creating the application.xml descriptor	 58
Creating a test client	 60

The catalog.jsp file	 62

Table of Contents

[ii]

Packaging and deploying the entity bean application 	 64
The build script	 65
Running the build script	 68

Testing the JSP client	 70
Summary	 71

Chapter 2: O/X Mapping with JAXB 2.x	 73
JAXB 2.x advantages	 74
Creating a JAXB project	 74
Creating an XML Schema	 79
Compiling the XML Schema	 82
Marshalling an XML document	 92
Unmarshalling an XML document	 96
Java to XML mapping	 100
Summary	 108

Chapter 3: Developing a Web Project for JasperReports	 109
Setting the environment	 110
Creating a Dynamic Web project in Eclipse	 112
Creating the configuration file	 114
Creating a web application	 121

Creating a report design	 122
Setting the report title	 122
Creating a JDBC connection	 123
Generating a PDF report	 123
Creating an Excel report	 124

Packaging and deploying the web application	 126
Running the web application	 131
Summary	 132

Chapter 4: Creating a JSF Data Table	 133
Setting the environment	 134
Creating a web project	 134
Creating a managed bean	 138

Constructing the managed bean class	 142
The managed bean class	 144

Creating a JSF page	 150
Adding components to the JSF page	 151
The JSF page	 164

Running the JSF page	 166
Summary	 169

Table of Contents

[iii]

Chapter 5: Templating with Facelets	 171
Facelets structure	 171
Setting the environment	 174
Configuring JSF 2.0 support in WLS	 175
Creating a Facelets project	 179
Creating a managed bean	 190
Creating a Facelets template	 201
Creating Facelets	 204
Creating navigation	 207
Running the Facelets application	 208
Summary	 212

Chapter 6: Creating Apache Trinidad User Interfaces	 213
Configuring Trinidad	 214
Setting the environment	 214
Creating a Trinidad project	 215
Creating Trinidad UIs	 222
Creating a managed bean	 223
Adding Trinidad components	 235
Running the Trinidad application	 248
Summary	 252

Chapter 7: Creating an AJAX Application	 253
Setting the environment	 254
Creating a Dynamic Web project	 255
Creating a web application for AJAX	 256
Creating a servlet	 258
Developing the AJAX web application	 262
Packaging the web application	 274
Deploying the web application	 277
Running the web application	 279
Summary	 282

Chapter 8: Creating a JAX-WS Web Service	 283
Setting the environment	 284
Creating a web service project	 285
Creating a WebLogic web service	 288
Running the web service on the server	 291
Generating a WSDL	 294
Testing WSDL in web services explorer	 300
Generating a bindings file	 302

Table of Contents

[iv]

Creating a client class	 304
Creating a build file	 306
Testing the web service	 312
Summary	 316

Chapter 9: RESTful Web Services Using the JAX-RS API	 317
Setting the environment	 318
Creating a web project	 319
Creating and running a resource class	 327
Creating and running a test client	 334
Summary	 340

Chapter 10: Spring	 341
Setting the environment	 344
Creating a web project with Spring facet	 344
Method Interception	 348

Creating a Spring bean class	 348
Creating a bean definition file	 353
Creating a method interceptor	 366
Creating a Spring client	 368

Schema-based aspect definitions	 374
Creating a Spring and JSF faceted web project	 376
Creating a bean class	 381
Creating an AOP JavaBean	 384
Creating an applicationContext.xml configuration file	 386

Creating a JSF page	 394
Running the JSF page	 397

Summary	 399
Index	 401

Preface
Java Platform, Enterprise Edition (Java EE) 6 is the industry standard for enterprise
Java computing. Eclipse IDE for Java EE developers is the most commonly used Java
IDE for Java EE development. Eclipse IDE for Java EE developers supports Java EE 5
completely and also supports several features from Java EE 6.

The Oracle WebLogic Server product line is the industry's most comprehensive
platform for developing, deploying, and integrating enterprise applications. Oracle
Enterprise Pack for Eclipse provides a set of plugins (project facets) for Eclipse
development with WebLogic Server.

