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Preface

In this book, we intend to give a comprehensive introduction to methods and models
for the analysis of categorical data and their applications in social science research.
The primary audiences are graduate students and practicing researchers in social
science. The book also serves as a reference.

One feature that distinguishes our book from other books on the topic is our
explicit aim to integrate the transformational approach and the latent variable
approach, two diverse but complementary traditions dealing with the analysis of
categorical data. The statistical, or transformational, approach to categorical data
analysis is most familiar to researchers in demography and biostatistics, whereas the
latent variable approach is often taken by economists. A discussion of the two
approaches is given in Chapter 1.

We assume that the reader has prior knowledge such as that covered in a typical
applied regression course but not necessarily in advanced mathematical statistics.
Although some technical details are unavoidable in a book like this, we make the
book accessible by resorting to substantive examples. Some readers may wish to skip
portions of the book that are technical without losing much appreciation of the
book.

To utilize the internet technology fully, we have set up a website for the book at
http://webspace.utexas.edu/dpowers/www/.1

The website contains the data sets and the programming codes for the examples
discussed in the book in several statistical packages including: GLIM (Numerical
Algorithms Group, 1986), LIMDEP (Greene, 2007), SAS (SAS Institute, 2004), Stata
(Stata Corporation, 2007), TDA (Rohwer & Pötter, 2000), and R (R Development
Core Team, 2006). The website provides some GLIM macros and GAUSS (Aptech
Systems, 1997) and R subroutines to illustrate details of estimation as well as several
applications of specialized programs for models that cannot be estimated in a
standard software package, for example aML (Lillard & Panis, 2003). We will
continue to update the website as new programs become available.

1. This page is linked at YuXie.com and Powers-Xie.com.



New to the 2nd Edition

We have updated the material in each chapter and have included a new chapter on
multilevel models for binary data (Chapter 5). This chapter provides details on
marginal maximum likelihood estimation and modern Bayesian estimation methods.
We include a discussion of Rasch models and random-coefficient models for
longitudinal analysis. We have reorganized the chapter on event-history models
(Chapter 6) and include expanded coverage of discrete-time models and Cox
regression models. The chapters on ordinal (Chapter 7) and nominal (Chapter 8)
response models have also been updated.

Use of This Text in a Course on Categorical Data Models

This book is appropriate for a single-term course in categorical data modeling.
Chapters 1 and 2 provide an introduction and basic foundation for the course. Our
view is that, regardless of the type of data, a regression-type modeling approach can
be an appropriate analytic method. Chapter 3 provides an introduction and detailed
treatment of regression models for binary data. Chapter 4 goes into greater detail on
the methods for analyzing contingency tables. Chapter 5 discusses multilevel/
hierarchical models for binary data. Chapter 6 covers event history techniques.
Chapters 7 and 8 provide an overview of methods for ordered and unordered
categorical response variables. This material is linked to the contingency table
approach of Chapter 4 and the latent variable framework outlined in Chapter 3.
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Chapter 1

Introduction

1.1. Why Categorical Data Analysis?

What is common about birth, marriage, schooling, employment, occupation,
migration, divorce, and death? The answer: they are all categorical variables
commonly studied in social science research. In fact, most observed outcomes in
social science research are measured categorically. If you are a practicing social
scientist, chances are good that you have studied a phenomenon involving a
categorical variable. (This is true even if you have not used any special statistical
method for handling categorical data.) If you are in a graduate program to become a
social scientist, you will soon, if not already, encounter a categorical variable. Notice
that even our statement of whether or not you have encountered a categorical
variable in your career is itself a categorical measurement!

Statistical methods and techniques for categorical data analysis have undergone
rapid development in the past 25 years or so. Their applications in applied research
have become commonplace in recent years, due in large part to the availability of
commercial software and inexpensive computing. Since some of the material is rather
new and dispersed among several disciplines, we believe that there is a need for a
systematic treatment of the subject in a single book. This book is aimed at helping
applied social scientists use special tools that are well suited for analyzing categorical
data. In this chapter, we will first define categorical variables and then introduce our
approach to the subject.

1.1.1. Defining Categorical Variables

We define categorical variables as those variables that can be measured using only a
limited number of values or categories. This definition distinguishes categorical
variables from continuous variables, which, in principle, can assume an infinite
number of values.

