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Preface

This book is about a topic that has been known for many decades. However, 
it has become extremely popular only during the last two decades. We do 
not know what the reason is—maybe the very successful association with 
the purity and cleanliness of the lotus. However, we are happy it happened, 
since it is a challenging as well as rewarding topic, both theoretically and 
practically.

This book attempts to cover the whole spectrum, from the theoretical fun-
damentals to the practical applications of non-wettable surfaces. Although 
thousands of papers have been published, mainly on various production 
methods, many pieces of the puzzle are still missing. The most obvious 
missing part is the problem of long-term durability, which may be the main  
reason why superhydrophobic consumer products are not yet common. 
There are also some differences of opinion with regard to theoretical aspects, 
and even terminology. We very much hope that this book will be not only a 
source of knowledge, but also a catalyst for future development.

Robin Ras
Abraham Marmur
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Chapter 1

Non-Wetting Fundamentals
Abraham Marmura

aChemical Engineering Department, Technion – Israel Institute of  
Technology, Haifa 3200003, Israel
*E-mail: marmur@technion.ac.il

 

1.1  �Introduction
Wetting is a ubiquitous process that occurs in a huge variety of everyday bio-
logical and industrial systems. It is a macroscopic process that is very sensitive 
to surface properties on the nano or molecular scale. In most wetting situa-
tions the solid surface is wet only to some extent, depending on its chemical 
and physical nature. As is well known, the common quantitative measure of 
wettability is the contact angle (CA), which in most cases is greater than 0° 
and much less than 180°. However, the extreme cases of either complete wet-
ting (CA = 0°) or non-wetting (very high CA and additional possible criteria to 
be discussed below) offer interesting scientific challenges as well as practical 
applications. Actually, nature has been using non-wetting to solve a variety 
of important needs, and the main scientific principle has been known for 
about half a century.1 However, it is only about two decades ago that it started 
to become a very popular topic in science and engineering.2–46 The paper by 
Neinhuis and Barthlott3 served as an important trigger to the vast interest in 
non-wetting. It introduced the term “lotus effect” that refers to the self-clean-
ing of the lotus leaf (and many others), achieved by water drops easily rolling 
off the surface of the leaf, carrying with them dust and dirt particles.
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However, non-wettability is relevant not only for self-cleaning of leaves and 
not only for drops. For example, some aquatic animals breathe air from an 
air film on their body even when they are under water. This air film is re- 
created each time the animal goes back into the water.e.g.24,36 In addition, 
while natural systems are predominantly aqueous, the non-wettability of 
solid surfaces by oils, or organic liquids in general, is also of great practical 
importance in daily life and in industry.25,26

At this point it is important to discuss terminology,25,41 since there is no 
standard one and the variety of terms may lead to confusion. A surface that 
is not wetted by water drops in air, or may sustain an air film under water, 
is in many cases classified as “water repellent”. This usage is unfortunate, 
because there is nothing active in this process that repels water. The adjective 
“non-wettable” (or the noun “non-wetting”), on the other hand, appears to 
be more true to the facts. Moreover, the so-called “water repellent” surfaces 
are usually classified as “superhydrophobic”. However, when a surface is not 
wetted even by liquids of lower surface tension than of water, this term can-
not be used, since “hydro” specifically means water. For this purpose, other 
terms are used, seemingly at random. One term is “superoleophobic”. This is 
a problematic term, since a surface that is “superoleophobic” is usually also 
superhydrophobic, so “oleophobic” refers only to a part of the picture. On the 
other hand, a term such as “omniphobic”, which means “fearing everything”, 
is far too wide, since, after all, the discussion is about liquids, not about 
everything. Some time ago I suggested25,42 using the term “superhygropho-
bic” to imply non-wetting, because “hygro” in Greek means “liquid”. Thus, 
the terms “hygrophobic” and “superhygrophobic” exactly express various 
degrees of non-wetting by liquids in general. In summary, “non-wetting” is a 
generic term that may be specifically complemented by “superhydrophobic” 
or “superhygrophobic” when it is important to know what the specific case is.

In order to develop useful non-wettable surfaces, it is important to under-
stand the fundamental theory and apply it in choosing the chemical and 
physical properties of the surfaces. The objective of this chapter is to present 
the thermodynamic fundamentals of non-wetting, as they are derived from 
the general theory of wetting equilibrium. An important aspect that has not 
been sufficiently noticed and is emphasized here is that of thermodynamic 
stability. In general, qualitative aspects are stressed in this chapter, with only 
a few necessary equations, in order to give the general picture rather than the 
mathematical details.

1.2  �Wetting Equilibrium
As is well known, minimizing the energy of a system (internal, Gibbs, or 
Helmholtz energy, depending on the conditions at the system boundary) 
leads to a few indicators of equilibrium. First, for all systems, irrespective of 
the existence of interfaces, the temperature as well as the generalized chem-
ical potential of each species must be uniform throughout the whole sys-
tem. Then, there are two equations that govern the equilibrium state of an 
interface: the Young equation and the Young–Laplace equation. The former 
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determines the boundary condition for the shape of the liquid–gas interface, 
in terms of the local CA that must equal the Young CA, θY. For solid–liquid–
gas systems it is given by
  
	 cos θY = (σs − σs1)/σ	 (1.1)
  
here, σ and σs are the surface tension of the liquid and of the solid, respec-
tively, and σsl is the solid–liquid interfacial tension. This equation is correct 
for radii of curvature much above the nano scale, for which line tension is 
negligible e.g. ref. 47.

The Young–Laplace equation determines the shape of the interface, in 
terms of the local curvature that is determined by the local pressure differ-
ence across the interface:
  
	 P d − P c = σ(1/R1 + 1/R2)	 (1.2)
  
in this equation, P d and P c are the local pressure in the drop and in the con-
tinuous phase, respectively, and R1 and R2 are the local radii of curvature. 
In the absence of gravity (or other external fields), the pressure difference is 
constant across the interface. This implies that the average curvature is also 
constant across the interface. This well-known fact is important for under-
standing the behaviour of liquids inside roughness grooves, as will be dis-
cussed later.