While a number of books are available on Eclipse IDE for Java Developers, none or
very few are available on Eclipse IDE for Java EE Developers. In this book, we shall
discuss Java EE development in Eclipse IDE for Java EE developers. While it is not
feasible to cover all of the more than 30 technologies in the Java EE stack (http://
www.oracle.com/technetwork/java/javaee/tech/index.html), we shall discuss
the most commonly used Java EE technologies, especially the ones Eclipse IDE
for Java EE developers (or Oracle Enterprise Pack for Eclipse) provides Project for
Facets. Oracle Enterprise Pack for Eclipse is just an enhancement of Eclipse IDE for
Java EE developers with integrated support for Oracle WebLogic Server.

Preface

[2]

The objective of the book is to discuss how a developer would develop Java EE
applications using commonly used Java EE technologies and frameworks in
Eclipse IDE for Java EE developers. The book covers all aspects of application
development including:

•	 Setting the environment for an application
•	 Using the Eclipse IDE wizards and the Component Palette
•	 Running a sample application

What this book covers
Chapter 1, EJB 3.0 Database Persistence discusses creating an EJB project using the
EJB 3.0 Module project facet. To create an entity bean, we add the JPA project facet.
Subsequently, we generate entity beans from Oracle database tables. We create a
session bean facade for the entity beans; wrapping an entity bean in a session bean
facade is a best practice. We create a JSP client for the EJB application. We package
and deploy the EJB application to Oracle WebLogic Server using an Ant build
script and run the test client on the WebLogic Server.

Chapter 2, O/X Mapping with JAXB 2.x discusses the Object/XML (O/X) bi-directional
mapping provided by the JAXB framework. We discuss the advantages of JAXB 2.x
over JAXB 1.0. We create a JAXB web project using the JAXB project facet. We use
the EclipseLink 2.4 persistence provider. We create an XML Schema and generate
JAXB classes from the XML Schema using JAXB schema compilation. Subsequently,
we marshall an XML document from a Java Document Object Model (DOM)
document object, and also unmarshall an XML document using the compiled Java
classes. We map an annotated Java class to an XML document using the annotations
API. We also demonstrate the support for mapping Java classes to an XML Schema.

Chapter 3, Developing a Web Project for JasperReports demonstrates the use of the
Oracle Enterprise Pack for Eclipse's integrated support for Oracle WebLogic Server
to deploy and run any web application that requires an application server. First, we
configure an Oracle database data source in WebLogic Server. We create and deploy
a web application for JasperReports to the WebLogic Server, and subsequently run
the web application to create PDF and Excel reports.

Preface

[3]

Chapter 4, Creating a JSF Data Table discusses how to use the JavaServer Faces project
facet to create a JSF data table. First, we create a web project. Subsequently, we create
a managed bean, create a JSF page, add a JSF data table to the JSF page, and run the
JSF web application on the integrated WebLogic Server to create a JSF data table.

Chapter 5, Templating with Facelets discusses templating with Facelets.
Templating is the use of a common "template", which is just an XHTML page, in
Facelets' composition pages. Templating makes use of Facelets' header and footer
pages for describing the common sections of Facelets' composition pages. WebLogic
Server includes a shared library for JSF 2.0, which we configure first. We create a
web project for Facelets, and create a managed bean to create a JSF data table. We
add the 2.0 version of the JavaServer Faces project facet to the web project. For
templating, we add a Facelets Template in which we configure the default sections
of a Facelets composition page, a header, a content section, and a footer. We add
Facelets composition pages for an SQL query input and a JSF Data Table output.
We add the implicit navigation, a new feature in JSF 2.0. We run the Facelets
application to demonstrate templating by including the same header and footer
images in the input and output pages.

Chapter 6, Creating Apache Trinidad User Interfaces discusses the Trinidad project
facet. Trinidad was formerly Oracle ADF Faces and provides a set of user interface
components. First, we create a web project and add the Trinidad project facet to it.
Subsequently, we create JSPs to create and find a catalog entry in Oracle database.
We add Trinidad components to the JSP pages. We run the Trinidad application in
the integrated WebLogic Server.