Although this definition of categorical variables is clear, its application to applied
work is far more ambiguous. Many variables of long-lasting interest to social
scientists are clearly categorical. Such variables include: race, gender, immigration
status, marital status, employment, birth, and death. However, conceptually
continuous variables are sometimes treated as continuous and other times as
categorical. When a continuous variable is treated as a categorical variable, it is
called categorization or discretization of the continuous variable. Categorization is



often necessary in practice because either the substantive meaning or the actual
measurement of a continuous variable is categorical. Age is a good example.
Although conceptually continuous, age is often treated as categorical in actual
research for substantive and practical reasons. Substantively, age serves as a proxy
for qualitative states for some research purposes, qualitatively transforming an
individual’s status at certain key points. Changes in legal and social status occur first
during the transition into adulthood and later during the transition out of the labor
force. For practical reasons, age is usually reported in single-year or five-year
intervals.1

Indeed, our usual instruments in social science research are crude in the sense that
they typically constrain possible responses to a limited number of possible values. It
is for this reason that we earlier stated that most, if not all, observed outcomes in
social science are categorical.

What variables should then be considered categorical as opposed to continuous in
empirical research? The answer depends on many factors, two of which are their
substantive meaning in the theoretical model and their measurement precision. One
requirement for treating a variable as categorical is that its values are repeated for at
least a significant portion of the sample.2 As will be shown later, the distinction
between continuous and categorical variables is far more consequential for response
variables than for explanatory variables.

1.1.2. Dependent and Independent Variables

A dependent (also called response, outcome, or endogenous) variable represents a
population characteristic of interest being explained in a study. Independent (also
called explanatory, predetermined, or exogenous) variables are variables that are
used to explain the variation in the dependent variable. Typically, the characteristic
of interest is the population mean of the dependent variable (or its transformation)
conditional on values of an independent variable or set of independent variables. It is
in this sense that we mean that the dependent variable depends on, is explained by, or
is a function of independent variables in regression-type statistical models.

By regression-type statistical models, we mean models that predict either the
expected value of the dependent variable or some other characteristic of the
dependent variable, as a regression function of independent variables. Although in
principle we could design our models to best predict any population parameter (e.g.,
the median) of the dependent variable or its transformation, in practice we

1. Education is another example. The substantive distinctions among ‘‘less than 12 years of schooling,’’

‘‘high-school diploma,’’ ‘‘college degree,’’ or ‘‘graduate degree’’ cannot be captured without categorization.

A few categories offer a concise representation of the important points in the distribution of education.

2. Note that a continuous variable can be truncated, meaning that it has zero probability of yielding a value

beyond a particular threshold or cut-off point. When a continuous variable is truncated, the untruncated

part is still continuous, whereas the part that is truncated resembles a categorical variable.
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commonly use the term regression to denote the problem of predicting conditional
means. When the regression function is a linear combination of independent
variables, we have so-called linear regressions, which are widely used for continuous
dependent variables.

1.1.3. Categorical Dependent Variables

Although categorical and continuous variables share many properties in
common, we wish to highlight some of the differences here. The distinction between
categorical and continuous variables as dependent variables requires special
attention. In contrast, the distinction is of relatively minor significance when they
are used as independent variables in regression-type statistical models. Our definition
of regression-type statistical models includes statistical methods for the analysis of
variance and covariance, which can be represented by regressing the dependent
variable on a set of dummy variables and, in the case of the analysis of covariance,
other continuous covariates. Hence, including categorical variables as independent
variables in regression-type models does not present any particular difficulties, as it
mainly involves constructing dummy variables corresponding to different categories
of the independent variable; all known properties of regression models are
directly generalizable to models for the analysis of variance and covariance. As we
will show later in this book, the situation changes drastically when we treat
categorical variables as dependent variables, as much of our knowledge derived from
linear regressions is simply inapplicable. In brief, special statistical methods are
required for categorical data analysis (i.e., analysis involving categorical dependent
variables).

Although the methods for analyzing categorical variables as independent variables
in regression-type models have been a part of the standard statistical knowledge base
that is now required for most advanced degrees in social science, methods for the
analysis of categorical dependent variables are much less widely known. Much of the
fundamental research on the methodology of analyzing categorical data has been
developed only recently. We aim to give a systematic treatment of several important
topics on categorical data analysis in this book so as to facilitate the integration of
the material into social science research.