Eqn (1.1) and (1.2) completely determine the equilibrium behaviour of an 
interface. When the solid surface is ideal (i.e. rigid, smooth, chemically uni-
form, non-reactive, and insoluble) there is only one solution to these equa-
tions, which requires the apparent, namely macroscopically measured CA, 
to equal the Young CA. However, when the surface is rough or chemically 
non-uniform, there are many possible solutions. Each solution is character-
ized by its own apparent CA. Naturally, it is important and interesting to find 
out (a) which of these solutions has the lowest energy, namely which is the 
thermodynamically most stable CA, and (b) what are the lowest (receding) 
and highest (advancing) apparent CAs. The difference between the advanc-
ing and receding CAs is called the CA hysteresis range.

When a mathematical function has multiple minima, the only way to iden-
tify these minima is to search for them one by one. To find out the global 
minimum, it is necessary to compare all of them and identify the lowest. 
There is no general mechanism for this. Luckily, for wetting on rough or 
chemically heterogeneous surfaces, we have approximate equations for the 
most stable CA.1,47 The accuracy of these equations improves as the ratio of 
the radius of curvature to the heterogeneity scale increases.49 For rough but 
chemically uniform surfaces we have the Wenzel equation,48 which assumes 
the liquid to penetrate completely into the roughness grooves. This state will 
be referred to as the W state. The apparent CA associated with this global 
minimum, θW, is given by
  
	 cos θw = r cos θY	 (1.3)
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in this equation, r is the roughness ratio, defined as the ratio between the true 
area of the solid surface and its projection on a horizontal surface. The above 
discussion of eqn (1.3) also holds for chemically heterogeneous surfaces. The 
most stable minimum in energy occurs at the angle that is given by1

	 cos θc = x1 cos θY1 + x2 cos θY2	 (1.4)
  
here, x1 and x2 are the ratios of contact area of the solid with each chemistry 
to the projection of total area of the solid, and θY1 and θY2 are the Young CAs 
corresponding to the two chemistries. If the heterogeneous solid surface is 
flat, then x1 + x2 = 1; however it is >1 if the heterogeneous solid surface is also 
rough. We can easily generalize this equation to a higher number of chemis-
tries, using the principle of linear averaging.

When the surface is rough, there may also be equilibrium positions asso-
ciated with partial penetration of the liquid into the roughness grooves. 
This case was first studied by Cassie and Baxter,1 therefore it is referred 
to as the CB state. The equation for the apparent CA in this case can be 
derived from eqn (1.3) and (1.4), assuming the solid surface to be repre-
sented by θY1, and air (or an inert gas in general) to be represented by θY2. 
Because of the perfect hydrophobicity of air, θY2 is taken to be 180°. The solid–
liquid area per unit projection area is rf f, where f is the area fraction of the 
projection of the wetted part of the solid surface, and rf is the roughness 
ratio of the wetted solid. The liquid–gas interface within the roughness is 
assumed to be flat, therefore its true area fraction is well approximated by 
its projected area fraction, (1 − f). The apparent flatness of the liquid–gas  
interface stems from the fact that the pressure inside the liquid is very 
nearly uniform (if the effect of gravity is small), therefore the radius of 
curvature around the liquid body must be uniform too. Since this radius 
of curvature is usually very large compared with the distance between the 
protrusions of the roughness, the liquid–gas interface inside the grooves 
appears to be almost flat. This theoretical conclusion12,25,29 has recently 
been demonstrated experimentally.50 Substituting the above information 
into eqn (1.4), the CB equation reads
  
	 cos θCB = rf f cos θY1 + (1 − f)(−1) = −1 + f(1 + rf cos θY1)	 (1.5)
  

A common problem in publications is the omission of rf. Assuming rf = 1 
is correct only if the roughness protrusions have flat tops that are parallel to 
the surface.

1.3  �Mechanism and Definition of Non-Wettability
The essential characteristic of a non-wettable surface is the ease of removal 
of a drop from the surface by applying a small force, such as a small frac-
tion of the drop weight. This is usually tested by tilting the surface, similarly 
to the natural slight tilting of leaves, and measuring the angle at which the 
drop rolls off. The currently existing quantitative definition, which requires  
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CA > ∼150° and roll-off angle < ∼5°, has only an empirical justification. 
For fundamental understanding and ability to design successful new non- 
wettable surfaces, it is essential to study this point in more detail. Because 
of the prevalence of drop-related non-wetting applications, it makes sense to 
first reach a full understanding of these cases. However, the definition must 
be made more general. Easy removal of a drop from a solid surface appears 
to depend on two main factors: (a) the ability of a weak external force to get 
the drop out of equilibrium, and (b) high rate of removal from the surface. 
The factor that may keep a drop in equilibrium under the effect of an external 
force (say, gravity) is contact angle hysteresis, namely the existence of a range 
of metastable CAs. This allows the drop to assume a non-axisymmetric equi-
librium shape as required by the external force. In contrast, on ideal surfaces 
the drop must be axisymmetric by definition, so it cannot stay in equilibrium 
even under the influence of a very small force.

Regarding the rate of removal, it is intuitively appealing to assume that the 
lower is the solid–liquid contact area, the higher is the rate of removal of the 
liquid from the solid surface.12,25,29 If this is true, then the crux of the matter 
is to find a way to reduce the wetted area as much as possible. The first idea 
that comes to mind is making the CA as high as possible. However, a simple 
geometrical calculation indicates that by increasing the Young CA from 90° 
(considered usually as the lower limit of hydrophobicity) to 120° (the highest 
available Young CA in practice), the reduction in the area wetted by a drop is 
only by a factor of about 2. Thus, a different mechanism, capable of much 
bigger increase in the CA, is required.

Actually, the above two factors that characterize non-wettability can be 
translated into the following two objectives: (a) achieving a very small hys-
teresis range (by making the surface as uniform as possible); and (b) making 
the CA as high as possible. In principle, both objectives can be attained if 
the surface that is in contact with the liquid consists mostly of a gas, e.g. air 
trapped in roughness grooves. A gas is the most hydrophobic “surface” we 
can have, and is also the most uniform. Therefore, a CB state, where a liquid 
is supported by relatively few solid peaks, certainly answers the need. This 
statement leads to a possible unified definition of all types of non-wettable 
surfaces. Qualitatively, this definition may simply state that the wetted area 
has to be sufficiently small. Some initial calculations14 showed that the wet-
ted area in the CB state may be orders of magnitude lower than that in the 
W state, even for the same CA. Further quantitative work is required, but it 
is clear that non-wettability has to be associated with the CB state, as was  
qualitatively concluded above and also by Quéré.8

Whatever the exact definition, from a practical point of view it is clear that 
in order to be non-wettable the solid surface must be either rough or porous. 
The grooves of a rough surface are interconnected and open to the atmo-
sphere. In a porous surface, the pores may be either interconnected or iso-
lated. In the latter case it may be much easier to keep the air in the pores in a 
stable state, but structural constraints may limit the reduction of the wetted 
area. Therefore, the following discussion is limited only to structures with 
interconnected grooves or pores.