Chapter 7, Creating an AJAX Application discusses how to develop an AJAX
application to send an asynchronous request to the server and receive a response
from the server. The JavaScript project facet is enabled by default in a web project.
The AJAX application is used to create a catalog entry in Oracle database by first
validating the catalog ID using AJAX. The application is packaged, deployed, and
run on the WebLogic Server.

Chapter 8, Creating a JAX-WS Web Service discusses how to use the Java API for XML
web services (JAX-WS) to create a web service. First, we create a web service project,
which has the Oracle WebLogic web service project facet associated with it. We
test the web service on the server and generate a WSDL, which we test in the web
explorer. We create a client class for the web service and package, then deploy and
test the web service on the WebLogic Server.

Preface

[4]

Chapter 9, RESTful Web Services Using the JAX-RS API discusses RESTful web services
using Java API for RESTful web services (JAX-RS), which are specified in the JSR
311 specification. We use the JAX-RS project facet for the RESTful web service. We
create a Resource class, which is exposed as a URI path using the @PATH annotation.
Subsequently, we create a Jersey Client API to test the web service.

Chapter 10, Spring discusses how to create a Spring framework application using
the Spring project facet. We discuss method interception with a method interceptor
and a Spring client. We also discuss Aspect Oriented Programming (AOP) in
combination with JSF. We discuss creating a Spring bean, a bean
definition file, and an AOP JavaBean.

What you need for this book
The book is based on Eclipse IDE for Java EE Developers version 3.7. We use
the Oracle Enterprise Pack for Eclipse packaged Eclipse IDE with integrated
support for Oracle WebLogic Server 12c, which may be downloaded from
http://www.oracle.com/technetwork/middleware/ias/downloads/wls-
main-097127.html. We have used the Oracle Database Express Edition 11g
Release 2, which can be downloaded from http://www.oracle.com/technetwork/
products/express-edition/overview/index.html.

Some other chapter specific software such as JasperReports is also required. We
have used the Windows version, but if you have Linux installed the book may
still be used (though the source code and samples have not been tested with Linux).
Slight modifications may be required with the Linux Install; for example, the
directory paths on Linux would be different than the Windows directory paths
used in the book. You need to install J2SE 5.0 or later.

Who this book is for
The target audience of the book is Java EE application developers who want to
learn about the practical use of Eclipse IDE for application development. This
book is suitable for professional Java EE developers. The book is also suitable
for an intermediate/advanced level course in Java EE development. The target
audience is expected to have prior, albeit beginner's, knowledge about Java EE,
Enterprise JavaBeans (EJB) 3.0, entity and session EJBs, JavaServer Faces (JSF),
ADF Faces, AJAX, web services, and Spring framework. The book also requires
some familiarity with WebLogic Server and Eclipse IDE.

Preface

[5]

Conventions
In this book, you will find a number of styles of text that distinguish between
different kinds of information. Here are some examples of these styles, and an
explanation of their meaning.

Code words in text are shown as follows: "The catalog.xsd Schema gets parsed
and compiled."

A block of code is set as follows:

<?xml version="1.0" encoding="UTF-8"?>
<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 targetNamespace="http://www.example.org/catalog"
xmlns:catalog="http://www.example.org/catalog"
 elementFormDefault="qualified">
 <xsd:element name="catalog" type="catalog:catalogType" />
 <xsd:element name="catalogid" type="xsd:int" />
 <xsd:complexType name="catalogType"> [default]

When we wish to draw your attention to a particular part of a code block, the
relevant lines or items are set in bold:

<?xml version="1.0" encoding="UTF-8"?>
<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema"

 targetNamespace="http://www.example.org/catalog"
xmlns:catalog="http://www.example.org/catalog"

 elementFormDefault="qualified">
 <xsd:element name="catalog" type="catalog:catalogType" />

New terms and important words are shown in bold. Words that you see on the
screen, in menus or dialog boxes for example, appear in the text like this: "clicking
the Next button moves you to the next screen".