Unlike methods for continuous variables, methods for categorical data require
close attention to the type of measurement of the dependent variable. Methods for
analyzing one type of categorical dependent variable may be inappropriate for
analyzing another type of variable.

1.1.4. Types of Measurement

The type of measurement plays a key role in determining the appropriate method of
analysis when a variable is used as a dependent variable. We present a typology for
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four types of measurement based on three distinctions.3 First, let us distinguish
between quantitative and qualitative measurements. The distinction between the two
is that quantitative measurements closely index the substantive meanings of a
variable with numerical values, whereas numerical values for qualitative measure-
ments are substantively less meaningful, sometimes merely as classifications to
denote mutually exclusive categories of characteristics (or attributes) uniquely.
Qualitative variables are categorical variables.

Within the class of quantitative variables, it is often useful to distinguish further
between continuous and discrete variables. Continuous variables, also called interval
variables, may assume any real value. Variables such as income and socioeconomic
status are typically treated as continuous over their plausible range of values.
Discrete variables may assume only integer values and often represent event counts.
Variables such as the number of children per family, the number of delinquent acts
committed by a juvenile, and the number of accidents per year at a particular
intersection are examples of discrete variables. According to our earlier definition,
discrete (but quantitative) variables are also categorical variables.

Qualitative measurements can be further distinguished between ordinal and
nominal. Ordinal measurements give rise to ordered qualitative variables, or ordinal
variables. It is quite common to use numerical values to denote the ordering
information in an ordered qualitative variable. However, numerical values
corresponding to categories of ordinal variables reflect only the ranking order in a
particular attribute; therefore, distances between two adjacent values are not the
same. Attitudes toward gun control (strongly approve, approve, neutral, disapprove,
and strongly disapprove), occupational skill level (highly skilled, medium skilled, low
skilled, and unskilled), and the classification of levels of education as (grade school,
high school, college, and graduate) are examples of ordinal variables.

Nominal measurements yield unordered qualitative variables, often referred to as
nominal variables. Nominal variables possess no inherent ordering, nor numerical
distance, between category levels. Classifications of race and ethnicity (white, black,
Hispanic, and other), gender (male and female), and marital status (never married,
married, divorced, and widowed) are examples of unordered qualitative variables. It
is worth noting at this point, however, that the distinction between ordinal and
nominal variables is not always clear-cut. Much of the distinction depends on the
research questions. The same variable may be ordinal for some researchers but
nominal for others.

To further illustrate the last point, let us use occupation as an example. Distinct
occupations are often measured by open-ended questions and then manually coded
into a classification system with three-digit numerical codes that do not represent
magnitudes in substantive dimensions. Since the number of potential occupations is
large (usually at least a few hundred in a coding scheme for a modern society), it is
desirable, and indeed necessary, to reduce the amount of detail in an occupational

3. For an historical background, see Duncan’s (1984) important book Notes on Social Measurement.
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measure through data reduction. One method of data reduction is to collapse detailed
occupational codes into major occupational categories and treat them as constituting
either an ordinal or even a nominal measurement (Duncan, 1979; Hauser, 1978).
Another method of data reduction is to scale occupations along the dimension of a
socioeconomic index (SEI) (Duncan, 1961) — thus into an interval variable. More
recently, Hauser and Warren (1997) challenged Duncan’s approach and suggested
instead that to measure occupational socioeconomic status, occupations are best
scaled into two separate dimensions of occupational income and occupational
education. Hauser and Warren’s work illustrates the importance of considering
multiple dimensions when nominal measures are scaled into interval measures.

Figure 1.1 summarizes our typology scheme for the four types of measurements.
According to this typology, there are three types of categorical variables: discrete,
ordinal, and nominal, all of which will be discussed in this book. This distinction
among the three types of categorical variables is useful only when the number of
possible values equals or exceeds three. When the number of possible values is two,
we have a special case called a binary variable. A binary variable can be discrete,
ordinal, or nominal, depending on the researcher’s interpretation. For example, if a
researcher is interested in studying compliance with the one-child policy in China, the
dependent variable is whether a couple has given birth to more than one child. For
simplicity, assume that in a particular sample a woman has at least one child and no
more than two children. Let us code y so that y ¼ 0 if a woman has one child, and
y ¼ 1 if she has two children. In this case, the dependent variable can be interpreted
as discrete (number of children�1), ordinal (one child or more than one child), or
nominal (compliance vs. noncompliance). Fortunately, the researcher may apply the
same statistical methods for all three cases. It is the substantive understanding of the
results that varies from one interpretation to another.