Chapter 16

1.4  �Stability Considerations
As previously discussed, roughness of the solid surface is a necessary condi-
tion for non-wettability; however, it is not a sufficient condition. As shown 
below, the geometric characteristics of the roughness may have a major 
influence. In general, there may be more than one equilibrium position for 
the liquid–air interface (i.e. minima in the Gibbs energy) within the rough-
ness grooves. The most stable is, of course, the one that has the lowest Gibbs 
energy. Identifying equilibrium positions is easy: the two equilibrium indica-
tors, namely the Young and the Young–Laplace equations, have to be fulfilled. 
The latter is fulfilled by the curvature of the liquid–gas interface inside the 
roughness grooves being the same as that of the outer liquid–air interface, 
as explained above. This is achieved by assuming that this interface is prac-
tically flat. Thus, the only question that needs to be considered is whether 
the local CA can equal the Young CA at the position that is tested. Then, the 
identified CB states as well as the W state (that is always a potential equilib-
rium position) have to be compared to find out the most stable state. In the 
following we discuss first the case of a drop on a solid, non-wettable surface 
and then that of a non-wettable surface beneath a liquid.

1.4.1  �A Drop on a Non-Wettable Surface
To make the above analysis clearer it is best to study some examples. For a 
drop, it is technically easy to compare energies, since the energy varies mono-
tonically with the apparent CA that the drop makes with the solid surface.12,25 
Thus, all that is needed in order to decide which state is more stable is to find 
out which is associated with a lower apparent CA. One of the simplest forms 
of roughness is that of straight pillars with a square cross-section. Let us 
assume that the height of the pillars is h, and that they have flat, horizontal 
tops of width f  that cover an area fraction of f (see Figure 1.1(a)). In this 
case, there are only two possible equilibrium positions. One is the W state, 
and the other is the CB state with the liquid–gas interface attached to the top 
of the pillars. This is so, because it is only at the upper corner of the pillar 
that the liquid–gas interface can locally attain the Young CA when it is >90° 
(see Figure 1.1(b)). The roughness ratio is given by
  
	 1 4r h f  	 (1.6)
  

Therefore,
  
	 W Y Ycos cos (1 4 )cosr h f     	 (1.7)
  

The local roughness ratio of the top of the pillar equals 1, therefore
  
	 cos θCB = −1 + f(1 + cos θY)	 (1.8)
  



7Non-Wetting Fundamentals

The CB state is more stable if θCB < θW, namely if cos θCB > cos θW. When 
cos θY < 0, this leads to
  
	 r > 1 + (f − 1)(1 + 1/cos θY)	 (1.9)
  

Thus, for this simple type of roughness, for a given chemistry (cos θY) and 
surface density of protrusions (f), the only parameter that determines the 
stability of the non-wetting state is the roughness ratio that depends on the 
protrusion height, h. The wetting state turns from W to CB when the rough-
ness ratio, namely height of protrusion, is sufficiently high.

For roughness features that are not flat at the top, the situation is more 
complex and interesting.12,25 A simple example of two-dimensional rough-
ness with a circular cross-section clearly demonstrates the phenomena that 
may be observed. For convex roughness features (see Figure 1.2(a)) it is 

Figure 1.1  ��(a) A simple form of roughness, for which the transition from the Wenzel  
regime to the Cassie–Baxter regime depends only on the height of the 
protrusions, for a given chemistry (cos θY) and surface density of pro-
trusions (f). (b) The liquid–air interface may find a position that enables 
the local contact angle (CA) to equal the Young CA at the upper corner 
of the protrusion.

Figure 1.2  ��Equilibrium position of the liquid inside a roughness groove, as  
indicated by the contact angle (CA) being equal to the Young CA:12  
(a) convex roughness features; (b) concave roughness features.
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possible to get a stable CB state above a certain roughness ratio, as explained 
in the following. First, a position of the liquid–air interface for which the CA 
equals the Young CA has to be identified. This is feasible only if the maxi-
mum position angle, α, (see Figure 1.2(a)) is bigger than (180° − θY). Once 
this condition is fulfilled, we need to check if this position is a minimum in 
the Gibbs energy. It turns out12 that indeed it is a minimum, and that above a 
certain roughness ratio (determined by the maximum value of α) the CB state 
is more stable than the W state.

The picture is reversed when the roughness features are concave (Figure 
1.2(b)). In this case, the Gibbs energy keeps going down as the liquid pene-
tration into the grooves advances until the W state is reached. Thus, although 
there exists a position where the CA equals the Young CA (Figure 1.2(b)), the 
system is unstable and must get to the W state. As concluded from additional 
studies,29,43 it turns out that the specific protrusion shape within the group 
of convex shapes exerts a major effect. Rounded-top protrusions seem to be 
more effective than flat-topped ones with a sharp edges.29,43 This theoretical 
observation may explain why nature prefers rounded-top protrusions.

The role of fractal or multiscale roughness has attracted attention since 
the early publications on superhydrophobicity.2,15,21,23,28,30,33,34,39 A relatively 
recent study43 covered a wide range of parameters: three types of rough-
ness geometries with up to four roughness levels (see Figure 1.3). This study 
showed that the main effect is in reducing the sizes of the roughness protru-
sions that are necessary for stable superhydrophobicity. Thus, it is not the 
multiscale nature of the roughness that is responsible for superhydropho-
bicity; rather, it helps in making the features smaller, therefore more stable 
from a mechanical point of view.