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Preface

[6]

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or may have disliked. Reader feedback is important for
us to develop titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com,
and mention the book title through the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide on www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Downloading the example code
You can download the example code files for all Packt books you have purchased
from your account at http://www.packtpub.com. If you purchased this book
elsewhere, you can visit http://www.packtpub.com/support and register to have
the files e-mailed directly to you.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in the text or
the code—we would be grateful if you would report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
book. If you find any errata, please report them by visiting http://www.packtpub.
com/support, selecting your book, clicking on the errata submission form link, and
entering the details of your errata. Once your errata are verified, your submission
will be accepted and the errata will be uploaded to our website, or added to any list
of existing errata, under the Errata section of that title.

http://www.packtpub.com
http://www.packtpub.com/support

Preface

[7]

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all
media. At Packt, we take the protection of our copyright and licenses very
seriously. If you come across any illegal copies of our works, in any form,
on the Internet, please provide us with the location address or website name
immediately so that we can pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors, and our ability to bring you
valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem
with any aspect of the book, and we will do our best to address it.

Copyright Credits
Some of the contents of this book were originally published by Oracle Technology
Network and http://home.java.net/. They are republished with the permission
of Oracle Corporation.

mailto:copyright@packtpub.com

EJB 3.0 Database
Persistence

EJB's entity beans are the most common technology for database persistence.
Developing entity EJBs requires a Java IDE, an application server, and a relational
database. Eclipse 3.7 provides wizards for developing entity beans and session
facades. In this chapter, we shall develop EJB 3.0 entity beans including session
facades. We shall deploy the EJB application to WebLogic Server 12c (12.1.1) and
test database persistence with the Oracle database 11g XE.
In this chapter, we shall learn the following:

•	 Configuring a data source in WebLogic Server (WLS) with the
Oracle database

•	 Creating tables in the Oracle database
•	 Creating an Enterprise JavaBeans (EJB) project
•	 Adding the Java Persistence API (JPA) project facet
•	 Generating entity beans from database tables
•	 Creating a session bean facade
•	 Creating the application.xml file
•	 Creating a test client
•	 Packaging and deploying the entity bean application
•	 Testing the JavaServer Pages (JSP) client

EJB 3.0 Database Persistence

[10]

Configuring a data source
In this section we shall configure a data source in Oracle WebLogic Server 12c.
First, download and install the Oracle WebLogic Server from http://www.oracle.
com/technetwork/middleware/ias/downloads/wls-main-097127.html.
Configure the base_domain structure in the WebLogic Server console. We need
to create a data source so that when we deploy and run the application in the server,
the application has access to the database. Log in to the WebLogic Server
Administration Console server for the base_domain domain using the URL
http://localhost:7001/Console. In the base_domain domain structure, expand
the Services tab and select the Data Sources node. In the Data Sources table, click
on New and select Generic Data Source as shown in the following screenshot:

http://www.oracle.com/technetwork/middleware/ias/downloads/wls-main-097127.html
http://www.oracle.com/technetwork/middleware/ias/downloads/wls-main-097127.html
http://localhost:7001/Console
http://localhost:7001/Console

Chapter 1

[11]

In Create a New JDBC Data Source, specify a data source name and JNDI Name
(for example, jdbc/OracleDS) for the data source. The database shall be accessed
using JNDI Name lookup in the Creating a session bean facade section. Select
Database Type as Oracle and click on Next as shown in the following screenshot:

EJB 3.0 Database Persistence

[12]

In JDBC Data Source Properties, select Database Driver as Oracle's Driver (Thin
XA). Another JDBC driver may also be selected based on requirements. Refer to
the Selection of the JDBC Driver document available at http://docs.oracle.com/
cd/E14072_01/java.112/e10590/keyprog.htm#i1005587 for selecting a suitable
JDBC driver. Click on Next as shown in the following screenshot:

By default, an XA JDBC driver supports global transactions and uses the Two-Phase
Commit global transaction protocol. Global transactions are recommended for EJBs
using container managed transactions for relation between the JDBC driver (XA or
non-XA) transactionality and EJB container managed transactions. Click on Next as
shown in the following screenshot. (for more information on global transactions, refer
http://docs.oracle.com/cd/E23943_01/web.1111/e13737/transactions.htm):

