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ABSTRACT AND BENEFITS 

Abstract:  
Although selectors have been widely applied to control filamentous bulking in activated 
sludge systems, significant variation exists in design and operating practices and the degree 
of sludge settleability achieved. The goal of this research was to investigate fundamental 
issues regarding the growth and control of specific filamentous organisms at bench scale, 
develop an extensive database of selector design and operating data from full-scale facilities, 
and demonstrate implementation of full-scale, pilot anaerobic selectors at two large 
wastewater treatment plants. Based on data collected from 44 facilities, this project examines 
the relationship between various process parameters and settleability control. 

This study identifies the most significant process variables affecting settleability control in 
three distinct plant categories—short-MCRT with anoxic or anaerobic selectors, short-MCRT 
with aerobic selectors, and long-MCRT—and provides recommended design and operating 
ranges based on single-variable regression analysis of a large database of full-scale plant 
data. The project team has incorporated this information into a computerized selector 
diagnostic tool that may be used to retrieve recommended design and operating ranges from 
the current study and the literature based on user input. 

 
Benefits:   

♦ Evaluates the role of readily assimilable chemical oxygen demand (raCOD) in the 
growth and control of Thiothrix spp. 

♦ Documents selector performance and operating data from 44 full-scale facilities. 

♦ Evaluates the relationship between various process variables and settleability control. 

♦ Demonstrates implementation of full-scale, pilot anaerobic selectors at two facilities. 

♦ Provides a semi-empirical formula for calculating the “effective” number of selector 
compartments (N) in a selector zone based on flow conditions and basin geometry 
when dye study results are not available. 

♦ Ranks selector design and operating parameters based on the influence on settleability 
for three different plant categories—short-MCRT with anoxic or anaerobic selectors, 
short-MCRT with aerobic selectors, and long-MCRT. 

♦ Provides recommended design and operating ranges for the most critical process 
variables in each of the three plant categories. 

♦ Provides a computerized selector diagnostic tool (available on CD-ROM attached to 
inside of back cover of report) to assist in troubleshooting existing selectors or 
designing new selectors based on user input and design/operating parameter 
recommendations from this study and the literature.  

 
Keywords: Selector, filamentous bulking, settleability 
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EXECUTIVE SUMMARY 
 
ES.1 Key Findings 

In brief, this study supports the following conclusions: 

♦ Anoxic selectors do not appear to control filamentous bulking in long-mean cell 
residence time (MCRT) plants. In fact, the elimination of all anoxic zones may help 
to control bulking in these plants. Other design/operating parameters, however, were 
shown to influence activated sludge settleability in long-MCRT plants. 

♦ Aerobic selectors in short-MCRT plants do control filamentous bulking if they are 
small enough to produce a biochemical oxygen demand (BOD) concentration 
gradient in the aeration basins. 

♦ Anoxic and anaerobic selectors do control filamentous bulking in short-MCRT plants 
if the selector volume is large enough and/or the selector mixed liquor suspended 
solids concentration is high enough. These selector systems do not appear to benefit 
from a BOD concentration gradient as the aerobic selectors in short-MCRT plants do. 
Although anaerobic/anoxic selector compartmentalization in these plants appears to 
improve settleability, this is presumably because of reduced selector short-circuiting. 

To make the study findings more readily available to practitioners, the project team 
prepared a computerized selector diagnostic tool, which is included on a CD-ROM attached to 
the inside back cover of this report. Documentation for this software application is provided in 
Appendix F, which explains the simple steps to using the selector diagnostic tool software. This 
study’s findings can be used immediately through this software to help an operator troubleshoot 
a poorly-performing selector or help an engineer design a better-performing selector.   

If the practitioner is interested in how the selector diagnostic tool’s guidelines were 
derived, Chapter 4.0 can be referenced. If the practitioner is interested in an actual demonstration 
of these guidelines, Chapter 5.0 can be referenced. Chapter 6.0 provides a more detailed 
summary of the study’s findings and conclusions, Chapter 2.0 provides a selector literature 
review, and Chapter 3.0 provides laboratory study results demonstrating the role of readily 
assimilable chemical oxygen demand (raCOD) in selector performance. Refer to the discussion 
on raCOD in Chapter 1.0, Page 1-3.  