An interesting extension of the above cases is the one dealing with supe-
rhygrophobic surfaces, namely non-wettable surfaces, for which the CAs of 
the wetting liquid is less than 90°. This case appears at first sight to contra-
dict the common requirement of hydrophobicity for non-wettable surfaces. 
However, if we look at the CB eqn (1.5), there is no a priori reason that pre-
vents cos θCB from being negative, even if θY < 90°. For example, the Young 
CA may be acute at the equilibrium positions shown in Figure 1.4. However, 

Figure 1.3  ��Various models of multiscale roughness used in simulations. Reprinted 
with permission from E. Bittoun and A. Marmur, Langmuir, 2012, 28, 
13933. Copyright 2012 American Chemical Society.43
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stability also needs to be checked for this case. The results of this test lead 
to conclusions that are similar to those of a drop on a hydrophobic rough 
surface: it may be stable for convex protrusions, and unstable otherwise.25 
Nevertheless, it is important to realize that a superhygrophobic state is nec-
essarily metastable, for the following reason. For a hygrophilic surface, the W 
state is characterized by a CA that is lower than the Young CA. On the other 
hand, the whole point in making a super-hygrophobic surface is to increase 
the CA beyond the Young CA. Thus, the W state, by definition, has a lower 
CA than the CB state, i.e. it is more stable. The special type of roughness 
that enables superhygrophobicity has been called by several names, such as 
“multivalued topography” or “re-entrant”.

1.4.2  �Underwater Superhydrophobicity
As mentioned in the introduction, there are important reasons for keeping a 
stable air film on a solid surface under water. This situation is not explicitly 
defined by apparent CAs related to the W or CB state. However, the concepts 
of the W and CB states remain valid in terms of the contact between the  
liquid and the solid.

The equilibrium criteria for the CB state turn out to be the same as for a 
drop.18 The local CA between the liquid and the roughness protrusion must 
be the Young CA, and the curvature of the liquid–air interfaces must appear 
to be approximately zero, since it equals the curvature of the outside surface 
of the liquid. The condition that differentiates unstable equilibrium from 
metastable or stable ones, in terms of the roughness geometry, turns out to 
be the same as for a drop.18 The stable CB state in this system is determined 
by eqn (1.9), which gives a minimum roughness ratio above which the CB 
state is stable.18

Figure 1.4  ��Superhygrophobic surface: the liquid–air interface is at equilibrium 
with a solid rough surface, the Young CA of which is <90°.25
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1.5  �Conclusions
The following points summarize the opinion of the author regarding the 
main fundamentals of non-wetting:
  

●● Non-wettability of solid surfaces may be qualitatively defined by stat-
ing that the wetted area must be minimal. This implies that the system 
must be in the CB state. A quantitative definition of non-wettability is 
yet to be developed.

●● Stable CB states can be achieved by roughness geometry that conforms 
to a certain mathematical condition.12,18,25 For example, convex protru-
sions enable it while concave cavities do not.

●● Non-wetting in systems with an acute Young CA (superhygrophobicity) 
is feasible, but it is always metastable.

●● Multiscale roughness is not essential for non-wettability; however, 
it improves the mechanical stability of the surface by lowering the 
required protrusion size.

●● The detailed optimal topography of non-wettable surfaces has yet to be 
elucidated. Moreover, it is likely that there is more than one solution to 
the problem, depending on specific constraints.
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2.1  �Introduction
Small fast vibrations constitute a temporal periodic pattern, while surface 
microtopography often introduces spatial patterns. Despite the fact that both 
types of patterns are small, they can significantly affect and alter the bulk 
properties of materials. We show in this chapter how small fast vibrations 
can be substituted by an effective force, which stabilizes an inverted pen-
dulum or bouncing droplets. We call this effective force a “levitation” force, 
given that it provides support to suspended objects, such as liquid droplets, 
due to the effect of the vibro-levitation.

Levitation is the process by which an object is suspended by a physical force 
against gravity. Historically, levitation was claimed by many ancient spiritual 
or occult teachings, but the possibility of levitation as a physical phenome-
non was also studied by many scholars including Isaac Newton, who secretly 
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investigated the possibility of levitation as an opposite force to gravitation.1,2 
Today physicists investigate several means of levitation including magnetic, 
electrostatic, acoustic, and aerodynamic forces.3 Acoustic levitation is one 
interesting possibility. The phenomenon is based on the non-linear nature 
of intense sound waves resulting in the acoustic radiation pressure creating 
an average positive force on a suspended object which resists the weight of 
the object.

Of particular interest is the acoustic levitation of a small droplet. Drop-
lets, despite their apparent simplicity, are quite complex objects involv-
ing such effects as surface tension, Laplace pressure, capillary waves, and 
non-linear viscosity.4–11 Droplet transport, coalescence, and bouncing off 
solid and liquid surfaces is still not completely understood, since these 
processes involve complex interactions and lead to complicated scenarios 
of droplet evolution. This complexity of droplet behaviour makes droplets 
suitable for various applications. In the past, it has been suggested that 
the droplets could be used for microfluidic applications; for instance, they 
could serve as microreactors for various chemical compounds carried by 
coalescent water droplets. For example, it has been shown that droplet 
coalescence can realize Boolean logic and thus a “droplet computer” can 
in principle be created.12

Recent studies have shown experimentally that incoming droplets can 
bounce off a vibrating liquid surface, thus leading to the “walking drop-
lets”, which, in a sense, combine the properties of waves and particles 
and serve as an illustration of the particle–wave duality.13,14 The effect of 
bouncing droplets is thought to be similar to the acoustic levitation due 
to non-linear viscosity in a thin film. However, a detailed model of such an 
effect remains quite complex, and several ideas have been suggested in the 
literature.

It has been suggested15 that the classical stability problem of an inverted 
pendulum on a vibrating foundation has relevance to a diverse class of 
non-linear effects involving dynamic stabilization of statically unstable sys-
tems ranging from the vibrational stabilization of beams to novel “dynamic 
materials,” the transport and separation of granular material, soft matter, 
bubbles and droplets, to synchronization of rotating machinery. In these 
problems, the small fast vibrational motion can be excluded from consider-
ation and substituted by effective slow forces acting on the system causing 
the stabilizing effect.16

In this chapter we suggest a simple analogy between levitating droplets 
over a vibrating liquid surface and a well-known mechanical system consist-
ing of an inverted pendulum on a vibrating foundation. This analogy sheds 
light on the necessary conditions for droplet levitation. We further discuss 
the relation of the phenomenon to other non-linear vibration-caused effects, 
such as the vibro-levitation of a flexible stiff rope (“Indian rope trick”), the 
shear-thickening of non-Newtonian fluids (“cornstarch monsters”), and 
vibration-induced phase transitions, as well as possible applications for 
“smart” dynamic nanocomposite materials.17
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2.2  �Effective Force Corresponding to Small Fast 
Vibrations