Chapter 1

[13]

Specify Database Name as XE, Host Name as localhost, Port as 1521, Database User
Name and Password as OE, and click on Next as shown in the following screenshot:

EJB 3.0 Database Persistence

[14]

The Driver Class Name textbox and connection URL textbox get configured. Click
on the Test Configuration button to test the database connection. If a connection gets
established the message Connection test succeeded. gets displayed. Click on Next as
shown in the following screenshot:

In Select targets, select the AdminServer option and click on Finish. A data source
gets added to the data sources table. The data source configuration may be modified
by clicking on the data source link as shown in the following screenshot:

Chapter 1

[15]

Creating tables in the Oracle database
We need to create database tables for database persistence. Create database tables
CATALOG, EDITION, SECTION, and ARTICLE with the following SQL script; the script
can be run from the SQL command line:

CREATE TABLE CATALOG (id INTEGER PRIMARY KEY NOT NULL,
journal VARCHAR(100));
CREATE TABLE EDITION (id INTEGER PRIMARY KEY NOT NULL,
edition VARCHAR(100));
CREATE TABLE SECTION (id VARCHAR(100) PRIMARY KEY NOT NULL,
sectionName VARCHAR(100));
CREATE TABLE ARTICLE(id INTEGER PRIMARY KEY NOT NULL,
title VARCHAR(100));

As Oracle database does not support the autoincrement of primary keys, we need
to create sequences for autoincrementing, one for each table. Create sequences
CATALOG_SEQ, EDITION_SEQ, SECTION_SEQ, and ARTICLE_SEQ with the following
SQL script.

EJB 3.0 Database Persistence

[16]

CREATE SEQUENCE CATALOG_SEQ MINVALUE 1 START WITH 1 INCREMENT BY 1
NOCACHE;
CREATE SEQUENCE EDITION_SEQ MINVALUE 1 START WITH 1 INCREMENT BY 1
NOCACHE;
CREATE SEQUENCE SECTION_SEQ MINVALUE 1 START WITH 1 INCREMENT BY 1
NOCACHE;
CREATE SEQUENCE ARTICLE_SEQ MINVALUE 1 START WITH 1 INCREMENT BY 1
NOCACHE;

We also need to create join tables between tables. Create join tables using the
following SQL script:

CREATE TABLE CATALOGEDITIONS(catalogId INTEGER, editionId INTEGER);
CREATE TABLE EditionCatalog(editionId INTEGER, catalogId INTEGER);
CREATE TABLE EditionSections (editionId INTEGER, sectionId INTEGER);
CREATE TABLE SectionEdition (sectionId INTEGER, editionId INTEGER);
CREATE TABLE SectionArticles(sectionId INTEGER, articleId INTEGER);
CREATE TABLE ArticleSection(articleId INTEGER, sectionId INTEGER);

Creating an EJB project
Now, we shall create an EJB project to create entity beans.

In Eclipse, go to File | New | Other to create an EJB project. In the New
wizard, select EJB Project from the EJB folder and click on Next as shown
in the following screenshot:

Chapter 1

[17]

Specify a Project name and click on New Runtime to configure a target runtime
for Oracle WebLogic Server 12c if not already configured, as shown in the
following screenshot:

In New Server Runtime Environment, select the Oracle WebLogic Server 12c
(12.1.1) server, tick Create a new local server checkbox, and then click on
Next as shown in the following screenshot:

EJB 3.0 Database Persistence

[18]

Select the WebLogic home directory, and the Java home directory also gets
specified. Click on Next as shown in the following screenshot:

Select Server Type as Local and then select Domain Directory as C:\Oracle\
Middleware\user_project\domains\base_domain. Click on Finish as shown
in the screenshot:

Chapter 1

[19]

The Target runtime server gets configured. Select EJB module version as
3.1. Select the default Configuration and click on Next as shown in the
following screenshot:

Select the default Java configuration for Source folders on build path as ejbModule
and Default output folder as build/classes, and click on Next as shown in the
following screenshot:

EJB 3.0 Database Persistence

[20]

Select the default EJB module configuration and click on Finish. An EJB project
gets created. The EJB project does not contain any EJBs, which we shall add in
subsequent sections.