1.2. Two Philosophies of Categorical Data

The development of methods for the analysis of categorical data has benefitted
greatly from contributions by scholars in such diverse fields as statistics, biostatistics,
economics, psychology, and sociology. This multidisciplinary origin has given
categorical data analysis multiple approaches to similar problems and multiple
interpretations for similar methodologies. As a result, categorical data analysis is an
intellectually rich and expanding field. However, this interdisciplinary nature has also

Quantitative

Qualitative

Continuous 
Discrete

Ordinal
Nominal

Categorical

Figure 1.1: Typology of the four types of measurements.
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made synthesizing and consolidating available techniques difficult due to the diverse
applications and differing terminology across disciplines.

Part of this difficulty stems from two fundamentally different ‘‘philosophies’’
concerning the nature of categorical data. One philosophy views categorical variables
as being inherently categorical and relies on transformations of the data to derive
regression-type models. The other philosophy presumes that categorical variables are
conceptually continuous but are observed, or measured, as categorical. In the one-
child policy example, a researcher may view ‘‘compliance’’ as a behavioral
continuum. However, he/she can only observe two distinct values of this dependent
variable. This approach relies on latent variables to derive regression-type models.
These very different philosophies can be traced back to the acrimonious debate
between Karl Pearson and G. Udny Yule between 1904 and 1913 (Agresti, 2002,
pp. 619–622). Although these two approaches can be found in any single discipline,
the first is more closely identified with statistics and biostatistics, and the second with
econometrics and psychometrics. For simplicity, we will refer to the first approach as
statistical or transformational and to the second as econometric or latent variable. We
intend the terms statistical and econometric here as short-hand labels rather than as
descriptions of the two disciplines.

1.2.1. The Transformational Approach

In the transformational, or statistical, approach, categorical data are considered as
inherently categorical and should be modeled as such. In this approach, there is a
direct one-to-one correspondence between population parameters of interest and
sample statistics. The focus is on estimating population parameters that correspond
to their sample analogs. No latent, or unobserved, variable is invoked.

In the transformational approach, statistical modeling means that the expected
value of the categorical dependent variable, after some transformation, is expressed
as a linear function of the independent variables. Given the categorical nature of the
dependent variable, the regression function cannot be linear. The problem of
nonlinearity is handled through nonlinear functions that transform the expected
value of the categorical variable into a linear function of the independent variables.
Such transformation functions are now commonly referred to as link functions.4

For example, in the analysis of discrete (count) data, the expected frequencies (or
cell counts) must be nonnegative. To ensure that the predicted values from regression
models fit these constraints, the natural logarithm function (or log link) is used to
transform the expected value of the dependent variable so that a model for the logged
count can be expressed as a linear function of independent variables. This loglinear
transformation serves two purposes: it ensures that the fitted values are appropriate

4. Models that can be transformed to linear models via link functions are referred to as generalized linear

models. McCullagh and Nelder (1989) provide an extensive treatment of these types of models.
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for count data (i.e., nonnegative), and it permits the unknown regression parameters
to lie within the entire real space (parameter space).

In binomial response models, estimated probabilities must lie in the interval [0,1],
a range that is violated by any linear function if independent variables are allowed to
vary freely. Instead of directly modeling probabilities in this range, we can model
a transformation of probability that lies in the interval (�N,+N). There are a
number of ways to transform probabilities. The logit transformation, log [ p/(1�p)],
can be used to transform the probability scale so that it can be expressed as a linear
function of independent variables. A probit transformation, F� 1(p), can be used in a
similar fashion to re-scale probabilities. The probit link utilizes the inverse of the
cumulative standard normal distribution function to transform the expected
probability to the range (�N,+N) (i.e., by transforming probabilities to
Z-scores). As in the logit model, the probit link transforms the probability so that
it can be expressed as a linear function of independent variables. Both the logit and
probit transformations ensure that the predicted probabilities are in the proper range
for all possible values of parameters and independent variables.