In this section, we study pure mechanical systems undergoing fast vibrations 
in a time-independent potential field. Two different approaches have been 
developed to separate the fast small vibrations from the overall motion of the 
system; the Mathieu equation approach and Kapitza’s method of the separa-
tion of motions. The latter method was further developed by Blekhman who 
suggested an interesting interpretation with two observers. One observer can 
see the small vibrations while the other one, who does not see the vibrations 
(e.g. due to a specially designed stroboscopic light), nonetheless observes 
their effect as a fictitious force, similar to the force of inertia. We will discuss 
various examples and derive a mathematical expression for an effective sta-
bilizing “vibro-levitation” force. First we discuss a general case of Kapitza’s 
separation of fast and slow motions. Kapitza thought of such systems being 
in a state of slow oscillation with a fast vibration superimposed upon it. The 
effect of fast vibrations can be isolated as a change in the effective potential 
energy of the system. Following Blekhman, an observer in a vibrating frame 
of reference will perceive the stability as a result of an additional fictitious 
force, which we refer to as the vibro-levitation force. We apply this method 
to the classic example of an inverted pendulum, and calculate the vibro-lev-
itation force. This is followed by a review of the Mathieu equation approach 
to studying the stability of an inverted pendulum. Then, we look at the sta-
bilization of multiple pendulums, and a continuous system involving a rope. 
Replacing fast vibrations with an effective force can not only be applied to 
systems described above, but also to non-coalescing droplets on a vibrating 
bath and other liquid systems which are discussed in later sections.

2.2.1  �Motion Subjected to a Rapidly Oscillating Force
The method of separation of motions was first suggested by Kapitza16 to 
study the stability of a pendulum on a vibrating foundation and then gen-
eralized for the case of an arbitrary motion in a rapidly oscillating field by 
Landau and Lifshitz.18

Consider a material point with mass m in a potential field Π(x), where x 
is a spatial coordinate, with the minimum corresponding to the stable equi-
librium. One can think about a mechanical spring-mass system as shown  
in Figure 2.1a. The restoring “spring force” acting on the mass is given by  
−dΠ/dx, therefore, the equation of motion of the system is d dm xx   .  
In addition to the time-independent potential field Π(x), a “fast” external 
periodic force f cos Ωt acts upon the mass with a small-amplitude f and high  

frequency  2 2d d /x m [ , which is much higher than the natural fre-

quency (Figure 2.1b). The equation of motion then becomes
  
	  d d cosmx x f t    	 (2.1)
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The location of the mass can be written as a sum of the “slow” oscillations 
X(t) due to the “slow” force and small “fast” oscillations ξ(t) due to the “fast” 
force:
  
	 x(t) = X(t) + ξ(t)	 (2.2)
  

The mean value ξ̄  (t) of this fast oscillation over its period 2π/Ω is zero, 
whereas X(t) changes slightly during the same period:
  
	    

2π

0
d 0

2π
t t t

   	 (2.3)

	 X̅  (t) ≈ X(t)	 (2.4)
  

Therefore the mean location of the mass can be written as
  
	 x̅  (t) = X̅  (t) + ξ̄ (t) ≈ X(t)	 (2.5)
  
and the second derivative as
  
	    x t X t  	 (2.6)
  

Substituting eqn (2.2) in eqn (2.1) and using the Taylor series first-order 
terms in powers of ξ,

  
	

 
   

 
     




2

2

cosd d
cos

d d

f t
mX m f t

x x X
	 (2.7)

  

Figure 2.1  ��(a) Motion in one dimension of a mass m connected to a spring. (b) 
Application of an external force f cos Ωt to the mass m. (c) Unstable equi-
librium corresponding to the maximum potential energy. (d) A metasta-
ble equilibrium due to the stabilizing effect of the external force.
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The “slow” and “fast” terms in eqn (2.7) must separately be equal. The sec-
ond derivative of small “fast” oscillations ξ̈  is proportional to Ω2 which is 
a large term. The terms on the right-hand side of eqn (2.7) containing the 
small ξ are neglected. This gives mξ̈  = f cos Ωt, and integrating with respect 
to time t,
  

	 2

cosf t
m





 

	 (2.8)
  

Averaging eqn (2.7) with respect to time, substituting the relation 
2π

0
cos d 0

2π
f t t

   , eqn (2.3)–(2.6), and eqn (2.8) gives

 
   

2

cos cosd d 1 cos
d d

 
 


  

     
 

 f t f t
mX f t

X X X m X
  

	
 2

2

cosd 1
d 2

f t
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X m X
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This can be written as effd
d

mX
X


   where Πeff is an effective potential 
energy given by
  

	
 2

2
2

eff 2 2

cos
2 4 2
f t f m
m m




 
           	 (2.10)

  
Thus the effect of “fast” vibrations ξ when averaged over the time period 

2π/Ω is equivalent to the additional term 2 2m  on the right-hand side 
in eqn (2.10). This term is the mean kinetic energy of the system under 
“fast” oscillations. Thus small “fast” vibrations can be substituted by an 
additional term in the potential energy resulting in the same effect that 
oscillations have on the system. The most interesting case is when this 
term affects the state of the equilibrium of a system. Let us say that in 
the absence of vibrations a system has an effective potential energy πeff = 
π (a local maximum of the potential energy, Figure 2.1c). Vibrations can 
bring this system to a stable equilibrium due to the additional term dis-
cussed before (a local minimum of the potential energy, Figure 2.1d). In 
such cases the small “fast” vibrations have a stabilizing effect on the state 
of equilibrium.

Blekhman15 has applied the method of separation of motions to many 
mechanical systems and suggested what he called “vibrational mechanics” 
as a tool to describe a diverse range of effects in the mechanics of solid and 
liquid media, from effective liquefying of granular media, which can flow 
through a hole like a liquid when on a vibrating foundation, to the oppo-
site effect of solidifying liquid by jamming a hole in a vessel on a vibrating 
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foundation, to vibro-synchronization of the phase of two rotating shafts on a 
vibrating foundation.