Right-click on the project node in the Project Explorer tab and select Project
Properties. Select Project Facets in the Properties window. The EJB project should
have the EJB Module project facet enabled as shown in the following screenshot:

Chapter 1

[21]

Session beans require an EJB project and entity beans require the JPA project facet
for database persistence. We have created an EJB project but this EJB project does not
have the JPA project facet enabled by default. In the next section, we shall add the
JPA facet to the EJB project.

EJB 3.0 Database Persistence

[22]

Adding the JPA facet
We require the JPA project facet to create entity beans. We could have created a
JPA project to start with, but to create a session bean facade we first created an EJB
project; session beans require an EJB project by default. To add the JPA project facet,
right-click on the project in Project Explorer and select Properties. Select the Project
Facets node and select the JPA 1.0 project facet. Click on the Further configuration
available link as shown in the screenshot:

In JPA Facet, select Platform as Generic 1.0. Select JPA implementation as Oracle
TopLink 11g R1. We also need a database connection for JPA. To configure a new
Connection, click on the Add connection link as shown in the following screenshot:

Chapter 1

[23]

In Connection Profile, select the Oracle Database Connection profile, specify a
connection Name and click on Next as shown in the following screenshot:

EJB 3.0 Database Persistence

[24]

In the Specify a Driver and Connection Details window, select the driver as Oracle
Database 10g Driver. Specify SID as XE, Host as localhost, Port number as 1521,
User name as OE, and Password as OE. The Connection URL gets specified. Now,
click on Test Connection as shown in the following screenshot:

A Ping succeeded message indicates that the connection got established. Click on
Next and then click on Finish in Summary. A Connection for the JPA Facet gets
configured. Click on OK as shown in the following screenshot:

Chapter 1

[25]

The connection profile we have configured is for the JPA project facet, not to
run client applications to entity beans. The data source we configured in the
WebLogic server with JNDI jdbc/OracleDS is for running client applications
to entity beans. Click on Apply in Properties to install the JPA facet as shown
in the following screenshot:

EJB 3.0 Database Persistence

[26]

A node for JPA Content gets added to the EJB project. A persistence.xml
configuration file gets added.

Creating entity beans from tables
In this section, we shall create entities from database tables we created earlier.
Select the project node in Project Explorer and go to File | New | Other. In the New
wizard window, select JPA Entites from Tables from the JPA folder as shown in the
following screenshot. Click on Next. Alternatively, you can right-click on the project
node in Project Explorer and select Generate Entities from Tables from JPA Tools.

Chapter 1

[27]

In Select Tables, select the database connection configured when adding the JPA
project facet. Select the OE Schema. Select the CATALOG, EDITION, SECTION,
and ARTICLE tables. Select the checkbox Update class list in persistence.xml and
click on Next as shown in the following screenshot:

EJB 3.0 Database Persistence

[28]

Defining entity relationships
The entities to be generated have relationships between them. The Catalog entity
has a one-to-many relationship with the Edition entity. The Edition entity has
a one-to-many relationship with the Section entity and the Section entity has a
further one-to-many relationship with the Article entity. In Table Associations,
we shall define the associations between the tables. Click on the + button to create
an association as shown in the following screenshot:

In Association Tables, select the tables to create an association between them. We
will need to create an association for each of the relationships. Click on the button
for the Table 1 field as shown in the following screenshot:

Chapter 1

[29]

Select the CATALOG table and click on OK, as shown in the following screenshot:

Similarly, select EDITION as Table 2. The Association kind is Simple
association by default, which is what we need. Now, click on Next as shown
in the following screenshot:

EJB 3.0 Database Persistence

[30]

Specify the join columns between the CATALOG and EDITION tables as ID using
the Add button and click on Next as shown in the following screenshot:

As the Catalog entity has a one-to-many relation with the Edition entity, in
Association Cardinality select One to many and click on Finish as shown in the
following screenshot:

The table association between the CATALOG and EDITION tables gets defined
and the table join also gets defined.