As shown in Chapter 5.0, a selector system does not need to comply with all the design/ 
operating parameter ranges listed in the selector diagnostic tool’s results tables to control 
filamentous bulking. The East Bay Municipal Utility District (EBMUD) selector worked well 
and only complied with three parameters. Since the parameters are listed in order of their 
influence on diluted sludge volume index (DSVI), those listed first in the diagnostic tool’s results 
table are those that the selector operator or designer should be primarily concerned with.  

 A more detailed summary of this study’s findings is presented in the next section. 

ES.2 Project Objectives 
 Selector processes have been widely applied to control filamentous bulking in activated 
sludge systems for more than thirty years. Still, the literature does not provide a consistent set of 
selector process design or operating guidelines. Variation in the degree of sludge settleability 
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control achieved, represented by the sludge volume index (SVI), for similar process designs has 
dictated that selectors be designed on an empirical basis, relying heavily on design concepts and 
demonstrated performance at facilities with similar wastewater characteristics and process 
configurations. 

The primary objectives of this research were to: 

♦ Investigate the mechanisms limiting the ability of a selector to control the growth of 
specific filamentous organisms known to cause bulking; 

♦ Establish a project database of selector design and performance from a large pool of 
full-scale facilities from across the U.S.; 

♦ Identify selector design and performance relationships for each of the three main 
selector categories (aerobic, anoxic, and anaerobic) based on the project database 
information collected; and 

♦ Demonstrate the implementation of a full-scale anaerobic selector at two wastewater 
treatment facilities and identify associated selector design and performance issues. 

ES.3 Project Approach 
 Based on the project objectives, this study was divided into five main project tasks: 

1. Literature Review 
2. Laboratory Investigation 
3. Initial Plant Screening Survey 
4. Detailed Plant Investigations 
5. Full-Scale Demonstration Projects 

Dr. H. David Stensel (University of Washington, Seattle) conducted a literature search 
and review of selector-related topics, including filament type and occurrence in activated sludge 
systems, kinetic and metabolic substrate removal mechanisms, available full-scale selector 
design and performance data, and current research efforts related to the control of specific 
filamentous organisms. The goal of the literature review was to highlight key issues for 
application to subsequent project tasks. 

The literature review illustrated that selector design approaches are focused on the 
removal of raCOD, while some selector designs often fail if process conditions favor the growth 
of filamentous organisms that thrive on slowly assimilable chemical oxygen demand (saCOD). 
In order to further examine this issue, under Dr. Stensel’s direction, Gang Xin conducted a 
bench-scale, laboratory experiment to investigate the ability of an aerobic selector to control two 
specific filamentous organism types—one that prefers raCOD (Type 021N, Thiothrix) and one 
that thrives on saCOD (Microthrix parvicella, Type 0092). 

This study focused primarily on collecting and analyzing selector design and operating 
data from full-scale facilities from across the U.S. As an initial step, a screening survey form, 
designed to be completed in a relatively short time period, was distributed to a large number of 
wastewater facilities from across the country. The initial screening survey was used to establish 
plant contacts at a large pool of facilities equipped with selectors of various types, collect basic 
selector design (type, configuration) and performance data (SVI), and identify candidate 
facilities interested in participating further in the study. 

Following completion of the initial screening survey, many of the facilities were carried 
forward as part of a detailed plant investigation task. During this phase, plants were asked to 

ES-2  



provide more detailed information regarding both plant and selector design and operation, 
including one year of plant operating and selector performance data. Based on the activated 
sludge operating data provided, a number of important design parameters were calculated in 
order to compare selector design and performance between facilities and selector types. For the 
purposes of this study, the diluted SVI (DSVI) was selected as the most accurate representation 
of sludge settleability at these facilities because of the dependency of the SVI test on mixed 
liquor suspended solids (MLSS) concentration. Single variable regression analyses were 
conducted to evaluate the relationship between a wide array of process variables and the DSVI 
achieved (dependent variable). The results were compared to literature design and operating 
guidelines whenever possible. 

Since selectors are often installed as retrofits to existing facilities rather than included in 
original plant designs, this study included the performance demonstration of full-scale anaerobic 
selectors installed at two wastewater treatment facilities—the EBMUD Main Wastewater 
Treatment Plant (MWWTP) in Oakland, Calif., and the Orange County Sanitation District 
(OCSD) Plant No. 1 in Fountain Valley, Calif. The goal of this work was to provide 
municipalities with key information necessary for successful selector implementation at their 
facilities by highlighting process considerations and issues. 