Blekhaman15 has also suggested an elegant interpretation of the separation 
of motions. According to his interpretation, there are two different observers 
who can look at the vibrating system. One is an ordinary observer in an inertial 
frame of reference who can see both small, ζ, and large, X, oscillations. The 
other one is a “special” observer in a vibrating frame of reference, who does 
not see the small-scale motion, ζ, possibly due to a stroboscopic effect or just 
because his vision is not sensitive enough to see the small-scale motion. As 
a result, what the ordinary observer sees as an effect of the fast small vibra-
tions is perceived by the special observer as an effect of some new effective 
force. This fictitious force is similar to the inertia force which is observed by 
observers in a non-inertial frame of reference. Furthermore, when the stabiliz-
ing effect occurs, the special observer attributes the change in effective poten-
tial energy to fictitious “slow” stabilizing forces or moments. The additional 
“slow” stabilizing force V for the system can be written as
  
	


  

     

2

24
f

V
X m

	 (2.11)
  

The most common example of the stabilizing effect of the small vibrations 
is the inverted pendulum, which is studied in the following section.

2.2.2  �Inverted Pendulum
We now consider the classic problem of stability of an inverted pendulum 
to apply the method of the separation of motions and determine a stabiliz-
ing vibro-levitation force. A simple pendulum is a common example used 
in mechanics to introduce the fundamentals of simple harmonic motion. 
Consider a pendulum with a point mass m connected to the end of a piv-
oted link of length L. The angular position of the pendulum about its pivot 
is described by the angle ψ. It has its stable equilibrium at its vertical lower 
position, ψ = 0° where the potential energy is minimum as shown in Figure 
2.2. Any small perturbations from this position results in oscillations about 
the equilibrium with natural frequency g L   where g is the acceleration 
due to gravity. Eventually the pendulum returns to its equilibrium due to the 

restoring force 
 d cos

d

mgL 


 .

A pendulum also has an unstable equilibrium that corresponds to the 
point of inflection at ψ = 180° (Figure 2.2). When the foundation of the pen-
dulum is subjected to vertical harmonic oscillations A cos Ωt, where A is the 
amplitude and Ω ≫ ω is the frequency, the equilibrium at ψ = 180° can, under 
certain conditions, become stable. A pendulum on a vibrating foundation is 
called “Kapitza’s pendulum” after Peter Kapitza. The equation of motion can 
be written as
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	 Lψ̈ = g sin ψ − AΩ2 sin ψ cos Ωt	 (2.12)
  

The form of eqn (2.12) is similar to that of eqn (2.1) with f = −mAΩ2 sin ψ. 
Substituting f into eqn (2.10), the effective potential energy can be obtained 
as
  
	

2 2
2

eff cos sin
4
A

mgL
gL
 

 
    

 
	 (2.13)

  
Now if we look at the stabilized inverted pendulum, it appears upright and 

stationary. By differentiating the effective potential energy in eqn (2.13) we 
obtain the generalized force (with the dimension of torque) acting upon the 
pendulum. In addition to the term involving sin ψ, this generalized force now 
involves the term given by eqn (2.11):
  

	
2 2 2 2

2sin sin2
4 4

mA mA
V

  

  

      
	 (2.14)

  
Note that V is dimensionally a torque, because the spatial coordinate ψ is 

angular displacement. This additional effective force can have a stabilizing 
effect on the unstable equilibrium. The effect of this force is equivalent to 

that of a spring with spring constant 
2 2

2
mAk 

  when the angle ψ is close 

to 180°. This is equivalent to the upright pendulum supported by a spring 
(Figure 2.3).

The equilibrium is stable when the effective potential energy in eqn (2.13) 
is a positive-definite function near the state of equilibrium, which yields the 
stability criterion
  
	 A2Ω2 > 2gL	 (2.15)
  

Thus, when the amplitude and frequency of the small fast vibrations of 
the foundation satisfy eqn (2.15), the otherwise unstable equilibrium at  

Figure 2.2  ��The potential energy Π of a pendulum as a function of its angular  
displacement ψ.
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ψ = 180° can correspond to a local minimum for the effective potential energy, 
i.e. it can become a stable equilibrium. Thus, we have derived the expression 
for the stabilizing force (eqn (2.14)) and a stability criterion for the inverted 
pendulum (eqn (2.15)) using the separation of motion method. We will apply 
this method to study non-coalescing liquid droplets later in this chapter.

2.2.3  �Mathieu Equation Method
The result in eqn (2.15) has been historically obtained using a different 
method, namely, the parametric resonance Mathieu equation analysis sug-
gested by A. Stephenson in 1908.19,20 The motion of a pendulum on a vibrating 
foundation is an example of parametric oscillation. The differential equa-
tion of motion of such a pendulum contains time-varying coefficients and is 
called the Mathieu equation. Stephenson found that when the pivot of a pen-
dulum is subjected to a vertical periodic motion at a frequency 2ω/n where n 
is any integer, then the oscillations of the pendulum are gradually amplified. 
The pendulum eventually becomes highly unstable. Stephenson used the 
Mathieu equation approach to study the conditions for stability and instabil-
ity of the pendulum. In this section we briefly describe the Mathieu equation 
approach to determining the stability criteria of an inverted pendulum.

The equation of motion of a pendulum on a vibrating foundation (eqn 
(2.12)) can be rewritten as
  
	

2

cos sin 0
g A

t
L L

   
   
 

 	 (2.16)

which has the form of the Mathieu equation. To study the stability of a solu-
tion of eqn (2.16) using the perturbation technique, the variables z = ψ, δ = 
4g/LΩ2, ε = 2A/L, where ε ≪ 1 and τ = Ωt, are introduced. For small values of z, 
sin z ≈ z and the equation of motion for a pendulum reduces to

	  
2

2 cos 0
4

z z
     ε 	 (2.17)

  

Figure 2.3  ��The figure on the left shows an inverted pendulum stabilized by a foun-
dation vibrating with a periodic displacement A cos Ωt. The same sys-
tem can be represented as shown in the figure on the right with the 
pendulum being stabilized by a spring of effective spring constant k. 
Reproduced from ref. 11 with permission from the Royal Society of 
Chemistry.
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The stability of a pendulum with vibrating foundation is studied in the 
parameter plane (δ,ε), with regions of stability and instability, the graphical 
representation of which is called the Ince–Strutt diagram. For an inverted 
pendulum the stability criterion is
  
	 2 4 27 1

... 1 .
2

.
8 8

1
.    ε ε ε ε 	 (2.18)

and is represented by the shaded region in Figure 2.4. For stability at any δ, 
there is an upper and lower bound for ε. It follows that for a certain length of 
the inverted pendulum there exists a stability range of frequencies Ω1 < Ω < 
Ω2. From eqn (2.18), the stability criterion can be obtained as follows. Since 
we are concerned with an inverted pendulum, we restrict ourselves to the set 
of negative values of δ in the vicinity of zero and we can write

	 21
2

  ε 	 (2.19)
  

Substituting δ = 4g/LΩ2 and ε = 2A/L into eqn (2.19) we obtain the same sta-
bility criteria as in eqn (2.15). The Mathieu equation approach is another way 
of analysing the vibro-levitation of an inverted pendulum.