1.2.2. The Latent Variable Approach

The latent variable, or econometric, approach provides a somewhat different view of
categorical data. The key to this approach is to assume the existence of a continuous
unobserved or latent variable underlying an observed categorical variable. When the
latent variable crosses a threshold, the observed categorical variable takes on a
different value. According to the latent variable approach, what makes categorical
variables different from usual continuously distributed variables is partial
observability. That is, we can infer from observed categorical values only the
intervals within which latent variables lie but not the actual values themselves. For
this reason, econometricians commonly refer to categorical variables as limited-
dependent variables (Maddala, 1983).

In the latent variable approach, the researcher’s theoretical interest lies more in
how independent variables affect the latent continuous variables (called structural
analysis) than in how independent variables affect the observed categorical variable.
From the latent variable perspective, it is thus convenient to think of the sample data
as actual realizations of population quantities that are unobservable. For instance, the
observed response categories may reflect the actual choices made by individuals in a
sample, but underlying each choice at the population level is a latent variable
representing the difference between the cost and the benefit of a particular choice
made by an individual decision maker. Similarly, a binary variable may be thought of
as the sample realization of a continuous variable representing an unobserved
propensity. For example, in studies of college admissions, we may assume the
existence of a continuous latent variable — qualification — such that applicants
whose qualifications exceed the required threshold are admitted, and those whose
qualifications fall short of the threshold are rejected (Manski & Wise, 1983).
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In studies of women’s labor force participation, economic reasoning holds that a
woman will participate in the labor force if her market wage exceeds her reservation
wage (Heckman, 1979). In practice, it is not possible for the researcher to observe
applicants’ qualifications, nor the difference between the market and reservation
wages. We can, however, observe admission decisions and labor force participation
status, which can be taken as observed realizations of the underlying population-level
latent variable representing likelihood of admission or labor force participation.

Experimental studies in the biological sciences have also made good use of latent
variables. In studies of the effectiveness of pesticides, for example, whether an insect
dies depends on its tolerance to a level of dosage of an insecticide. It is assumed that
an insect will die if a dosage level exceeds the insect’s tolerance. The binary variable
(lives/dies) is the realization of a continuous unobservable variable, the difference
between dosage and tolerance.

The latent variable concept has been extended to the construction of latent
categorical variables. A prime example is the latent class model, which capitalizes on
independence conditional on membership in latent classes. This is analogous to
factor analysis for continuously distributed variables. Heckman and Singer’s (1984)
nonparametric method of handling unobserved heterogeneity in survival analysis is
also rooted in this fundamental idea.

1.3. An Historical Note

The development of techniques for the analysis of categorical data has been
motivated in part by particular substantive concerns in fields such as sociology,
economics, epidemiology, and demography (for an historical account in social
science, see Camic & Xie, 1994). For example, several innovations in loglinear
modeling had their origins in the study of social mobility (e.g., Duncan, 1979;
Goodman, 1979; Hauser, 1978); the literature on sample selection models emerged
from economic analyses of women’s earnings (Heckman, 1979); and problems in the
analysis of consumer choices led to the development of many of the techniques for
multicategory response variables (McFadden, 1974). Methodological advances in
survival analysis arose as extensions of the life-tables technique in demography by
statisticians and biostatisticians to incorporate covariates in modeling hazard rates
(Cox, 1972; Laird & Oliver, 1981). McCullagh and Nelder’s (1989) theory of
generalized linear models provided a unified framework which can be applied to most
of these models.

Today’s latent variable approach grew out of the early psychophysics tradition,
where observed frequency distributions of qualitative ‘‘judgments’’ were used to scale
the intensity of continuously distributed stimuli (e.g., Thurstone, 1927). In the
experimental framework of psychophysics, the ‘‘latent’’ variables were unobservable
only to the subjects under an experiment, since the stimuli were manipulated by and
thus known to the researcher. For illustration, imagine that a group of subjects are
asked to rank the relative weights of two similar objects given by the experimenter.
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It is reasonable to assume that the probability of giving the correct answer is
positively associated with the actual difference in weight. Thurstone (1927) explicitly
assumed a normal distribution for the psychological stimulus and related it to the
distribution of ‘‘judgments,’’ thus paving the way to today’s probit analysis. With
time, social scientists have expanded this approach to uncover properties of latent
variables from observed data, through such techniques as latent trait models and
latent class models. For a treatment of sociologists’ contributions to the latent
variable approach, see Clogg (1992).