ES.4 Literature Review 
The following is a summary of the main literature review findings: 

♦ A combined survey of 270 U.S. facilities (Jenkins et al. 2004) indicated that the most 
common filament types were (in order of frequency of occurrence) Type 1701, Type 
021N, and Thiothrix, while a survey of 33 long-MCRT, biological nutrient removal 
(BNR) plants in South Africa (Blackbeard et al., 1987) found Type 0092, Type 0675, 
Type 0041, M. parvicella, and Type 0914 to be most common. 

♦ Aerobic selectors promote kinetic conditions favoring preferential substrate uptake 
and sequestering by floc-formers over filamentous organisms. Anoxic selectors create 
a metabolic advantage for floc-formers, since most filamentous organisms are unable 
to denitrify (use nitrate as an electron acceptor) or have relatively low denitrification 
rates. Similarly, the feed-starve cycle employed in anaerobic selectors allows 
metabolic selection of floc-forming, phosphorus-accumulating organisms (PAOs) or 
glycogen-accumulating organisms (GAOs) over filamentous organisms. 

♦ Selectors will be most successful in situations where the target filaments use raCOD 
as substrates. Selectors may fail if the target filament uses saCOD or sulfide or is 
favored by low pH or nutrient deficient conditions. 

♦ Some filament types, such as M. parvicella, use saCOD [long-chain fatty acids 
(LCFAs)] for substrate and will proliferate in selector systems under the following 
conditions:  zero or low dissolved oxygen (DO), long MCRT, and low temperature. 

♦ A review of pilot- and full-scale selector design and operating data showed that a 
wide range of SVI control was achieved, with some installations reporting no 
significant improvement in bulking control. Single-stage designs are used for anoxic 
and anaerobic selectors, while most aerobic selectors include a staged design. 

The following is a summary of general selector design guidelines found in the literature: 
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♦ Substrate Removal – The soluble COD (sCOD) leaving the selector should be <60 
mg/L (Shao and Jenkins, 1989) and the raCOD should be virtually absent. The 
selector should remove 80% of the removable COD (Chudoba and Wanner, 1987). 

♦ Selector Staging and Configuration – All three selector types (aerobic, anoxic, 
anaerobic) should be designed with at least three stages, sized at 25%, 25%, and 50% 
of the total selector volume, respectively (Jenkins et al., 2004). A staged-selector 
arrangement is necessary to create a food-to-microorganism (F/M) gradient 
(Albertson, 2005).  

♦ Aerobic Selectors – Aerobic selectors should be staged to provide proper kinetic 
conditions favoring rapid substrate uptake and storage by floc-formers over filaments. 
Jenkins et al. (2004) recommended a three-stage design, sized at 25%, 25%, and 50% 
of the total selector volume with first stage and total F/M loadings of 12 kg COD/(kg 
MLSS·d) and 3 kg COD/(kg MLSS·d), respectively. 

♦ Anoxic Selectors – In single-stage arrangements, the selector F/M should be ≤1 kg 
BOD5/(kg MLSS·d) for temperatures ≤18ºC and ≤1.5 kg BOD5/(kg MLSS·d) for 
temperatures >18ºC, while the anoxic MCRT should be at 1-2 d (Marten and Daigger, 
1997). Grady et al. (1999) recommended an anoxic MCRT of 1.0 d at temperatures 
>20ºC and 1.5 d at temperatures <17ºC. Jenkins et al. (2004) recommended a three-
stage design, sized at 25%, 25%, and 50% of the total selector volume with first-stage 
and total F/M loadings of 6 kg COD/(kg MLSS·d) and 1.5 kg COD/(kg MLSS·d), 
respectively. 

♦ Anaerobic Selectors – A three-stage selector with a total selector hydraulic residence 
time (HRT) of 0.75–2.0 h is recommended (Jenkins et al., 2004).  

ES.5 Laboratory Investigation 
Four 3-L bench-scale, completely mixed activated sludge (CMAS) units (R1, R2, R3, and 

R4) were initially seeded with activated sludge containing both Thiothrix spp. (raCOD filament) 
and M. parvicella (saCOD filament). The reactors were fed a synthetic wastewater high in 
Tween 80 (water soluble oleic acid ester of sorbitol) and acetate to promote the growth of both 
raCOD and saCOD filament types. After an initial startup period, the following changes were 
made: 1) a three-stage aerobic selector was added to R1 (25%, 25%, and 50% of total selector 
volume), 2) the raCOD constitutents were removed from the feed to R2, and 3) a four-stage 
aerobic selector was added to R4 (12.5%, 12.5%, 25%, and 50% of total selector volume). 
No changes were made to R3, which served as the control. Oxygen uptake rate (OUR) batch tests 
were conducted periodically by adding either acetate (raCOD) or Tween 80 (saCOD) to mixed 
liquor samples from each reactor. The reactor operating conditions are summarized in Table 
ES-1. 