We see that the Mathieu equation approach provides the same stability cri-
terion as the method of separation of motion. However, the latter has a more 
general application and is not limited to the parametric excitation of a pendu-
lum. We can therefore apply the method of separation of motion to more com-
plex problems of the multiple pendulum, the continuous (flexible stiff beam) 
pendulum, and liquid systems like non-coalescing droplets. We also draw an 
analogy between mechanical systems undergoing vibration and non-linear 
behaviour in vibrating fluids that leads to non-wetting and phase transition.

2.2.4  �Multiple Pendulums and the Indian Rope Trick
We have discussed the stabilization of a single inverted pendulum by 
small-amplitude fast vibration of the pendulum’s foundation. Inverted mul-
tiple pendulums consisting of a number of freely jointed links can also be 
stabilized by applying a harmonic oscillation at the foundation as long as the 
frequency of the oscillation is sufficiently large. The theoretical proof was put 

Figure 2.4  ��The region of stability for an inverted pendulum as seen in the Ince–
Strutt diagram. Adapted from ref. 11 with permission from the Royal 
Society of Chemistry.
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forward by Stephenson21 who derived the stability criteria. Acheson derived 
the stability criterion for a multiple pendulum using the Mathieu equation 
approach. He showed that the region of stability in the Ince–Strutt diagram 
diminishes as the number of links in the pendulum increases. As the num-
ber of links approaches infinity, as in the case of a perfectly flexible string, 
the region of stability vanishes.22 Acheson and Mullin later experimentally 
demonstrated the stability of double and triple inverted pendulums.23

An even more complex, albeit related, case is a continuous system con-
sisting of a flexible beam. Since it has been shown that the limiting case of 
multiple pendulums, i.e. a string, cannot be stabilized in the upside-down 
position, flexural stiffness must be introduced.

Interestingly, some researchers have suggested that stabilization by a 
vibrating foundation can explain the so-called Indian rope trick. This trick 
involves a magician (traditionally an Indian fakir) throwing one end of a 
flexible rope vertically upwards, which under certain conditions levitates 
like a vertical rod. In certain versions of the trick a small animal (an ape) 
could even climb the rope, leaving the audience in awe. This defies the 
empirical observation that an upright column exceeding a critical length 
will buckle under its own weight. Although accounts of the trick remain 
controversial, it has been shown that a rope with bending stiffness can 
be stabilized at sufficiently high frequencies. A piece of steel curtain wire 
longer than its critical buckling length was able to stay upright when its 
pivot was vibrated within a certain frequency range Ω1 < Ω < Ω2. When the 
frequencies were reduced below Ω1 the wire fell over, while increasing the 
frequencies above Ω2 resulted in instabilities in the wire.24 Ramachandran 
and Nosonovsky11 demonstrated instabilities in a plastic rope when its 
pivot was oscillated at a certain range of frequencies. The rope, which was 
initially in a buckled state, became unstable at a certain frequency (Figure 
2.5). The instabilities grew with increase in frequency till an upper limit 

Figure 2.5  ��Instabilities in a plastic rope on a foundation vibrating at 130 Hz. Repro-
duced from ref. 11 with permission from the Royal Society of Chemistry.
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was reached, beyond which the instabilities gradually decreased and the 
rope returned to its buckled state.

Now we derive the expression for the stabilizing force for multiple pen-
dulums and a flexible stiff rope. First let us consider a double pendulum as 
shown in Figure 2.6 with point masses m1 and m2 attached to links of lengths 
L1 and L2 respectively. The foundation of the pendulum is subjected to a har-
monic oscillation A cos Ωt. Let the angular displacements of masses m1 and 
m2 be ψ1 and ψ2 respectively.

For m1 we can write the horizontal and vertical displacements as x1 = 
L1 sin ψ1 and 

y1 = L1 cos ψ1 + A cos Ωt. Similarly for m2, x2 = L1 sin ψ1 + L2 sin ψ2 and 
y2 = �L1 cos ψ1 + L2 cos ψ2 + A cos Ωt. The x and y components of velocities are 

ẋ 1 = L1ψ̇  1 cos ψ1, 
ẏ 1 = −L1ψ̇  1 sin ψ1 − AΩ sin Ωt, ẋ  2 = L1ψ̇  1 cos ψ1 + L2ψ̇ 2 cos ψ2 and 
y ̇2 = −L1ψ̇  1 sin ψ1 − L2ψ̇  2 sin ψ2 − AΩ sin Ωt.

The kinetic energy of the system is given by    2 2 2 2
1 1 1 2 2 2

1 1
2 2

K m x y m x y       .  

The potential energy of the system is given by Π = m1gy1 + m2gy2. The Lagrang-
ian of the system can be written in terms of the angular displacements and 
their derivatives as L = K − Π:
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	 (2.20)

  

The equations of motion are then given by the Lagrange equations
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	 (2.21)

  

Figure 2.6  ��An inverted double pendulum whose foundation is subjected to a sinu-
soidal vibration A cos Ωt.
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Substituting for L and simplifying we obtain
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Rewriting the equations of motion in the form of eqn (2.1), we have
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Comparing these with eqn (2.1), we see
  
	 f1 = −(m1 + m2) AΩ2 sin ψ1 and f1 = −m2 AΩ2 sin ψ2	 (2.22)
  

Using eqn (2.11), the effective generalized forces on m1 and m2 can be  
written as
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For any mass mi in a system of n connected pendulums as shown in  

Figure 2.7,
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and the stabilizing effective generalized force is
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The multiple pendulums are stabilized due to the system of effective 

generalized forces{V1,V2,...Vn} as shown in Figure 2.7. For small angular 
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displacements of the system of n connected pendulums, the equivalent spring 
constant at the first link is
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Studies of the Indian rope trick usually approximate the rope or wire to 

continuum objects such as a rod or column with appreciable stiffness. For 
example, Champneys and Fraser25 studied the Indian rope trick for a linearly 
elastic rod. The equation of motion in terms of the lateral displacement u at 
arc length s is
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where η, ε, and b are the dimensionless acceleration, amplitude, and stiff-

ness respectively. Comparing this with eqn (2.1) we can write 

 1
u

f s
s s

       
and formulate the effective vibro-levitation force using eqn (2.11).