1.4. Approach of This Book

Two features distinguish this book from other texts on the analysis of categorical
data. First, this book presents both the transformational and latent variable
approaches and, in doing so, synthesizes similar methods in statistical and
econometric literatures. Whenever possible, we shall show how the two approaches
are similar and in what ways they are different. Second, this book has an applied as
opposed to theoretical orientation. We shall draw examples from applied social
science research and use data sets constructed for pedagogical purposes. In keeping
with the applied orientation of this book, we shall also present actual programming
examples for the models discussed, while keeping theoretical discussions at a
minimum. We shall provide our data sets, program code, and computer outputs
through a website.5

1.4.1. Combining the Statistical and Latent Variable Approaches

In many instances, the transformational and latent variable approaches are simply
two parallel ways of looking at the same phenomena. More often than not, the two
approaches yield exactly the same statistical procedures except for minor differences
due to the manner in which the model is specified or parameterized. When this is the
case, one’s viewpoint about the underlying nature of observed categorical variables
does not affect specific statistical techniques that we will cover but simply alters the
substantive interpretations of results.

1.4.2. Organization of the Book

This book begins by considering the simplest models for categorical data and
proceeds to more complex models and methods. We begin with a review of the

5. Our website is continuously updated with new examples utilizing several computer packages. The URL

is http://webspace.utexas.edu/dpowers/www/, linkable through YuXie.com and Powers-Xie.com.
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general concepts behind regression models for continuous dependent variables. This
is a natural starting point since many of the familiar ideas and principles used in the
analysis of covariance and regression for continuous variables will carry over to the
analysis of categorical dependent variables. These concepts are described in Chapter
2, along with a general orientation to regression models. Chapter 3 discusses models
for binary data and issues pertaining to estimation, model building, and the
interpretation of results. Chapter 4 provides an overview of measures of association
and models for contingency tables. Chapter 5 builds on material in Chapter 3 to
introduce multilevel (or hierarchical) models for binary data. Chapter 6 presents
methods for event occurrences in time. Chapters 7 and 8 outline various methods for
the analysis of polytomous (or multinomial) response variables that assume ordinal
or nominal measures.
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Chapter 2

Review of Linear Regression Models

2.1. Regression Models

This chapter reviews the classic linear regression model for continuous dependent
variables. We assume the reader’s familiarity with the linear regression model and
thus will not delve into its details. Instead, we will highlight some general concepts
and principles underlying the linear regression model that will be useful in later
chapters focused on categorical dependent variables.

Regression is one of the most widely used statistical techniques for analyzing
observational data. As mentioned in Chapter 1, the analysis of observational data
typically requires a structural and multivariate approach. Regression models are used
in this context to uncover net relationships between an outcome, or response, variable
and a few key explanatory variables while controlling for confounding factors.

Regression models are used to meet different research goals. Sometimes,
regression modeling is aimed at learning the causal effect of one variable, or a set
of variables, on a dependent variable. Other times, regression models are used to
predict the value of a response variable. Finally, regression models are often intended
as short-hand summaries providing a description linking a dependent variable and
independent variables.

2.1.1. Three Conceptualizations of Regression

A researcher faced with a large amount of raw data will want to summarize it in a way
that presents essential information without too much distortion. Examples of data
reduction include frequency tables or group-specific means and variances. Like most
methods in statistics, regression is also a data-reduction technique. In regression
analysis, the objective is to predict, as closely as possible, an array of observed values
of the dependent variable based on a simple function of independent variables.
Obviously, predicted values from regression models are not exactly the same as
observed ones. Characteristically, regression partitions an observation into two parts:

observed = structural + stochastic

The observed part represents the actual values of the dependent variable at hand.
The structural part denotes the relationship between the dependent and independent



variables. The stochastic part is the random component unexplained by the
structural part. In general, the last term may be regarded as the sum of three
components: omitted structural factors, measurement error, and ‘‘noise.’’ Omitting
structural factors is inevitable in social science research because we can never claim to
understand and measure all causal structures affecting a dependent variable.
Measurement error refers to inaccuracies in the way in which the data are recorded,
reported, or measured. Random noise reflects the extent to which human behavior or
occurrence of events is subject to uncertainty (i.e., stochastic influences).