Table ES-1. Summary of Bench-Scale Reactor Operating Conditions. 
Operating Conditions (all reactors) Reactor 

No. 
 

Description Wastewater Feed MCRT(d) Temp. (ºC) Air Feed 
1 Three-stage aerobic 

selector 
2 raCOD removal from feed 
3 Single-stage CSTR 
4 Four-stage aerobic selector 

Synthetic, high in 
LCFAs (oleic acid) 

and raCOD 
(acetate) 

20 12–15 
Intermittent, 
DO between 

0–2 mg/L 
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 The DSVI variation over time in each of the four bench-scale units is shown in Figure 
ES-1. The results suggest that adding a three-stage and four-stage aerobic selector to R1 and R4, 
respectively, had a similar effect on DSVI reduction as removing raCOD from the feed to R2. 
The systems equipped with selectors, however, actually achieved slightly improved DSVI 
values, suggesting that aerobic selectors may do more to control bulking than just remove 
raCOD. Severe bulking occurred in the control reactor with Thiothrix spp. as the dominant 
filament type. Conditions favoring the growth of M. parvicella could not be maintained in any of 
the reactors.  
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Figure ES-1. Dilute Sludge Volume Index in Four Bench-scale Reactor Systems. 

 OUR and acetate uptake rates were dramatically reduced in R2 following raCOD removal 
from the wastewater feed and were significantly less (2-6 times lower for OUR, 3-7 times lower 
for acetate) than the other reactors. This suggests that the R2 feed without raCOD did not support 
raCOD floc-forming bacteria growth and that the presence of these bacteria may enhance floc 
structure and settleability. Acetate uptake rates were 6–10 times higher than the Tween 80 uptake 
rates,which suggests that Tween 80 (and possibly all LCFAs) may not be adequately removed in 
a selector and could leak into the main aeration zone at sufficient levels to support filamentous 
bulking. Similar DSVI control was achieved in both the three- and four-stage aerobic selector 
systems, while sCOD profiles indicated that most of the removal occurred in the first stage. 
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ES.6 Initial Plant Screening Survey 
 The initial screening survey included 125 U.S. wastewater treatment plants. Of these 
facilities, 85 had selectors (aerobic, anoxic, or anaerobic), but only 46 had improved settleability 
following selector installation, as shown in Figure ES-2.  
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Figure ES-2. Initial Screening Survey Results – Selector Type and Effectiveness. 

The initial screening survey form requested the following basic plant information: 

♦ Plant flow rate 
♦ MCRT 
♦ Nutrient removal requirements 
♦ Aeration basin configuration 
♦ Type of selector 
♦ Bulking frequency 
♦ SVI control achieved following selector installation 

Given the significant amount of additional plant data to be requested and assuming a 
moderate response rate, the project team decided to carry forward all 85 facilities reporting 
selector installations to the detailed plant investigation phase. 

ES.7 Detailed Plant Investigations 
 Table ES-2 summarizes the information requested from each of the 85 facilities included 
in the detailed plant investigation. In addition to collecting general plant and process 
configuration information, each facility was asked to provide approximately one year of selector 
operating and performance data in spreadsheet format. The extensive data collection effort 
required numerous follow-up data requests and discussions with plant contacts to verify the 
information provided and to answer plant-specific questions. A number of important selector 
design and operating parameters were calculated based on the information provided by each 
plant, as summarized in Table ES-3. 

 Most facilities reported sludge settleability performance on an SVI basis. Given the 
dependence of the SVI test result on mixed liquor concentration, as reported by Dick and 
Vesilind (1969), reported SVI values were converted to DSVIs by applying a correction 
developed by Merkel (1971). Lee et al. (1983) reported that the DSVI test yielded the best 
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correlation with total extended filament length relative to other techniques for estimating sludge 
settleability.  