Shishkina et al. investigated a rope treated as a flexible Euler beam with the 
stiffness k subjected to the gravity and an axial load oscillating near the con-
stant value of c2 with amplitude εa2 and frequency Ω. The transversal deflec-
tion of the beam u(x,t) is governed by
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They showed that effect of the oscillating load is equivalent to the increase 

of the effective flexural stiffness of the rope k, which becomes equal to 

Figure 2.7  ��A multiple pendulum which is being stabilized by vibrating its foun-
dation is equivalent to a multiple pendulum which is stabilized by a 
system of generalized vibro-levitation forces V1, V2, …, Vn.
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2 2
2

eff 2
k k x

 
  , where x is the distance along the rope (Figure 2.8a and b). 

This increase can be sufficient to exceed the critical value of the stiffness and 
prevent buckling of the beam (Figure 2.8c and d).26

For a multiple pendulum of n connected links, as n → ∞ the system becomes 
more flexible and its stiffness decreases. Now the system is similar to a limp 
rope. From eqn (2.25), the vibro-levitation force is proportional to the mass. 
Therefore as n → ∞, the vibro-levitation force becomes infinite. It follows that 
the Indian rope trick cannot be performed if the rope does not have sufficient 
inherent stiffness.

In the previous sections we introduced the method of separation of 
motions, applied it to various mechanical systems undergoing vibration, 
and derived an effective stabilizing force for each case. In the next section, 
we study non-coalescing droplets stabilized by vibrations. We also apply the 
method of separation of motions to formulate an expression for the effective 
force that causes their non-coalescing, non-wetting behaviour. We also draw 
parallels with the vibration-induced stability of an inverted pendulum.

2.3  �Vibro-Levitation of Droplets
Water droplets are seen to float momentarily on the surface of water and 
then coalesce into the bulk fluid. Sometimes they emit a smaller droplet as 
a result of coalescence, which then undergoes the same fate as the parent 
droplet.27 This phenomenon is called coalescence cascade. Such non-co-
alescing droplets were noticed as early as 1881 when Reynolds studied the 
influence of surface impurities on this peculiar behaviour of droplets. He 
concluded that a pure liquid surface is required for droplets to float over it.28 

Figure 2.8  ��(a) A rope which is subject to no vibration buckles under its own weight. 
(b) Vertical vibrations results in an increased effective stiffness which 
prevents buckling. (c) For any beam there is a critical force (Fcr) that 
depends on the beam material and geometry. Any load (F) greater than 
this will cause the beam to buckle. (d) Vibrating the foundation leads to 
an increase in the effective stiffness of the beam, and the beam is able 
to resist buckling.
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Walker demonstrated by a simple experiment that droplets of an aqueous 
soap solution can levitate in a non-coalescent state above a vibrating bath of 
the same bulk solution. The droplets could levitate indefinitely if standing 
waves (Faraday instabilities) were set up on the bulk liquid surface.29 Recently 
this phenomenon has attracted the attention of researchers once again. Cou-
der et al.30 demonstrated that silicone oil droplets could be levitated indefi-
nitely over a sinusoidally vibrating (A cos Ωt) bath of oil. While Walker noticed 
indefinitely levitating droplets only in the presence of standing waves on the 
bulk liquid surface, Couder et al. were able to obtain indefinitely levitating 
droplets over a stable liquid surface. In both cases, vibration stabilizes the 
droplet in a non-coalescing state above the liquid bath. Therefore we refer to 
such a droplet as a vibro-levitating droplet.

A vibro-levitating droplet is in a repetitive cycle of impact and bounce-off 
at the liquid surface. If its radius is larger than the capillary length ( g  ,  
where γ and ρ are the liquid surface tension and density respectively) the 
droplet undergoes continuous deformation from spherical to oblate and pro-
late shapes, which may setup oscillations along the droplet surface.31 When 
the droplet impacts the liquid surface, the kinetic energy of the droplet is 
dissipated into surface energy by flattening of the droplet, oscillations of the 
droplet, and viscous damping in the air film between the droplet and the 
liquid surface.32 The droplet does not coalesce with the bulk liquid surface 
so long as the thin air film is replenished and stabilized due to the applied 
vibrations.

The vibro-levitating droplets produced weak surface waves every time they 
bounced off the liquid surface. These surface waves grew larger in ampli-
tude when the amplitude A of the applied vibration was increased. At a crit-
ical value of A near the onset of Faraday instabilities, the levitating droplets 
started to move in seemingly random horizontal trajectories over the vibrat-
ing liquid surface. This motion is due to the interaction between the surface 
wave and the levitating droplet on each impact. Couder et al. called the sys-
tem of the droplet and its associated wave a “walker”.13 These walkers can 
interact and orbit with each other, and can also form self-assembled ordered 
patterns.14,33,34 Within a certain range of frequencies, the vibro-levitating 
droplets can roll over the liquid bath due to internal rotation.35

Vibro-levitating droplets have some parallels with the wave–particle dual-
ity from quantum mechanics.36 The droplets illustrate several quantum 
mechanical phenomena such as single-particle diffraction, quantized orbits, 
and tunnelling.37–39 But this comes with a caveat that there is a great differ-
ence between the physics in the macro and subatomic domains. Discussion 
of these topics is beyond the scope of this chapter.

There are models which describe the levitation and horizontal motion 
of these non-coalescent droplets.30,40–42 The effect of bouncing droplets is 
thought to be similar to the acoustic levitation due to non-linear viscosity 
in a thin film which leads to hysteresis. However, a detailed model of such 
effects remains quite complex. In the following section, we suggest a simple 
analogy between the vibro-levitating droplets and the inverted pendulum.