How to interpret regression models is contingent on one’s conceptualization about
what regression does to data. We propose three different conceptualizations.

Causation : observed = true mechanism + disturbance

Prediction : observed = predicted + error

Description : observed = summary + residual

These conceptualizations provide three different views of quantitative analysis.
The first approach corresponds most closely to what might be perceived as a view in
classical econometrics in which the model accurately represents the ‘‘true’’ causal
mechanism that generates the data. The researcher’s goal is to specify a model to
uncover the data-generating mechanism, or ‘‘true’’ causal model. This first approach
can be viewed as an attempt to get as close as possible to a deterministic model. More
modern approaches would argue that there is no ‘‘true’’ model but rather that some
models are more useful, more interesting, or closer to the truth than others.

The second approach is more directly applicable to fields like engineering where,
given a relationship between explanatory variables and a response variable, the goal
is to make useful response predictions for new data. For example, suppose that the
strength of a material is related to temperature and pressure during the
manufacturing process. Suppose that we produce a sample of materials by varying
temperature and pressure in a systematic way. One objective of modeling might be to
find the values of temperature and pressure that give the material maximum strength.
Social scientists also employ this modeling approach in forecasting and may use this
approach to identify people at risk of a particular outcome based on certain
characteristics.

The third approach reflects the current view in modern econometrics and statistics
in which a model serves to summarize the basic features of data without distorting
them. A principle called Occam’s razor, or the law of parsimony, is often invoked
when assessing competing explanations of the same phenomenon. When applied to
statistical models, this principle means that if two models equally explain the
observed facts, the simpler model is preferred until new evidence proves otherwise.
This approach differs from the first view in the sense that the question asked is not
whether the model is ‘‘true’’ but whether it corresponds to the facts. The facts usually
require formalization based on past research or theory. The model is then specified in
accordance with theory or previous research.
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These conceptualizations are not mutually exclusive; the applicability of a
particular interpretation hinges on concrete situations, particularly the nature of the
research design and objectives. With most applications in social sciences utilizing
observational data, our inclination is to favor the last interpretation (Xie, 2007). That
is, the primary goal of statistical modeling is to summarize massive amounts of data
with simple structures and few parameters. With this conceptualization of regression
models, it is important to keep in mind the trade-off between accuracy and
parsimony. On the one hand, we desire accuracy in a model in the sense that we want
to preserve maximum information and minimize errors associated with residuals. On
the other hand, we prefer parsimonious models. More often than not, the desire to
preserve information can only be achieved by building complicated models, which
comes at the expense of parsimony or simplicity. The tension between accuracy and
parsimony is so fundamental to social science research that we will revisit the issue
several times in the book.

2.1.2. Anatomy of Linear Regression

There are three types of variables in a regression model: a dependent variable, a set of
independent variables, and random errors. Because the exact nature of the
dependency of the dependent variable on the independent variables is unknown,
researchers often summarize it as a linear relationship in an approximation involving
a set of unknown parameters or coefficients.

The continuous dependent variable, also called the response variable, is usually
denoted by y. For a given sample of size n, we denote the individual data values as
yi ¼ y1,y2,y, yn. We can think of the many possible values of y as forming a
population. Like all random variables, y has a mean, a variance, and additional
parameters to describe its distribution. The mean or expected value of y is denoted by
E(y) ¼ m. We can also let the mean of y be expressed as a function of independent
variables. For example, if an independent variable assumes a unique value for each
element in the population, and E(y) is modeled as a function of the independent
variable, there would be a different mean, say mi, for each observation.

More generally, associated with each observation is a set of independent variables,
also called explanatory variables. The set of independent variables constitutes a data
matrix indexed by n rows — corresponding to n individual units of analysis — and
K+1 columns — corresponding to K distinct independent variables plus a
constant.1 We will denote the n� (K+1) matrix of independent variables as X,
where K is the total number of explanatory variables. The values of X for the ith
observation are denoted by the vector xi ¼ ðxi0;xi1; . . . ;xiK Þ

0. With no loss of

1. Throughout this book we will use bold-faced symbols to indicate that a quantity is a matrix or vector.

When possible, we will use the more familiar ‘‘scalar’’ representations. Some basic principles of matrix

algebra are reviewed in Appendix A.
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generality, we include as the first column of X a vector of 1’s (e.g., xi0 ¼ 1), whose
coefficient is the intercept. We may write the expression for the mean of y,
conditional on the independent variables as