Table ES-2. Summary of Detailed Plant Investigation Data Requested. 
Category Description 

General Information • Facility name, location, contact 
• Average, peak flow rate 
• Industrial contribution, major contributors 
• Annual wastewater temperature range 
• Nutrient removal requirements and processes 

Selector Configuration • Selector type (aerobic, anoxic, anaerobic) 
• Number and volume of selector stages 
• Mixing type (hydraulic, mechanical, air) 
• Available process design criteria, technical reports 

Aeration Basin Configuration • Number and volume of aeration stages and basins 
• Type of aeration system 
• Internal recycle streams 
• Approximate DO profiles 
• Location of RAS feed points 

Additional Plant Information • Process schematic 
• Secondary process operation and maintenance (O&M) manuals 
• Secondary influent sulfide levels 
• Oxygen uptake rate data 
• Soluble BOD or COD exiting the selector zone 

Plant Operating Data (One Year) • Secondary influent – flow, BOD, sBOD, COD, sCOD, TKN, P 
• Number of aeration basins in-service 
• WAS, RAS flow and concentration 
• MLSS, MLVSS 
• System (excluding clarifier solids), aerated MCRT 
• F/M 
• DO 
• Influent or effluent pH 
• SVI or DSVI 
• Filament type and abundance 
• RAS chlorination periods 

 
Table ES-3. Summary of Detailed Plant Investigation Process Data Calculations. 

Parameter Comments 
Selector MCRT (d) Calculation based on mass of mixed liquor in selector zone only 
Contact (or floc) loading (kg BOD5/kg MLSS) Ratio of influent BOD mass to solids mass in initial contact zone (ICZ) 
Selector ICZ F/M loading [kg BOD5/(kg MLSS·d)] F/M calculation based on mass of mixed liquor in selector ICZ only 
Selector HRT (h) HRT calculation based on volume of selector zone only 
90th Percentile SVI (mL/g)  
90th Percentile Merkel DSVI (mL/g) SVI data converted to DSVI using Merkel equation 
Fraction of SVIs greater than 150 mL/g (%) Represents percent of time SVIs exceed typical control limit 

 
 Given the large amount of information requested from each facility, many facilities were 
not able to provide key information, such as filament type and abundance, SVI, or essential 
secondary process operating data. Despite this limitation, the study was successful in collecting 
and verifying data from 44 of the 85 original plants for a total of 48 data sets (four facilities 
included two data sets representing distinct operating modes). The facility size and selector type 
distribution is presented in Figure ES-3. A tabular summary of all data collected is included in 
Table 4-5 in the main report. 
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Figure ES-3. Facility Size, Selector Type Distribution. 

 Average values for a number of selector process design parameters were plotted against 
both 90th percentile SVI and DSVI results (including the Merkel correction, as necessary). Figure 
ES-4 is a plot of the ICZ F/M, selector F/M, selector MCRT, system MCRT (excluding clarifier 
solids), total selector HRT, and number of selector stages versus 90th percentile DSVI. For the 
purposes of this study, a 90th percentile DSVI value of 150 mL/g was selected as the typical 
upper limit for well-settling sludge. 

 The plots in Figure ES-4 clearly indicate that the anoxic selectors achieved greater 
bulking control relative to the anaerobic selectors. Nearly all of the anoxic selector facilities (23 
of 27) had 90th percentile DSVIs <150 mL/g, while nearly all of the anaerobic selector plants (12 
of 14) exceeded this limit. Two of five aerobic selector plants also exceeded 150 mL/g. Most 
anoxic selectors, however, were installed in long-MCRT plants, while all anaerobic selectors 
were installed in short-MCRT plants (see Figure ES-4). Therefore, the lower DSVI in plants with 
anoxic selectors may be because of the lower DSVI produced by long-MCRT filamentous 
bacteria (Wanner, 1994), rather than selector type.  
 
 No clear relationships were observed between settleability control and selector ICZ F/M, 
selector F/M, selector MCRT, system MCRT (excluding clarifier solids), or total selector HRT. 
In fact, a wide range of DSVIs was observed across a broad range of F/M loading rates, MCRTs, 
and selector HRTs. Selector staging was not observed to have a significant impact on bulking 
control in the anoxic selector systems. All eight single-stage anoxic selectors yielded DSVIs 
<150 mL/g, while four of 18 multi-stage anoxic selectors exceeded this limit. Selector staging 
was also not observed to have a significant impact on settleability in anaerobic selector systems, 
since six of seven plants yielded DSVIs >150 mL/g in both the single- and multi-stage 
categories. 
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