EðyijxiÞ ¼ b0 þ b1xi1 þ b2xi2 þ � � � þ bKxiK

¼
XK
k¼0

bkxik

¼ x0ib ð2:1Þ

The bk (k ¼ 0,y,K) terms are unknown regression coefficients, or parameters,
to be estimated from the sampled data. The intercept, b0, can be interpreted as the
mean of y when all x variables are zero. The remaining bk (k ¼ 1,y,K) terms are
regression slopes, reflecting the amount that E(y) changes when xik changes by one
unit, while holding other independent variables constant. The symbol b is used to
denote the (K+1)� 1 vector of regression coefficients, b ¼ ðb0;b1; . . . ;bK Þ

0.
In focusing on the expected value of y, other characteristics of the distribution of y

are usually ignored. Since a model based on a set of independent variables cannot
predict exactly the observed values of y, it is necessary to introduce ei (i.e., error,
disturbance, or residual, depending on one’s viewpoint). For the ith observation, we
have

yi ¼ b0 þ b1xi1 þ b2xi2 þ . . .þ bKxiK þ �i

¼
XK
k¼0

bkxik þ �i

¼ x0ibþ �i ð2:2Þ

This expression describes the way in which y is decomposed into a linear function
of x’s with unknown parameters (b) and a residual term (ei). Since ei is intrinsically
unobservable, simplifying assumptions about the characteristics of ei are necessary. A
key assumption that yields the identification of the unknown parameters in Equation
2.2 is the independence between e and the x variables. Other assumptions are often
invoked to improve efficiency. For example, it is common to assume ei to be
independent of one another and identically distributed (i.i.d.). The independence
assumption implies that the correlation in e between a pair of observations is zero,
whereas the identical distribution assumption assures a common variance of s2�
(i.e., homoscedasticity). With the i.i.d. assumption, Eq. 2.2 can be estimated using
ordinary least squares (OLS), which is described in Section 2.2.1.

Even without the i.i.d. assumption, however, the OLS estimator is still a consistent
estimator if e is uncorrelated with the x’s, meaning that it converges to the parameter
vector when the sample size is large.
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2.1.3. Basics of Statistical Inference

To understand estimation and statistical inference, it is necessary to introduce the
distinction between population quantities (parameters) and their sample counterparts
(statistics). This distinction is the basis for statistical inference, the practice of
inferring characteristics of a population from more limited information contained in
a sample drawn from the population. We begin with a general discussion of
inference, although in this book inference is more narrowly limited to the estimation
of parameters and their standard errors in regression and regression-type models.2

Let us assume that we wish to make inferences based on a simple random sample
drawn from a population. Since we do not observe the whole population, key
characteristics like the population mean of y are unknown. We can easily compute
the mean and other moments for the sample, and such values are called sample
statistics. However, there is no guarantee that the sample statistics are good
approximations of the population parameters. Statistical inference is the branch of
statistics that is concerned with the problem of gaining knowledge about the values
of unknown population parameters using information from sample statistics.

2.1.3.1. Estimation

The term estimator refers to the particular method or formula used to obtain sample
statistics that are parameter estimates. There can be different alternative estimators
for a given population parameter. With a few exceptions, different estimators yield
distinct estimates of the population parameter of interest.

It is important to note that an estimate itself is a realization of a random variable
that follows a probability distribution (or sampling distribution). Depending on the
particular elements being sampled, sample statistics take on different values. One can
view any particular estimate as one of many possible estimates that could have been
obtained from multiple, equal-sized random samples drawn from the same
population. Thus, the value of the sample mean from a single random sample is
only one of numerous sample mean values that could have been calculated from such
repeated samples. Moreover, different estimators or estimation methods will often
produce different estimates of population parameters, in which case a choice must be
made among competing estimators. For example, when the distribution is normal,
both the sample median and the sample mean could be used as estimators of the
population mean. The sampling distributions of these estimators are different.

Estimators can be judged according to how well they satisfy a few desirable
properties. One desirable property of an estimator is unbiasedness. When the
expected value of an estimator equals the value of the true parameter being

2. Because of this, we do not provide a notational distinction between the theoretical response variable and

the sampled, or observed, values of the response variable.
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